
Concept Modeling Semantics
In order to improve UML’s suitability for modeling real-world concepts, the Concept Modeler interprets the UML standard to allow subproperties, existential
quantification constraints, and universal quantification constraints. In addition to those interpretations, the Concept Modeler uses a small UML profile to
add the capabilities of global properties, necessary and sufficient properties, and other future capabilities. Simply having or applying a «Concept Model»
stereotype on a UML package causes anything within that package to have this interpretation, and allows these added capabilities.

The following subsections describe how the Concept Modeler interprets the UML standard and augments it to describe conceptualizations.

Class

Classes
Anonymous union classes
Advanced Modeling Patterns
Equivalent classes
Conditions
Property ownership
Global properties
Equivalent properties
Subproperty

 Property chain
 Property restrictions
 Cardinality restrictions
 Inverse properties
 Object properties
 Annotation and annotation properties
 Preferred Annotation Property
 Generalization
 Multiplicities

 IRI tagged value
 Complement Of
 Importing OWL
 Concept model export URI style
 OWL export folder
 UPCM library in CCM
 Equivalent classes in NLG
 Working with superclass intersection
 Intersection

Class

In the concept modeling interpretation of the UML standard, a class is a set or collection of individual things called . The members of a class in a members
concept model are either things that exist in the real world around us, or things we can imagine to exist, such as unicorns. For example, depending on the
stated scope of a concept model, the members of a Chair class would include the one you sit upon to do your work, or the one in a warehouse ready to be
shipped to a customer.

Anonymous Classes

An unnamed UML Class represents an anonymous class expression, used for defining conditions, including domains and ranges.

Anonymous Union Classes

An anonymous union is an unnamed class used to represent a set of classes that can be used as a type of a property. An anonymous union class always
implies a complete subclass generalization. (See .)Complete Subclasses

The following diagram states that an instance of a Person may have a value of type Cat or Dog for the property. The diagram also states that an cares for
instance of a Cat or a Dog may have a value of type Person for the property.cared for by

UML Classes
The owner is no longer shown by default on a UML Class in Concept Modeling diagrams.

Complex Chain
Importing a complex chain of restrictions no longer shares anonymous UML classes among multiple concept models.

https://docs.nomagic.com/display/CCM2022xR2/Classes
https://docs.nomagic.com/display/CCM2022xR2/Anonymous+union+classes
https://docs.nomagic.com/display/CCM2022xR2/Advanced+Modeling+Patterns
https://docs.nomagic.com/display/CCM2022xR2/Equivalent+classes
https://docs.nomagic.com/display/CCM2022xR2/Conditions
https://docs.nomagic.com/display/CCM2022xR2/Property+ownership
https://docs.nomagic.com/display/CCM2022xR2/Global+properties
https://docs.nomagic.com/display/CCM2022xR2/Equivalent+properties
https://docs.nomagic.com/display/CCM2022xR2/Subproperty
https://docs.nomagic.com/display/CCM2022xR2/Property+chain
https://docs.nomagic.com/display/CCM2022xR2/Property+restrictions
https://docs.nomagic.com/display/CCM2022xR2/Cardinality+restrictions
https://docs.nomagic.com/display/CCM2022xR2/Inverse+properties
https://docs.nomagic.com/display/CCM2022xR2/Object+properties
https://docs.nomagic.com/display/CCM2022xR2/Annotation+and+annotation+properties
https://docs.nomagic.com/display/CCM2022xR2/Preferred+Annotation+Property
https://docs.nomagic.com/display/CCM2022xR2/Generalization
https://docs.nomagic.com/display/CCM2022xR2/Multiplicities
https://docs.nomagic.com/display/CCM2022xR2/IRI+tagged+value
https://docs.nomagic.com/display/CCM2022xR2/Complement+Of
https://docs.nomagic.com/display/CCM2022xR2/Importing+OWL
https://docs.nomagic.com/display/CCM2022xR2/Concept+model+export+URI+style
https://docs.nomagic.com/display/CCM2022xR2/OWL+export+folder
https://docs.nomagic.com/display/CCM2022xR2/UPCM+library+in+CCM
https://docs.nomagic.com/display/CCM2022xR2/Equivalent+classes+in+NLG
https://docs.nomagic.com/display/CCM2022xR2/Working+with+superclass+intersection
https://docs.nomagic.com/display/CCM2022xR2/Intersection
https://docs.nomagic.com/display/CCMP2022xR2/Complete+subclasses

An anonymous union class.

In an ontology, if anonymous union, with same classes within the union, is used in multiple places, the Concept Modeler can distinguish it when importing
the ontology. In other words, if the anonymous union has the same union members, the Concept Modeler will identify it as the same anonymous union.

AVAILABLE FROM 19.0 SP2

An anonymous Class with Subclasses but without an explicit «Union» is now treated the same as a union of its Subclasses. The following image show
what that means.

The boxed diagram represents the usual relationship between an anonymous Union class. Notice the stereotype, . On the other hand, the diagram «Union»
not boxed represents a similar structure but there's no anonymous Union class with the stereotype, . The modeling tool is programmed to consider «Union»
the non-stereotyped class with the subclasses as a Union. Let's see that in the exported OWL of this model.

Reading the following code piece, notice the ObjectUnionOf between A and B, and the ObjectIUnionOf between C and D.

Object Property: :hasP (has p)
ObjectPropertyDomain(:hasP ObjectUnionOf(:A :B))
ObjectPropertyRange(:hasP :P)
Object Property: :hasQ (has q)
ObjectPropertyDomain(:hasQ ObjectUnionOf(:C :D))
ObjectPropertyRange(:hasQ :Q)

The full ontology is displayed below:

Ontology(<http://example.com/ontology/uniondemo>

Declaration(Class(:A))
Declaration(Class(:B))
Declaration(Class(:C))
Declaration(Class(:D))
Declaration(Class(:P))
Declaration(Class(:Q))
Declaration(ObjectProperty(:hasP))
Declaration(ObjectProperty(:hasQ))

############################
Object Properties
############################

Object Property: :hasP (has p)

AnnotationAssertion(rdfs:label :hasP "has p"^^xsd:string)
ObjectPropertyDomain(:hasP ObjectUnionOf(:A :B))
ObjectPropertyRange(:hasP :P)

Object Property: :hasQ (has q)

AnnotationAssertion(rdfs:label :hasQ "has q"^^xsd:string)
ObjectPropertyDomain(:hasQ ObjectUnionOf(:C :D))
ObjectPropertyRange(:hasQ :Q)

############################
Classes
############################

Class: :A (a)

AnnotationAssertion(rdfs:label :A "a"^^xsd:string)

Class: :B (b)

AnnotationAssertion(rdfs:label :B "b"^^xsd:string)

Class: :C (c)

AnnotationAssertion(rdfs:label :C "c"^^xsd:string)

Class: :D (d)

AnnotationAssertion(rdfs:label :D "d"^^xsd:string)

Class: :P (p)

AnnotationAssertion(rdfs:label :P "p"^^xsd:string)

Class: :Q (q)

AnnotationAssertion(rdfs:label :Q "q"^^xsd:string)

)

	Concept Modeling Semantics

