
No Magic, Inc.

2017

18.0 SP9

CAMEO CONCEPT
MODELER PLUGIN

All material contained herein is considered proprietary information owned by No Magic, Inc. and is not to be
shared, copied, or reproduced by any means. All information copyright 1998-2017 by No Magic, Inc. All Rights
Reserved.

Contents
1 Introduction ... 3

1.1 MDA... 3

1.2 Concept Modeling Purpose .. 3
1.3 The Role of Ontologies and Reasoners .. 3

1.4 Open World Assumption vs. Closed World Assumption .. 4
1.5 Information Modeling Purpose .. 4

2 Concept Modeler Capabilities... 5
2.1 SME Friendly Graphical Notation ... 5

2.2 Automatic Styling of Concept Models ... 5

2.3 Automatic Glossary Generation ... 6
2.4 Concept Model Authoring .. 8

2.5 UML Model Traceability ... 8
2.6 Semantic Integration of Multiple Information Models .. 9

2.7 Natural Language Glossary .. 9
2.8 Annotation Properties in the Natural Language Glossary .. 9

2.9 Preferred Annotation Property ... 9

2.10 Creation of Multiple Data Models from One Concept Model 10
2.11 Connection of Multiple Existing Data Models to One Concept Model 10

2.12 Updating Symbol Styles ... 10
2.13 Diagram Preservation After Ontology Import ... 11

3 Concept Modeling Semantics ... 14
3.1 Class ... 14

3.2 Property Ownership.. 14

3.3 Global Properties .. 15
3.4 Subproperty .. 16

3.5 Existential Quantification Constraint ... 16
3.6 Universal Quantification Constraint... 17

3.7 Necessary and Sufficient Condition ... 18
3.8 Generalization .. 19

3.8.1 Overlapping and Incomplete Subclasses .. 20
3.8.2 Disjoint Subclasses ... 21

3.8.3 Complete Subclasses ... 23

3.8.4 Disjoint and Complete Subclasses .. 24

3.9 Anonymous Union Class .. 25
3.10 Inverse Properties ... 25

3.11 Property Restrictions .. 26
3.12 Annotation and Annotation Properties ... 26

3.13 Preferred Annotation Property ... 27

3.14 Property Chain.. 32
3.15 Equivalent Properties ... 33

3.16 Equivalent Classes.. 34
4 UML to Equivalent OWL (in OWL Functional Syntax) .. 36

4.1 Class ... 37
4.2 Class Generalization ... 38

4.3 Generalization with Disjoint Subclasses .. 38

4.4 Generalization with Subclass Completeness .. 39
4.5 Anonymous Union Class .. 40

4.6 Class with Datatype Property ... 41
4.7 Class with Self-Referential Object Property .. 42

4.8 Class with Object Property ... 43
4.9 Property Holder with Datatype Property .. 44

4.10 Property Holder with Self-Referential Object Property ... 45

4.11 Property Holder with Object Property ... 45
4.12 Class with Object Property without Range .. 46

4.13 Class with Subproperty .. 46
4.14 Class with Universal Quantification Constraint on Property I 48

4.15 Class with Universal Quantification Constraint on Property II 49
4.16 Class with Existential Quantification Constraint on Property 50

4.17 Property Holder with Self-Referential Subproperty... 51
4.18 Property Holder with Subproperty ... 52

4.19 Class with Subproperty without a Range ... 53

4.20 Class with Necessary and Sufficient Property ... 54
4.21 Class with Property Having Unspecified Multiplicity ... 55

4.22 Class with Inverse Property.. 56
4.23 Annotation and Annotation Property ... 57

4.24 Asymmetrical Inverse Property .. 58

4.25 Disjoint Classes .. 59
4.26 Property Chain.. 60

4.27 Equivalent Property .. 61
4.28 Equivalent Class ... 62

5 Usage... 63

5.1 Create a Concept Modeling Project ... 63
5.2 Create a Concept Model ... 65

5.2.1 Convert a UML Model into a Concept Model .. 66
5.2.2 Create a Property Chain .. 76

5.2.3 Create Equivalent Property ... 84
5.2.4 Create Equivalent Classes ... 93

5.3 Set the Concept Model URI ... 94

5.4 Create the XML Catalog File ... 96
5.5 Import an OWL Ontology to a Concept Model ... 105

5.5.1 Update the XML Catalog File... 105
5.5.2 Set the OWL Import Catalog .. 105

5.5.3 Set a Path Variable to Share OWL Import Catalog Files 107
5.5.4 Use a Path Variable to Share OWL Import Catalog Files 110

5.5.5 Import an OWL Ontology file .. 113

5.5.6 Import annotations on an OWL Ontology to a concept model 116
5.5.7 Display and Hide IRI .. 117

5.6 Export a Concept Model to an OWL Ontology ... 119
5.6.1 Set the Concept Model Export Syntax .. 119

5.6.2 Set the Concept Model Export URI Style ... 120
5.6.3 OWL Export Folder .. 122

5.6.4 Export a Concept Model to OWL ... 125
5.6.5 Use Path Variables to Export a Concept Model to an OWL Ontology 126

5.7 Add a Concept Model to Teamwork Cloud and Export it as an OWL Ontology 127

5.8 Automatically Generate Glossaries .. 135
5.9 Create a Glossary Table ... 136

5.10 Rebuild a Glossary Table ... 138
5.11 View a Glossary ... 140

5.12 Create a Property Holder .. 141

5.13 Universal Quantification Constraints for an Existing Property 143
5.13.1 Add a Universal Quantification .. 143

5.13.2 Remove a Universal Quantification .. 144
5.14 Subproperties .. 144

5.14.1 Add a Subproperty .. 145

5.14.2 Remove a SubProperty ... 145
5.15 Create an Existential Quantification (Qualified) Constraint for a Property 146

5.15.1 Add an Existential Quantification ... 147
5.15.2 Remove an Existential Quantification .. 148

5.16 Go to Redefined Property ... 149
5.16.1 Go To Redefined Property in Containment Tree .. 149

5.16.2 Go To Redefined Property on Diagram .. 150

5.17 Go To Subsetted Property .. 151
5.17.1 Go To Subsetted Property in Containment Tree ... 151

5.17.2 Go To Subsetted Property on Diagram ... 153
5.18 Create a Necessary and Sufficient Condition ... 154

5.18.1 Add a Sufficient Condition ... 154
5.18.2 Remove a Sufficient Condition ... 155

5.19 Working with Subclasses ... 156

5.19.1 Make Subclasses Disjoint ... 157
5.19.2 Make Subclasses Complete... 157

5.19.3 Make Subclasses Overlapping .. 158
5.19.4 Make Subclasses Incomplete .. 160

5.20 Working with Annotations ... 161
5.20.1 Import an Ontology that Defines Annotation Properties 161

5.20.2 Define an Annotation Property ... 163
5.20.3 Apply an Annotation Stereotype ... 164

5.20.4 Associate an Annotation Property with an Annotation... 165

5.20.5 Show Annotations on the Diagram ... 169
5.20.6 Show an Annotation in the Documentation Pane ... 175

5.20.7 Select a Preferred Annotation Property for a UML Comment or «Annotation» .. 183
5.21 Generate a Natural Language Glossary .. 189

5.21.1 Updating symbol styles in older projects .. 192

5.21.2 Selecting a List of Ordered Annotation Properties ... 193
5.21.3 Include Property Definitions in the Natural Language Glossary 194

6 References ... 195

Copyright © 2017, No Magic, Inc. 3

1 Introduction
1.1 MDA
The Model Driven Architecture (MDA) approach as defined by the Object Management Group
(OMG) “provides an approach for deriving value from models and architecture in support of the
full life cycle of physical, organizational, and I.T. systems [1].”

