The Alf editor

The Alf editor window provides a general way to edit the Alf code of any element with an Alf body. If your
project was created using the Alf project template, then the Alf editor window will already be open and
docked in the lower left window pane. But, if it is not open, you can open it by selecting Windows > Alf
(the window will initially appear at the bottom of the main MagicDraw window, but it may be moved and
docked like other MagicDraw windows). The Alf editor window remains open and in the same position for
a given project, even when the project is closed and opened again. For opaque behaviors, expression
and actions, associated Alf code may also be edited as the body of those elements (for more details on
editing the Alf bodies of these kinds of model elements, see the child pages of this page).

To edit Alf code in the Alf editor window, open the window (if it is not already open) and select the
element whose Alf body is to be edited. If the element has an Alf body (or if it is possible to add a new Alf
body to it), then the Alf code appears in the window. As shown in the sample image below, the code is
displayed with keywords and syntactic elements highlighted in different colors.

a Af
Alf el x

TestAddressBook
lhriteLine ("Testing Address Book..."):
2book = new 'Address Book' () :
3
4WriteLine ("Adding Ed at 1234 Alf Street..."):
S5book.add ("Ed", "1234 Alf Street"):
oWriteAddressesFor (book, "E4"):;
7
8WriteLine ("\nAdding Ed at 5678 No Magic Ave...");
9book.add ("E4A", "5678 No Magic Ave");
10WriteAddressesFor (book, "Ed");
11
12WriteLine ("\nRemoving address 1...");
13book.remove ("E4A", 1);
l4WriteAddressesFor (book, "Ed4"):;
15
léWriteLine ("\nDone.\n");
17

The Alf editor window

The buttons at the bottom right of the window have the following functions.

Button Description
name
Save Save changes that have been made to the Alf body being edited. If, after making changes

to the Alf code, you select a different element, then your changes will be automatically
saved, even if you have not pressed the Save button.

Revert Revert the contents of the window to the last saved version of the Alf body. An changes
made since the last save will be lost.

When you save Alf code from the editor, if the code has no errors, then it is automatically compiled so
that it becomes executable. If the code has errors, however, then it can still be saved as text, but it
cannot be compiled.

1 An Alf body that is saved with compilation errors may have been previously compiled
successfully. In this case, the executable behavior of the element with which it is associated
will still reflect that generated from the last successful compilation.

The Alf editor will detect errors in Alf code as it is being edited. Detected errors are identified by
underlining the relevant text in red and showing a red marker to the left of any line containing an
identified error. Alf code may have two kinds of errors: syntax errors, which result from a failure to parse
the text being edited as Alf code, and constraint violations, which are violations of the semantic checks
made on Alf code that has been parsed successfully.

The Alf editor abandons parsing the text on the first syntax error. Therefore, text with a syntax error will
have only one marker, at the point at which the parse failed. The image below shows an example of text
with a syntax error. Hovering the cursor over the marked text (or the marker to the left of the line) shows
the cause of the error.

Related pages

® Working with Alf
© Using Alf to define
Behaviors
0 Using Alf in Class
models
© Using Alf in State
Machine models
0 Using Alf in
Activity models
® The Alf compiler

#
https://docs.nomagic.com/display/ALFP190/Working+with+Alf
https://docs.nomagic.com/display/ALFP190/Using+Alf+to+define+Behaviors
https://docs.nomagic.com/display/ALFP190/Using+Alf+to+define+Behaviors
https://docs.nomagic.com/display/ALFP190/Using+Alf+in+Class+models
https://docs.nomagic.com/display/ALFP190/Using+Alf+in+Class+models
https://docs.nomagic.com/display/ALFP190/Using+Alf+in+State+Machine+models
https://docs.nomagic.com/display/ALFP190/Using+Alf+in+State+Machine+models
https://docs.nomagic.com/display/ALFP190/Using+Alf+in+Activity+models
https://docs.nomagic.com/display/ALFP190/Using+Alf+in+Activity+models
https://docs.nomagic.com/display/ALFP190/The+Alf+compiler

a Af
Alf el %
TestAddressBook

lwri:eLine*‘I‘e:l:in; Addreas Beok...");
2book = pew '

3 [1:10] Encountered " "\"Testing Address Book...\" |
4WriteLline("Adding Ed at 1234 Alf Street..."):

Sbook.add ("Ed”, "1234 Alf 3 t");
EWriteRddressesFor (book, "E4A"):

T

@WriteLine("\nAdding Ed at 5678
Sbook.add ("Ed™, "S670 No Ma
k, "EA"):

No Magic Rve..."):

Bva");

l0WriteRddressesFor (bo
11

12WriteLine {("\nRemoving address 1...");
13book.remove ("E4", 1):
l4WriteRddressesFor (book, "Ed4"):

15

16WriteLine {"\nDone.\n") ;

17

A syntax error

If the text being edited parses successfully, then the Alf editor runs a series of constraint checks (so
called because these checks are formally specified in the Alf standard as constraints on the abstract
syntax tree of parsed Alf code). As shown in the example below, there may be multiple constraint
violations, with the relevant text for each of them being identified. Hovering the cursor over the marked
text (or the marker to the left of the line) shows what constraints have been violated.

a Alf
Alf @ %
TestAddressBook

1citelin(f'Teating Addre

2hook mass Pheldvans Beslt ()

3 [1:1) One or more arguments are not compatible (in type and/c

awriy[1:1] Behavior or feature reference cannot be resolved. (behavi

¢

ohx.add (TEAT, Tldid ALL Strastll: I
6WritehAddreasesaFor (bock, "Ed");

7

BWriteLine ("\nAdding
9book.add ("Ed4", "5
l0WriteRddressesFor (book, “Ed");

gl

12WriteLine ("\nR ving address 1l...");
13book, remove ("Ed”., null):

Ed at 5678 Mo Magic Ave...");:

Ava");

No Magic

li4WritenddresseaFor (book, "Ed")»
15

lewritaLine ("\nDona . \n")

17

Save | Revert

Constraint violations

If you save Alf code with errors, then these errors will also be recorded in the Active Validation Results
window (as shown below).

®

Depending on your Active Validation environment options, it may take a couple of seconds
after you save your Alf code before the error notifications appear in the Active Validation
Results (or before they disappear, once they are corrected)

By default, the Active Validation Option Validate Only Visible Diagrams is set to true for a
project. This means that only Alf errors on currently visible diagrams will appear in the Active
Validation Results. If you would like all Alf errors included in the results, then select Analyze >
Validation > Active Validation Options and set the Validate Only Visible Diagrams option
to false. This is particularly useful to provide a summary when there are compilation errors in
various Alf bodies across your project. Note, however, that setting this option to false means
that all active validations will be carried out across your project, not just the collection of Alf
errors. This could result in a degradation of performance, if your project is large or you have a
large number of validations being performed.

All the Alf compilation errors for a single Alf
body appear as one active validation error. esx

Acove Vldato Relts
. - X R]
Berent ! Severty Abbrevision _ Message ot Ignored
=)
1:1) One or e
1:1] Behaior o festure eference cannot e reshed:
1] e conn b resoved (o has ot b assigned). (1
3 Tenadresiook u 11ame cornc e rsbed (o st e o Click here to open Active
(bahavirinocatontprese Validation Results.
(ehoveriniacononEupressonfeferersConrant)
1o ¥
|Ready. Q1 (g o 4se

Alf compilation errors in Active Validation Results

	The Alf editor