1.2 Concept Modeling Purpose
When building a system for a business, there are a plethora of methodologies to choose from, as
well as numerous existing models, profiles, and plug-ins across any given enterprise. What
should be the starting point of the effort, business concepts, is often lost in overwhelming
technical detail. Many profiles are at such an intricate technological level (e.g., DDL, XSD,
AndroMDA) that a development team is faced with too many technical choices which leads to
inconsistent models. Technological concerns drag down the level of abstraction to the point that
business concerns can get overlooked. Aligning models becomes too difficult and too much
work, almost invariably resulting in disconnected model silos.

A concept model (unifying business concepts across an enterprise) is the basis for a solution to
this dilemma. A concept model represents the concepts and defining relationships of the
business. A concept model is a model of the real world of the business, not the data used by
business systems. Additionally, the concept model provides the vocabulary for process models
that describe the way the business is run. The concept model is created by capturing the
knowledge of business experts, then understood and validated by business experts.

Data models, which define and structure the data used by a system, can be built or generated by
“sub-setting” a concept model. The concept model becomes the “Rosetta Stone” for enterprise
level semantic integration (i.e., automatically generating data transformations between systems
within the enterprise described by the concept model).

1.3 The Role of Ontologies and Reasoners
An ontology is a formal naming and definition of the types, properties, and interrelationship of
the entities that exist in some domain. It defines and represents consensual knowledge as a set of
concepts within a domain, using a shared vocabulary to denote the types, properties, and
relationships of those concepts. Artificial intelligence, the Semantic Web, systems engineering,
software engineering, biomedical informatics, library science, enterprise bookmarking, and
information architecture all uses ontologies to represent concepts that belong to their domain in
very specific ways. Domain ontologies (domain-specific ontologies) plays a significant role in
the definition and use of an enterprise architecture framework.

Ontologies are commonly encoded using ontology languages. OWL (Web Ontology Language),
produced by the W3C Web Ontology Working Group, is one of the formal languages to
construct ontologies. It is an international standard for encoding and sharing ontologies and is

Copyright © 2017, No Magic, Inc. 4

designed to support the Semantic Web. An OWL ontology may include classes, relations,
attributes, formal axioms, and instances. OWL can be used to build most kinds of ontologies.
The Concept Modeler maps to a subset of the OWL. The following are some examples of what
you can do with OWL ontologies using the Concept Modeler:

x Import existing OWL ontologies for concept reuse, and/or as a starting point for the
creation of a concept model.

x Export a concept model as an OWL ontology, which can be augmented by the addition of
axioms not supported by the Concept Modeler. For example, axioms can be added to
constrain model interpretations, or for advanced reasoning (e.g., transitivity) not
supported by the Concept Modeler and UML.

A semantic reasoner infers logical consequences from a set of asserted axioms in an ontology,
and typically provides automated support for reasoning tasks such as classification and querying.
The inferences made by a semantic reasoner over an ontology generated by the Concept Modeler
can be used to find logical inconsistencies in the primary concept model. Hence, a semantic
reasoner can provide information to validate and improve a concept model.

The logical consistency of a concept model is particularly important if the desired result is a
system that classifies information. As stated above, the inferences made by a semantic reasoner
can help to ensure that the concept model is logically consistent in its classification.

The Concept Modeler maps to a subset of OWL that is most useful to the business purposes of
defining a concept model. Consequently, any attempt to “round trip,” (i.e., re-import a possibly
modified ontology model that has been exported by the concept model) is very likely to be
“lossy”, particularly if the ontology generated from a concept model is augmented by additional
axioms not supported by the Concept Modeler. Therefore, as a prime tenet of MDA, the concept
model is considered to be the “primary” artifact, and the ontology is the “secondary” artifact.
Business concept development and changes must be made in the concept model.

1.4 Open World Assumption vs. Closed World Assumption
Concept models built by the Concept Modeler satisfy the Open World Assumption. That is, no
one is assumed to have complete knowledge, and a fact may be unknown. The opposite is the
Closed World Assumption, where unknown facts are assumed to be false. An information model
“subsetted” from a concept model would satisfy the Closed World Assumption.

1.5 Information Modeling Purpose
An information model describes what information is stored in a system, and is independent of
any particular implementation of data management structure or technology. One way to
remember the difference between a concept model and an information model is that while a
personnel record can represent a person, a personnel record does not go to jail when a person is
found guilty of wrongdoing. An information model has a different purpose than a concept model.
An information model is designed to meet a set of requirements for the information in a system.

Copyright © 2017, No Magic, Inc. 5

However, a concept model can provide an excellent starting point for an information model. The
elements of a concept model that would fulfill a system’s requirements can be cherry-picked or
subsetted to create an information model in UML. Doing so can retain the traceability from
elements in an information model to their definitions in a more precise language than plain
English.

2 Concept Modeler Capabilities
This section provides the capabilities of the Concept Modeler.

2.1 SME Friendly Graphical Notation

x Uses consultant proven “SME (subject matter expert) friendly” graphical notation.
x Facilitates real-time interactions with SMEs to model real world business concepts and

their relationships.
x Requires no camel case names.
x Sets, by default, visibility of properties to public.
x Encourages clean, hyperlinked micro-subject-area diagrams.

2.2 Automatic Styling of Concept Models
Large-scale models often contain information that is tangled in a complex web of relationships
and therefore are difficult to read and focus on. Even though MagicDraw is the best modeling
tool on the market, without the AutoStyler capability, untangling requires quite a bit of effort, so
many modelers don't bother to try.

The Concept Modeler, through the AutoStyler plugin, assists the modeler in producing diagrams
that are concise, focused, and presentable to stakeholders.

Central to AutoStyler is a style named “Defined Elsewhere” that is applied to diagrammed model
elements when they are not defined on the current diagram. Traditionally, this style collapses all
compartments and fades the normal element colors, including association ends that are not
defined on the current diagram. The modeler can fine tune this style in any way the MagicDraw
style system allows, and, if desired, even retain the default style for some or all kinds of
elements.

AutoStyler examines two factors to determine whether the current diagram is eligible to be the
defining diagram for an element being added to a diagram. The first is whether or not a non-
descendant package owns the added element. In other words, when the added element is owned
by an element that is not a child of the diagram's owner, it is defined elsewhere. An example of
this is when a package other than the diagram's owning package owns the added class. The
second is whether or not the added element has a hyperlink to a diagram, which indicates the
defining diagram for the element. When an added element's hyperlink is not the current diagram,
it is clearly defined elsewhere.

Copyright © 2017, No Magic, Inc. 6

AutoStyler has a mode to automatically assign a hyperlink that points to the current diagram
when it is eligible to be the defining diagram for an element being added to it. This automatic
mode can be turned off as well.

The "Defined Elsewhere" style can be defined differently for each project, or defined the same
across all projects. For example, one might use a UPDM architectural model and a UML
software model with one standard "Defined Elsewhere" style that works for both kinds of
models. This style is usually a clone of the "Default" style that has been adjusted to fade fill
colors, text colors, and line colors, which can usually be done at the top level using opacity
settings.

AutoStyler allows the modeler to select one or more elements on a diagram as the defining
diagram for them, as long as they meet the criteria described above for defining diagram
eligibility. AutoStyler cannot automatically change the style of an element on a diagram when its
defining diagram status changes on any but the current diagram. AutoStyler allows the modeler
to select these elements and “repair” the styles to reflect this change in status.

The “Default” and “Defined Elsewhere” styles are tuned for working with concept models. The
symbol properties within those styles are, by default, set as follows:

x Visibility and stereotypes for properties are suppressed.
x Tagged values for association ends and classes are suppressed.
x Tagged values for attributes are shown.
x Subsets, redefines, and constraints for properties are shown.
x Constraint names for properties are shown (instead of constraint expressions).
x Properties of Property Holders are always shown.
x Association-end properties for Property Holders are shown as attributes when the

“Defined Elsewhere” style is applied, and the Association Ends are not shown.

AutoStyler allows the modeler to change any of these settings element by element, or by
changing them in the “Default” and “Defined Elsewhere” styles.

AutoStyler is currently a separate plugin for MagicDraw, but is expected to become part of the
base MagicDraw product in the future.

2.3 Automatic Glossary Generation
Using a glossary saves time by ensuring consistent usage of terminology in the organization. It
also improves the communication between team members since terms are understood in the same
way and definitions become visible everywhere the terms are used.

Copyright © 2017, No Magic, Inc. 7

Depending on project options, automatic glossary generation in a concept model can create a
glossary containing the names and descriptions of classes, association ends, attributes,
enumerations, and / or enumeration literals used in the owning concept model. These glossaries
are generated on import, element creation in the containment tree, or element creation on the
diagram. When creating a new class, association end, attribute, enumeration, or enumeration
literal in the containment tree or on the diagram, the element will not be added to the glossary
until the user names the element.

For automatic glossary generation, a user is provided with five project options:

1. Add classes to a glossary. When a class is created in the Containment tree, created on a
diagram, or imported from an ontology, the class name and documentation will be added
to a glossary in the owning concept model.

2. Add association ends to a glossary. When an association end is created in the
Containment tree, created on a diagram, or imported from an ontology, the class name
and documentation will be added to a glossary in the owning concept model.

3. Add attributes to a glossary. When an attribute is created in the Containment tree, created
on a diagram, or imported from an ontology, the attribute name and documentation will
be added to a glossary in the owning concept model.

4. Add enumerations to a glossary. When an enumeration is created in the containment tree,
created on a diagram, or imported from an ontology, the enumeration name and
documentation will be added to a glossary in the owning concept model.

5. Add enumeration literals to a glossary. When an enumeration literal is created in the
Containment tree, created on a diagram, or imported from an ontology, the enumeration
literal and documentation will be added to a glossary in the owning concept model.

You may change these project options at a later time. You can build or rebuild a glossary table
containing only the kinds of entries selected in the project options. When you create a glossary
for any selected «Concept Model» stereotyped package, the Concept Modeler will add only the
elements that exist inside the selected package to the glossary. For example, you have a project
that has two packages: package A and package B. When you create a glossary for package A, the
glossary only includes data from the selected package A. It does not contain any data from
package B. See section 5.9 Create a Glossary Table for the detailed steps.

Just like creating a glossary, rebuilding it works the same way by allowing only the elements
from a selected package to be kept. For example, you have created the glossary for package A
and you later added some terms or elements (classes, association ends, attributes, enumerations,
and enumeration literals) to the glossary manually. When you rebuild that glossary, the terms or
elements that you have manually added will not be included in the glossary. The same thing will
happen when you move some of the elements from package A to package B and then rebuild the
glossary for package A. You will not find the elements that you removed from package A in the
glossary. Please see section 5.10 Rebuild a Glossary Table for the detailed steps.

Copyright © 2017, No Magic, Inc. 8

Attributes and association ends can be suppressed from a glossary when their names are too
generic. For example, when a property is called "in", every occurrence of that word in any other
description, therefore, undesirably becomes a hyperlink to the property called "in". Additionally,
automatic glossary generation can be turned off. Existing glossary entries are not removed when
automatic glossary generation is turned off.

The glossary table allows for managing the terms of a concept model in a spreadsheet-like form.
Each row in the table represents a term, which can be a word, a phrase, or any element of the
model.

With the help of this table, a user can easily:

x Create and manage all terms of the model in a single place.
x Customize the representation of the table.
x Export the data into an *.html, *.csv, or *.xlsx file.

For more information, please refer to the user manual for MagicDraw 18.0 SP4 or higher.

2.4 Concept Model Authoring
The Concept Modeler can:

x Create a concept model from scratch or by importing an OWL ontology for reuse and/or
as a starting point for the creation of a concept model.

x Graphically represent imported RDFS/OWL 2 ontologies.
x Provide graphical concept model authoring with subject matter experts.
x Integrate with any UML model or UML-based standard, such as the Unified Profile for

MoDAF and DoDAF, and NIEM-UML.
x Support the Open World Assumption (i.e., the absence of evidence is not evidence of

absence).
x Export a concept model to an OWL 2 ontology for reasoning over and adding further

precision to constrain possible interpretations.
x Support the creation of Closed World Assumption information models.
x Automatically style classes defined in other packages and diagrams.

To see all elements that the Concept Modeler can import or export, see sections 3. Concept
Modeling Semantics and 4. UML to Equivalent OWL (in OWL Functional Syntax) respectively.

2.5 UML Model Traceability
The Concept Modeler uses UML to build models. Therefore, concept models built by the
Concept Modeler can be traced to any UML model, (e.g., NIEM-UML).

Copyright © 2017, No Magic, Inc. 9

2.6 Semantic Integration of Multiple Information Models
A concept model built by the Concept Modeler provides the semantics to integrate multiple
information models “subsetted” from the concept model:

x Information at rest (e.g., relational and XML databases).
x Information in motion (e.g., XSD schema and NIEM-UML).

2.7 Natural Language Glossary
In addition to glossary tables, the Concept Modeler provides a separate feature for generating a
natural-language glossary. Natural language glossaries are intended for technical and non-
technical people alike. For instance, concept modelers can ensure that the model indeed says
what was intended. Subject matter experts can ensure that the model captures their business
knowledge correctly. And system builders can find definitions for the terms used in requirements
in much more detail than usual.

A natural language glossary converts the elements in a concept model into natural-language
sentences. Every class creates a hyperlinked glossary entry that describes its superclass(es),
necessary and sufficient properties, necessary properties, and optional properties. Any user-
supplied documentation is transcribed at the end of each glossary entry. That documentation can
add supplemental definitions such as examples and counter-examples.

Users will find that the better the model, the clearer the auto-generated glossary.

2.8 Annotation Properties in the Natural Language Glossary

Cameo Concept Modeler offers a project option that allows the selection of which annotation
properties will be shown or hidden in every natural language glossary entry, in addition to the
definitions generated from the semantics of a concept model. You can select any number of
annotation properties. Elements in the report such as Classes or Properties that are annotated
with a «Annotation» stereotyped UML comment that contains one of these annotation properties
will display the UML comment body in the report. When no comment body exists the name of
the annotation property will display by itself.
In our software, the feature is labeled “Natural Language Glossary annotation property list” and
it consists of a list of pre-loaded annotation properties.

2.9 Preferred Annotation Property

Cameo Concept Modeler offers a project option that speeds up the creation of one of many
possible kinds of annotations, and specifies which kind of annotation to treat as documentation.
You can select one "preferred" annotation property to be assumed whenever the user adds a
UML Comment or an annotation. Comments and Annotations that explicitly use that annotation

Copyright © 2017, No Magic, Inc. 10

property will then be shown in the documentation panel, and in the Natural Language Glossary,
as the human-specified definition (as opposed to the model-generated definition).

If you import a concept model that contains annotations, they are placed in its owning folder and
each annotation has an annotated element and can have an annotation property tagged value.
When you select a preferred annotation property, the «Annotation»s owned by the annotated
element for the preferred annotation property will appear as documentation in MagicDraw.

Any annotations on ontology itself are imported correctly by CCM as annotations.

x In this new update, any annotations on ontology itself are imported by the Concept Model
as annotations.

If your project is a TWC project, Concept Modeler will attempt to lock the project’s elements. If
any of the elements cannot be locked, whether it is locked by another user, then several message
windows will appear, notifiying you of the problem and allowing you to see which elements are
not locked. Please refer to 5.20.7 for more information about these messages and further steps.

2.10 Creation of Multiple Data Models from One Concept Model

2.11 Connection of Multiple Existing Data Models to One Concept Model

2.12 Updating Symbol Styles

Cameo Concept Modeler diagrams are intended to be as non-technical as possible for subject
matter experts. As new features are added to the Concept Modeler, sometimes symbol styles may
expose technical details that are not appropriate for that kind of audience. Cameo Concept
Modeler therefore offers to tweak the styles called "Default" and "Defined Elsewhere".
However, if you have tweaked those styles yourself, you may wish to either defer this, or make
Concept Modeler stop asking you altogether.

This new feature that updates the symbol styles in older projects; more specifically, we added
versioning to symbol styles which allows you to programmatically update a project’s symbol
styles. Please note that this feature only works in 18.2+ and is not compatible in 18.0 and 18.1.
Additionally, updating symbol styles will overwrite the existing styles, so if you manually made
changes to the styles or added new features to the existing styles, those values will not be
retained. Please refer to 5.21.1 for instructions related to updating symbol styles.

Copyright © 2017, No Magic, Inc. 11

2.13 Diagram Preservation After Ontology Import

In addition to the Concept Modeler’s import capability, the software allows for diagram
preservation after an ontology import. More specifically, while importing an ontology, the
concept modeler will update the existing concept model. An ontology is imported into a CCM
project that contains one or more concept models. Each ontology is imported into a concept
model that may already be present in the project in which the ontology is imported. Ontology
elements get translated into concept model elements.

The following table describes the conditions, evaluated by Concept Modeler, of each resource
from ontology that is being imported. The condition determined by Concept Modeler will dictate
how Concept Modeler will create/merge/delete the model element.
New An element is not present in the model project in which an ontology is being

imported. Some parts of the ontology being imported may be already present in the
model project but some of the other parts may be brand new.

Deleted An element may be present in a concept model in the model project in which an
ontology is being imported. This element however may be missing from the
ontology being imported. This deletion need to be identified and element removed
after the import.

Modified An element may be present in a concept model in the model project in which an
ontology is being imported. This element however may have different properties /
values in the ontology being imported. This update to its properties need to be
identified and updated after the import.

Same An element remains unmodified after the import of an ontology.
The table below groups all the concept model elements and explains how they handle the
“preservation” for each of the four conditions explained above.

Concept Model Element Type of Update after Import What can be modified?

Concept Model
New and Modified Only two relevant conditions
Deleted and Same Irrelevant for the concept

model.

Concept

New New Concept is present only
in the imported ontology for
the given model.

Modified The concept's IRI matches but
either or both of the name and
owner are different.

Deleted Concept is present in the
model but missing from the
ontology. Mark all the new,
same and modified ones in the
original model. Delete the
unmarked ones from the
original model as these are the
ones that are deleted in the
ontology.

Same Following concept property

Copyright © 2017, No Magic, Inc. 12

match - Concept's IRI, name
and its owner / model.

Concept Generalization

New New generalization (to be
identified by general and
special concept) is present
only in the ontology

Modified Not applicable
Same Generalization's general and

special concept are same in
the ontology as in the model.

Deleted Concept Modeler will mark all
the new and same
generalizations from the
original model and delete all
the unmarked ones since those
are the generalizations deleted
in the ontology.
We need to mark all the new
and same generalizations (in
the original model) and delete
all the unmarked ones (from
the original model) as these
are the generalizations that are
deleted in the ontology.

Concept Disjoint
Relationship

Explicit disjoint relation
between 2 concepts

Identical to concept
generalization

Concept Equivalence
Relationship

New New equivalence is present
only in the ontology

Modified Not applicable
Same Equivalent concepts are the

same in the ontology as in the
model.

Deleted Concept Modeler will mark all
the new and same
generalizations from the
original model and delete all
the unmarked ones since those
are the generalizations deleted
in the ontology.
We need to mark all the new
and same generalizations (in
the original model) and delete
all the unmarked ones (from
the original model) as these
are the generalizations that are
deleted in the ontology.

Copyright © 2017, No Magic, Inc. 13

Anonymous Unions

Same Same (anonymous) union to
be identified by looking up
constituents (set of concepts in
the union) of the union against
every existing union.

Modified Modified union is a union
which has either a) same
union constituents AND
different (uniquely
identifiable) properties or b)
different constituents AND
same (uniquely identifiable)
properties

New New set constituents AND
new properties

Deleted Other 3 cases should mark
anonymous unions that are
same, new or modified. Any
unmarked anonymous unions
in the original model are to be
deleted.

Properties

New New object property is present
only in the imported ontology
(to be determined using IRI)

Same Following properties of a
object property should match-
IRI, Domain, type,
multiplicities

Modified Object property's IRI matches
but one or more of the
following values differ -
Domain, type, multiplicities

Deleted Property is present only in the
original model but is missing
from the ontology being
imported. Mark all the new,
same and modified ones in the
original model. Delete the
unmarked ones from the
original model as these are the
ones that are deleted in the
ontology.

Copyright © 2017, No Magic, Inc. 14

3 Concept Modeling Semantics
In order to improve UML’s suitability for modeling real-world concepts, the Concept Modeler
interprets the UML standard to allow subproperties, existential quantification constraints, and
universal quantification constraints. In addition to those interpretations, the Concept Modeler
uses a small UML profile to add the capabilities of global properties, necessary and sufficient
properties, and other future capabilities. Simply having or applying a «Concept Model»
stereotype on a UML package causes anything within that package to have this interpretation,
and allows these added capabilities.

The following subsections describe how the Concept Modeler interprets the UML standard and
augments it to describe conceptualizations.

3.1 Class
In the concept modeling interpretation of the UML standard, a class is a set or collection of
individual things called members. The members of a class in a concept model are either things
that exist in the real world around us, or things we can imagine to exist, such as unicorns. For
example, depending on the stated scope of a concept model, the members of a Chair class would
include the one you sit upon to do your work, or the one in a warehouse ready to be shipped to a
customer.

3.2 Property Ownership
The concept modeling profile of UML interprets the owner of a property as a context in which
that property must conform to certain constraints. These constraints can include multiplicity
(which includes a minimum cardinality and a maximum cardinality), a type for the property,
existential quantification, and universal quantification, which is the default. When an instance is
a member of an owning class, all of that class’ constraints must be met.

UML allows the cardinality of a property to be left unspecified. Unlike UML, which interprets
unspecified cardinalities as a minimum of one and a maximum of one, the concept modeling
profile interprets unspecified cardinalities as being zero to many (“0..*”).

An OWL ontology may contain properties in namespaces that are different from their domains.
If you import an OWL ontology that has properties with foreign domains defined in such
manner, you will see the association ends with cross (x) marks. In the Concept Modeler, these
non-navigable association ends mean that the properties belong to foreign domains and therefore,
they are owned by the association. The following diagram shows the examples of non-navigable
association ends.

Copyright © 2017, No Magic, Inc. 15

Figure 1 Properties owned by an association

In the diagram, the Employer, Vehicle, and Employed classes belong to three different
namespaces, and the association belongs to the same namespace as that of the Employer.

Note It is recommended that duplicate property names in a concept modeling diagram be

avoided because they will result in conflicting definition of domains and ranges
when exported to OWL.

3.3 Global Properties
Global properties are property declarations that can be used by any instance. Normally, a UML
property cannot be defined outside of a classifier, so a global property declaration is represented
as a UML property owned by a class that is stereotyped as a «Anything». The concept of a
property holder was introduced in the NIEM-UML standard for a similar purpose. In the concept
modeling profile, every property holder is equivalent to one topmost class (⊤) of which all other
classes are subclasses. Thus, a property of a property holder is “inherited by” all subclasses and
usable in any instances. In addition, while the name of a property holder is irrelevant,
consistently naming property holders “Thing”, “Concept”, or “Entity” in all concept models
avoids any confusion with normal classes.

Figure 2 A property holder in Concept Modeler

Copyright © 2017, No Magic, Inc. 16

3.4 Subproperty
A subproperty is a more specific kind of property than some other property, and a super property
is a more general kind of property than some other property. For example, “has father” is a more
specific property than “has parent”, and “has parent” is a more general property than either “has
mother” or “has father”. In the concept modeling interpretation of UML, subsetting a property
creates a subproperty when the subsetting property has a different name than the subsetted
property. (See section 3.5 Existential Quantification Constraint, for when the name is the same or
is omitted.) UML provides a {subsets} constraint that asserts that the values within a subsetting
property are also in the set of values within a subsetted property. To stay as close to standard
UML as possible, the concept modeling profile interprets a subsetting property having a different
name as a subproperty.

The diagram below shows that the property “is capacity of” (owned by the class “Legal
Capacity”) is a subset of the global property “is conferred on” (from the property holder
“Thing”).

Note In order to create a subproperty, the subsetting property must have a different name

than the property it subsets.

Figure 3 Property ‘is conferred on’ and subproperty ‘is capacity of’ having different names

3.5 Existential Quantification Constraint
A property is not limited to a minimum and a maximum cardinality (known as multiplicity) for
just one type. A property can have a multiplicity for a superclass, while at the same time having a
more specific multiplicity for one or more subclasses of that superclass. This constraint is known
as an existential quantification (∃) or qualified constraint. This type of constraint is an assertion
that, among other possible values, the number of values of one of these subclasses is between
some minimum and maximum cardinality. Adding an existential quantification constraint does
not define a new property, rather it constrains an existing property. Note that an existential
quantification constraint must have a minimum cardinality of at least one in order to meet the
definition of “existential” for the constraint. In the concept modeling interpretation of UML,
subsetting a property without giving the new property a different name (or leaving off the new
property name altogether) creates an existential quantification constraint. As {subsets} with an

Copyright © 2017, No Magic, Inc. 17

omitted name is not well defined in UML, in the concept modeling profile it is used to state that
a subset of values must meet the stated cardinality and type constraints of the subsetting
property. It does not create a new property, although it does create a context in which this
constraint holds: the owning class and its subclasses.

The next diagram shows an existential quantification constraint on the global property “is
conferred by” (from the property holder “Thing”). The multiplicity is such that at least one of the
instances of the property constraint must be one of the types in the union.

Note The property adding the constraint is unnamed. An unnamed property is equivalent, in

this case, to naming this property the same as the property being constrained (“is
conferred by” from the property holder “Thing”).

Figure 4 An existential qualification constraint on property 'is conferred by'

Note x In the Concept Modeler, the existential quantification constraint of a property

must have a minimum multiplicity of at least one. If the minimum multiplicity
of a property that restricts another property is, for example, 0..5 or 0..*, the
Concept Modeler will adjust it to 1..5 or 1..*.

x Multiplicity values of *, 0..*, and Unspecified all mean the same thing.

3.6 Universal Quantification Constraint
Sometimes, in the context of some class, it is necessary to constrain all the values of a property
to a particular type. This constraint is known as a universal quantification or for-all constraint
(∀). This kind of constraint is an assertion that only values of the specified type are valid, and
that the number of values must be between some minimum and maximum cardinality. In the
concept modeling interpretation of UML, introducing a new property or redefining an existing
property creates a universal quantification constraint in the context of the owning class. This
interpretation is based on {redefines} in UML, which allows adding more specific constraints to
an existing property without defining a new property.

Copyright © 2017, No Magic, Inc. 18

The diagram below shows the introduction of a new property, “consists of”, defining a universal
quantification constraint on the property. The constraint states, in the context of Soccer Team
and any of its subclasses, that all values of this property must be of the type “Soccer Player”, and
that there must be between 5 and 11 values of this property.

Figure 5 The property 'consist of' defining a universal quantification constraint

The following diagram shows a universal quantification constraint on the property “has” (owned
by the class “Person”). It states, in the context of “Dog Owner”, that all values of the property
“has” must be of type “Dog”, and that at least one value of this property must exist.

Note A property that is redefined must have the same name as the redefined property. In this

case, leaving the redefined property unnamed is equivalent to naming the property the
same as the one being redefined (“has” from the class “Person”).

Figure 6 A universal quantification constraint on the property 'has'.

3.7 Necessary and Sufficient Condition
A property's multiplicity or type is declared in the context of an owning class or a property
holder. When the minimum cardinality is at least one, these declarations are always necessary
conditions for an instance to be a member of the owning class, or, in the case of a property
holder, for an instance to be valid at all.

Another kind of condition is known as both necessary and sufficient. A class with at least one
necessary and sufficient condition is known as a defined class, which means the differentiating
characteristics of the class that make it distinguishable from its parent and sibling classes are
defined. Note that using a necessary and sufficient condition on a property with a minimum
cardinality of zero is not meaningful.

Copyright © 2017, No Magic, Inc. 19

In the concept modeling interpretation of UML, a property that has the {sufficient} constraint
applied to it indicates that when an instance satisfies the multiplicity and type constraints for the
property’s values, not only is a necessary condition for being an instance of the class
met, a sufficient condition is also met. This necessary and sufficient condition allows an
inferencing engine to classify that instance as a member of the class with that condition. Once an
instance is classified automatically, the conditions on any other properties that have the
{sufficient} constraint, including those inherited from superclasses, merely
become necessary conditions the instance must meet to be a valid member of the owning class.
In other words, satisfying any one {sufficient} constraint is enough for an inferencing engine to
classify an instance.

The diagram below shows that when an instance with the property “has contract with” satisfies
specific multiplicity (“1..*”) and type constraints (of type ‘Steering Wheel Manufacturer” or
“Windshield Manufacturer”) for the property’s values, the instance meets a necessary and
sufficient condition to be a member of the class “Car Manufacturer”. Therefore, an inferencing
engine would classify this as an instance of the class “Car Manufacturer”. As discussed above,
an instance meeting any one of these necessary and sufficient conditions is enough to classify the
instance regardless of conditions on the values of any other properties with the {sufficient}
constraint owned by the class “Car Manufacturer”. The conditions on the values of these
properties become necessary conditions on an instance for it to be a valid member of class “Car
Manufacturer.” Also, an instance meeting any one of these necessary and sufficient conditions is
enough to distinguish instances of the class “Car Manufacturer’ from its parent class
“Manufacturer.”

Figure 7 An example of necessary and sufficient condition

3.8 Generalization
A generalization is a subsumption relationship between a more general class and a more specific
class. Every instance of the specific class is also an instance of the subsuming general class.

Copyright © 2017, No Magic, Inc. 20

Because of this subsumption relationship, the specific class inherits all of the necessary
conditions of the more general classifier.

For a simple example, if we define “Futsal Team” as a subclass of “Soccer Team”, then the set of
individuals in “Futsal Team” must be a subset of the set of individuals in “Soccer Team”.

Figure 8 The relation between subclass 'Futsal Team' and class 'Soccer Team' represents generalization

There are four variations on generalization described in the following subsections. The first
variation corresponds to the example above: overlapping and incomplete subclasses. That
variation is the default in both UML and concept modeling.

3.8.1 Overlapping and Incomplete Subclasses
This variation is the default in both UML and in concept modeling. In this variation, an instance
can be a member of the superclass and / or any number of subclasses. In this sense, the
classification of instances is “incomplete”—sometimes there is a specific subclass, and
sometimes there is not.

For example, the diagram below shows four instances. One is an instance of “Manufacturer”, one
is an instance of “Windshield Manufacturer”, one is an instance of “Car Manufacturer”, and one
is an instance of both “Windshield Manufacturer” and “Car Manufacturer”.

Copyright © 2017, No Magic, Inc. 21

Figure 9 An example of incomplete instances

In both standard UML and in concept modeling, incomplete and overlapping subclasses are
shown with either no notation, or with the notation {incomplete, overlapping} near the
generalization arrow.

Figure 10 Incomplete and overlapping subclasses in standard UML notation

3.8.2 Disjoint Subclasses
This variation means that an instance can only be classified by one of the disjoint classes.
Disjoint classes cannot have any overlap in their instances.

The diagram below shows three instances. One is an instance of “Cat”, one is an instance of
“Dog”, and one is an instance of “Animal”. An instance classified as both “Cat” and “Dog” is
impossible because there is no overlap between the two classes. In the most basic terms, an
instance of a “Cat” cannot be an instance of a “Dog”, and vice versa.

Manufacturer�

Windshield�
Manufacturer�

Car�
Manufacturer�

Copyright © 2017, No Magic, Inc. 22

Figure 11 Disjoint instances

The following diagram shows an example of disjoint subclasses in standard UML notation. It
shows that “Dog”, “Cat”, and “Mouse” are all subclasses of “Animal”. In addition, the standard
UML {incomplete, disjoint} notation declares all of the subclasses to be incomplete and disjoint.
Intuitively, an instance of the subclass “Dog” is an instance of the superclass “Animal”, but it
cannot be an instance of the “Cat” or “Mouse” subclasses. Moreover, a lizard would be an
instance of “Animal”, but could not be an instance of any of the subclasses “Dog”, “Cat”, or
“Mouse”.

Figure 12 Incomplete and disjoint subclasses in standard UML notation

The Concept Modeler supports importing disjoint classes. A dependency stereotyped as
«Disjoint With» will be used to specify disjoint subclasses. For example, the class Animal has
two disjoint subclasses, Cat and Dog. When you import them to the Concept Modeler, the
diagram will look similar to the example shown in the following figure.

Animal�

Dog�Cat�

Copyright © 2017, No Magic, Inc. 23

Figure 13 Imported disjoint subclasses are stereotyped with «Disjoint With»

3.8.3 Complete Subclasses
This variation means that an instance can only be classified by one of the subclasses; it cannot be
classified by only the superclass. However, an instance of a subclass is indirectly an instance of a
superclass at the same time.

For example, the following diagram shows three instances. One is an instance of “Windshield
Manufacturer”, one is an instance of “Car Manufacturer”, and one is an instance of both “Car
Manufacturer” and “Windshield Manufacturer”. Note that there can be no instance of
“Manufacturer” that is not also an instance of one of the subclasses.

Figure 14 An example of complete subclasses

The diagram below shows an example of complete subclasses in standard UML notation. The
diagram shows that “Steering Wheel Manufacturer”, “Car Manufacturer”, and “Windshield
Manufacturer” are all subclasses of “Manufacturer”. In addition, the standard UML {complete,
overlapping} notation declares that the subclasses are complete and overlapping.

Manufacturer�

Windshield�
Manufacturer�

Car�
Manufacturer�

Copyright © 2017, No Magic, Inc. 24

Figure 15 Complete subclasses in standard UML notation

3.8.4 Disjoint and Complete Subclasses
This variation means that an instance can only be classified by one of the subclasses. The
instance cannot be classified as only the superclass, and it cannot be classified by two subclasses
at the same time.

For example, in the subsequent diagram, two instances are shown. One is an instance of
“Windshield Manufacturer”, and one is an instance of “Car Manufacturer”. There can be no
instance of “Manufacturer” that is not also an instance of one of the subclasses, and there can be
no instance that is classified as both a “Windshield Manufacturer” and a “Car Manufacturer” at
the same time.

Figure 16 Disjoint and complete instances

The diagram below shows an example of disjoint and complete subclasses in standard UML
notation. The diagram shows that “Steering Wheel Manufacturer”, “Car Manufacturer”, and

Windshield�
Manufacturer�

Car�
Manufacturer�

Manufacturer�

Copyright © 2017, No Magic, Inc. 25

“Windshield Manufacturer” are all subclasses of “Manufacturer”. In addition, the standard UML
{complete, disjoint} notation declares that the subclasses are complete and disjoint.

Figure 17 Disjoint and complete subclasses in standard UML notation

3.9 Anonymous Union Class
An anonymous union is an unnamed class used to represent a set of classes that can be used as a
type of a property. An anonymous union class always implies a complete subclass
generalization. (See 3.8.3 Complete Subclasses.)

The following diagram states that an instance of a Person may have a value of type Cat or Dog
for the cares for property. The diagram also states that an instance of a Cat or a Dog may have a
value of type Person for the cared for by property.

Figure 18 An anonymous union class

In an ontology, if anonymous union, with same classes within the union, is used in multiple
places, the Concept Modeler can distinguish it when importing the ontology. In other words, if
the anonymous union has the same union members, the Concept Modeler will identify it as the
same anonymous union.

3.10 Inverse Properties
A property is a unidirectional relation between two classes, or between a class and a datatype. In
the case in which there is a relation between two classes, it is often useful to define a property
that goes in the opposite direction. For example, if a Video Game Company manufactures Video
Game Consoles, the opposite would be that a Video Game Console is manufactured by a Video

Copyright © 2017, No Magic, Inc. 26

Game Company. Rather than draw two separate unidirectional associations, properties drawn on
opposite ends of one association are inverses of one another. When an instance has a value for a
property that has an inverse defined, a reasoner can infer that an opposite value also exists, and
automatically create it.

The next diagram asserts that for every (Video Game Console, Video Game Company) related
by the manufactures property, there is a corresponding (Video Game Company, Video Game
Console) related by the manufactured by property.

Figure 19 Inverse properties shown on opposite ends of association

In most cases, when importing an OWL ontology, information in OWL is enough to assert that
two properties are inverse of each other. However, if the definition is insufficient to prove that
two are inverse of each other or which class owns the property and what the type is, the Concept
Modeler will create two unidirectional associations and use a stereotyped dependency «inverse
of» between the properties to show that they are inverse of one another.

3.11 Property Restrictions
In the Concept Modeler, a property restriction appears as one with a {subsets} or {redefines}.
The Concept Modeler will import each property restriction as a unidirectional association
between the two concepts.

3.12 Annotation and Annotation Properties
The OWL language provides a way to comment on any subject that has a URI, using
annotations. One can annotate classes, properties, and ontologies. In addition to providing a way
to comment on a subject, the OWL language provides an open-ended way to define annotation
properties. An annotation property defines a type of annotation with a relatively precise
meaning.

Every annotation is a value for an annotation property. An annotation describes some subject
URI using an annotation property URI and a (usually textual) value, forming what is called a
triple. For example, a well-known vocabulary called Dublin Core defines an annotation property
that has the URI http://purl.org/dc/terms/description. That annotation property is what the
Concept Modeler uses by default to document a class called Person. It forms the triple
http://example.com/ontology/Person http://purl.org/dc/terms/description “A human being”.

The Concept Modeler allows the user to define any number of annotation types. The user does
this by declaring that a property is an annotation property using the «Annotation Property»
stereotype on a UML property. Alternatively, a user can import annotation properties from

http://example.com/ontology/Person
http://purl.org/dc/terms/Description
http://purl.org/dc/terms/Description

Copyright © 2017, No Magic, Inc. 27

existing OWL ontologies. When the Concept Modeler imports annotation properties, it
automatically applies the «Annotation Property» stereotype.

Any UML comment can be exported as an OWL annotation. By default, the concept modeler
converts UML element documentation, notes, and comments into the Dublin Core annotation
property http://purl.org/dc/terms/description. When the user would like to use some other
annotation property, he or she can specify which one as a tagged value in a UML comment
stereotyped as an «Annotation». Applying this stereotype allows one to use any annotation
property to provide more precise meaning for the information the comment contains and to
properly export the comment into OWL.

For example, the following diagram illustrates a UML comment stereotyped with «Annotation»
to document the concept Item. It uses a specific kind of annotation property, called explanatory
note, to provide context for that documentation. That annotation property definition is shown as
the third attribute stereotyped as an «Annotation Property» in the pink property holder. Its usage
as a tagged value is shown as “{annotationProperty = explanatory note}” in the UML Comment
stereotyped as an «Annotation». Please see the normal MagicDraw documentation for how to
create a tagged value for a stereotype in the specification window.

You may have an imported model that contains annotation properties and documentation. A
UML Comment can have more than one «Annotation» and each of these «Annotation»s can also
have their own annotation property tagged value.

3.13 Preferred Annotation Property

The Project Options in the Concept Modeler provides a Preferred annotation property option
for the UML Comments or «Annotation»s in a model. This capability allows you to control
which annotation property becomes the “special” MagicDraw comment providing
documentation, when you enter text into the Documentation pane or create a new Annotation. It
also allows the documentation to be included in the Natural Language Glossary. If the UML
Comments and the «Annotation» Comments do not have annotation property value assigned
(annotationProperty Tag from Specifications), then they should be treated as if they have
"Preferred annotation property" assigned from Project options.

http://purl.org/dc/terms/Description

Copyright © 2017, No Magic, Inc. 28

Changing a preferred annotation property tagged value will cause the ownership of existing
UML comments and «Annotation»s to change, for example:

x Any UML comment and «Annotation» that was using the old preferred annotation will be
moved from being owned by the annotated element to being owned by the next-higher
package.

x Any UML comment and «Annotation» that is using the new preferred annotation
property will be moved to being owned by the annotated element.

If you do not select an annotation property tagged value for any UML comment or «Annotation»
in your model, any time we export it to an OWL ontology, the Concept Modeler will use the
preferred annotation property that does not have a tagged value, which is
http://purl.org/dc/terms/description[3]. This preferred annotation property without a tagged
value (unspecified) in the Concept Modeler is active until you change it through the Project
Options dialog. Selecting <UNSPECIFIED> from the Project Options dialog will remove the
current preferred annotation property tagged value.

Figure 20 A comment stereotyped with «Annotation» to provide a correct meaning of an item

Note x Changing the preferred annotation property tagged value of UML comments
and «Annotation»s will change their ownership.

x Changing in ownership causes a change in the Documentation pane (on the
lower-left) and what shows up in the Natural Language Glossary because the
first UML Comment or «Annotation» that is owned by an annotated element is
considered “documentation” in MagicDraw.

Copyright © 2017, No Magic, Inc. 29

The following diagram is used as an example to show you how the Preferred annotation property
option works. In the figure, a class autonomous agent is plotted on the diagram along with five
annotations.

Figure 21 A class with annotations in the diagram pane

The first tree view example shows you how they are structured in the Containment tree before
you select a preferred annotation property from the Project Options dialog. Notice that the
Documentation pane shows no annotation when the class is clicked. Using the above
instructions, we select the definition as the preferred annotation property for the «Annotation»
with the (annotationProperty = definition).

Copyright © 2017, No Magic, Inc. 30

Figure 22 Annotations in the Containment tree before the Preferred annotation property is selected

Copyright © 2017, No Magic, Inc. 31

In the second tree view example below, see how the annotation ownership changed after you
selected definition as the preferred annotation property. If you open the Specification dialog of
the «Annotation» with the (annotationProperty = definition), you will see that the new owner is
autonomous agent (previously, it was the package Agents’). The Documentation pane will also
show the annotation if you click the class autonomous agent.

Figure 23 The annotation appears in the Documentation pane after the preferred annotation property is selected

Copyright © 2017, No Magic, Inc. 32

3.14 Property Chain
The Concept Modeler can import property chains. A property chain is useful for composing a
property from two or more other properties that are put together in a chain. It defines the
property with reference to the other properties. The property chain allows you to navigate from a
starting class (the one with the stereotype «Subproperty Chain») through a chain of properties
that take a path through multiple classes.

A property chain is an ordered list of composed properties, therefore, it should have two or more
properties in the chain. The same property can appear more than once in a chain. For example,
“has parent • has parent” is a subproperty of “has grandparent”.

Note x An existential or universal quantification restriction cannot have or be a part of

a subproperty chain, although the property it restricts can.
x A sub-property can have or be part of a subproperty chain for another property.

The following example describes a Person class that has two instances “Female Person” and
“Male Person”, and four properties “has parent”, “has father”, “has uncle”, and “has brother”.
The stereotype of the property “has uncle” will be «Subproperty Chain» of Element type and
the tagged value is chain = has father, has brother.

Copyright © 2017, No Magic, Inc. 33

Figure 24 Property Chain in the Concept Modeler

For more information on how to create a property chain, see section 5.2.2 Create a Property
Chain.

3.15 Equivalent Properties

The Concept Modeler allows you to represent, import, and export equivalent properties in a
model. You can make two or more properties equivalent to each other by applying the stereotype
«Equivalent Property» to the target property and the tagged value “equivalent to” the
equivalent property.

Note x An existential or universal quantification restriction cannot have or be an

equivalent property, although the property it restricts can.
x A sub-property can have or be an equivalent property.

Copyright © 2017, No Magic, Inc. 34

The following figure shows the equivalent properties in a diagram.

Figure 25 Equivalent properties in the Concept Modeler

In the example, the property “has mother” is equivalent to the property “has mom”. For more
information on how to create equivalent properties, see section 5.2.3 Create Equivalent Property.

3.16 Equivalent Classes
The Concept Modeler can specify equivalence between two classes, import equivalent classes
from OWL, and export equivalent classes to OWL. Class equivalence expresses a generalization
relationship stereotyped as «Equivalent Class». The Concept Modeler will draw this with a
double-headed arrow.

The following figure shows two equivalent classes in a diagram.

Copyright © 2017, No Magic, Inc. 35

Figure 26 Two Equivalent Classes in the Concept Modeler

In the example, the equivalence class arrow defines that the two classes are semantically
equivalent to each other. For more information on how to create equivalent classes, see section
5.2.4 Create Equivalent Classes.

If you would like to look at equivalent class relations which are identified by «Equivalent Class»
stereotype, there are several possibilities of results depending on the types of classes. Consider
the two related classes called Class 1 and Class 2. After perusing through all of these cases,
please refer to the figure below the text to see a brief summary of some of these cases.

x If both classes are Class but they do not share the same name, then one class will show
“Equivalent to” and the rest will show “See.”

x If both classes are Class and they do share the same name, then it will appear as one class
with all the properties from both classes.

x If Class is equivalent to a Union, then the Class will be shown with its properties and the
subclasses of Union will be shown under Class.

x If both classes are Unions then both unions will be merged and follow the same pattern as
the Class/Union combinations explained above.

Remark: Unions should not have names. If a Union has a name, then it’s a Class.

The following information explains more explicitly how to determine which Class will show
“Equivalent to” and which will show “See.”

x If only one class has documentation:
o This class will show ‘Equivalent to’ and list the rest of the classes it is equivalent

to.
o The rest of the classes will show ‘See’ with the link going back to the class that

shows ‘Equivalent to’
x More than one class has documentation:

o First class with documentation in alphabetical order will show ‘Equivalent to’ and
list rest of the classes it is equivalent to

o The rest of the classes will show ‘See’ with the link going back to the class that
shows ‘Equivalent to’

x None of the classes have documentation
o First class in alphabetical order will show ‘Equivalent to’ and list rest of the

classes it is equivalent to

Copyright © 2017, No Magic, Inc. 36

o The rest of the classes will show ‘See’ with the link going back to the class that
shows ‘Equivalent to’

Remarks:

1. The class that shows ‘Equivalent to’, will list all properties and annotations from all the
classes it is equivalent to.

2. The class that shows ‘See’, will not show any of the properties or annotations.
3. All same named classes will show ‘(from package {qualified class name})’ to

differentiate each same named class.

Figure 27 Segmented shots of a report showing the merging of all the equivalent classes in the project.

4 UML to Equivalent OWL (in OWL Functional Syntax)
There are various syntaxes available for encoding OWL ontologies. The Concept Modeler can
export UML to an OWL ontology using the following syntaxes:

x RDF/XML. It is the originally standard syntax for writing RDF (Resource Description
Framework), which is a general-purpose language for representing information in the
Web. Though verbose and difficult to read, it is the only syntax that is mandatory to be
supported by OWL 2 tools. It provides an XML representation of an RDF graph. This
syntax is the default syntax used in the Concept Modeler.

x JSON-LD or JavaScript Object Notation for Linked Data is a method of encoding linked
data using JSON, which is a concrete RDF syntax. JSON-LD is used to map JSON terms
(keys and values) to IRIs, giving them a global context. A JSON-LD document is both an
RDF document and a JSON document.

x OWL Functional. It is a simple text-based syntax designed to be easier for specification
purposes and to provide a foundation for the implementation of OWL 2 tools such as
APIs and reasoners. It is used in most of the OWL 2 specification documents as the
primary presentation syntax that translates the structural specification into other concrete

Copyright © 2017, No Magic, Inc. 37

syntaxes. A functional-style syntax ontology document consists of sequences of Unicode
characters and is encoded in UTF-8.

x Turtle. A concrete syntax for RDF, Turtle (Terse RDF Triple Language) is a plain-text
RDF representation. It is more concise and easier to read and edit manually than
RDF/XML. A Turtle document is a collection of RDF-triples. Each triple has the format:
<subject> <predicate> <object>. Each statement ends with a period and each
element in the triple is an URI, except the <object>, which can be a bit of text or a
number.

x Manchester. It provides a compact textual-based representation of OWL ontologies that
is easy to read and write. It uses IRIs as term identifiers. The syntax for annotations and
descriptions in the Manchester OWL syntax closely corresponds to the syntax in the
OWL Functional syntax. A Manchester OWL document consists of sequences of
Unicode characters and is encoded in UTF-8.

Below, examples are given that show the transformation of UML modeled in the Concept
Modeler to an exported OWL ontology. The OWL ontologies are presented in OWL Functional
Syntax.

For a simple UML class, the diagram below shows that the ontology is transformed as the
package containing the UML class. Subsequent diagrams do not show the package in the
diagram for the sake of brevity.

Note x A model may contain elements, for example, classes, properties, datatypes, or

generalizations, that belong to other models. When exporting the model, the
Concept Modeler will show the OWL declaration of the elements that exist in
the current model only, not those of the other models.

x However, if the entity that belongs to another model is an object property with
an inverse property defined, you will see the OWL declaration of the inverse
property in the current OWL ontology upon export.

4.1 Class

Figure 28 A class diagram in Concept Modeler

Copyright © 2017, No Magic, Inc. 38

Ontology(<http://nomagic.com/ontology/example-case/case-01>

Declaration(
Class(:Person)

)
AnnotationAssertion(rdfs:label :Person "Person"@en)

)

4.2 Class Generalization

Figure 29 Generalization in Concept Modeler

Ontology(<http://nomagic.com/ontology/example-case/case-04>

Declaration(
Class(:FutsalTeam)

)
Declaration(

Class(:SoccerTeam)
)
AnnotationAssertion(rdfs:label :FutsalTeam "Futsal Team"@en)
SubClassOf (:FutsalTeam :SoccerTeam)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)

)

4.3 Generalization with Disjoint Subclasses

Figure 30 Generalization with disjoint subclasses

Copyright © 2017, No Magic, Inc. 39

Ontology(<http://nomagic.com/ontology/example-case/case-24>
 Declaration(
 Class(:Animal)
)
 Declaration(
 Class(:Cat)
)
 Declaration(
 Class(:Dog)
)
 Declaration(
 Class(:Mouse)
)

SubClassOf(:Cat :Animal)
SubClassOf(:Dog :Animal)
SubClassOf(:Mouse :Animal)
DisjointClasses(:Cat :Dog)
DisjointClasses(:Cat :Mouse)
DisjointClasses(:Dog :Mouse)
AnnotationAssertion(rdfs:label :Animal "Animal"@en)
AnnotationAssertion(rdfs:label :Cat "Cat"@en)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
AnnotationAssertion(rdfs:label :Mouse "Mouse"@en)

)

4.4 Generalization with Subclass Completeness

Figure 31 Generalization with complete subclasses

Ontology(<http://nomagic.com/ontology/example-case/case-23>
 Declaration(
 Class(:CarManufacturer)

Copyright © 2017, No Magic, Inc. 40

)
 Declaration(
 Class(:Manufacturer)
)
 Declaration(
 Class(:SteeringWheelManufacturer
)
 Declaration(
 Class(:WindshieldManufacturer)
)

SubClassOf(:CarManufacturer :Manufacturer)
SubClassOf(:SteeringWheelManufacturer :Manufacturer)
SubClassOf(:WindshieldManufacturer :Manufacturer)
EquivalentClasses(:Manufacturer ObjectUnionOf(:CarManufacturer
:SteeringWheelManufacturer :WindshieldManufacturer))
AnnotationAssertion(rdfs:label :CarManufacturer "Car Manufacturer"@en)
AnnotationAssertion(rdfs:label :Manufacturer "Manufacturer"@en)
AnnotationAssertion(rdfs:label :SteeringWheelManufacturer "Steering Wheel
Manufacturer"@en)
AnnotationAssertion(rdfs:label :WindshieldManufacturer "Windshield
Manufacturer"@en)

)
4.5 Anonymous Union Class

Figure 32 Anonymous union class

Ontology(<http://nomagic.com/ontology/example-case/case-26>
 Declaration(
 Class(:Cat)
)
 Declaration(
 Class(:Dog)
)

Copyright © 2017, No Magic, Inc. 41

 Declaration(
 Class(:Person)
)
 Declaration(
 ObjectProperty(:caredForBy)
)
 Declaration(
 ObjectProperty(:caresFor)
)

AnnotationAssertion(rdfs:label :Cat "Cat"@en)
DisjointClasses(:Cat :Dog)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
AnnotationAssertion(rdfs:label :Person "Person"@en)
AnnotationAssertion(rdfs:label :caredForBy "cared for by"@en)
InverseObjectProperties(:caredForBy :caresFor)
ObjectPropertyDomain(:caredForBy ObjectUnionOf(:Dog :Cat))
ObjectPropertyRange(:caredForBy :Person)
AnnotationAssertion(rdfs:label :caresFor "cares for"@en)
ObjectPropertyDomain(:caresFor :Person)
ObjectPropertyRange(:caresFor ObjectUnionOf(:Dog :Cat))

)

4.6 Class with Datatype Property

Figure 33 A class with datatype property

Ontology(<http://nomagic.com/ontology/example-case/case-02>

Import(<http://www.omg.org/spec/PrimitiveTypes/20100901>)
Declaration(

Class(:Person)
)
Declaration(

DataProperty(:hasName)
)
Declaration(

AnnotationProperty(<http://purl.org/dc/terms/description>)

Copyright © 2017, No Magic, Inc. 42

)
Declaration(

Datatype(xsd:string)
)

AnnotationAssertion(rdfs:label :Person "Person"@en)
SubClassOf(

:Person
ObjectIntersectionOf(

DataMaxCardinality(1 :hasName xsd:string)
DataMinCardinality(1 :hasName xsd:string)

)
)
AnnotationAssertion(rdfs:label :hasName "has name"@en)
DataPropertyDomain(:hasName :Person)
DataPropertyRange(:hasName xsd:string)
AnnotationAssertion(http://purl.org/dc/terms/description
<http://www.omg.org/spec/PrimitiveTypes/20100901#String> "An instance of String
defines a piece of text. The semantics of the string itself depends on its purpose, it can be
a comment, computational language expression, OCL expression, etc. It is used for String
attributes and String expressions in the metamodel."@en)

)

4.7 Class with Self-Referential Object Property

Figure 34 A class with self-referential object property

Ontology(<http://nomagic.com/ontology/example-case/case-02a>

Declaration(
Class(:Person)

)
Declaration(

ObjectProperty(:isRelatedTo)
)
AnnotationAssertion(rdfs:label :Person "Person"@en)
SubClassOf(

:Person

http://purl.org/dc/terms/description

Copyright © 2017, No Magic, Inc. 43

 ObjectMinCardinality(1 :isRelatedTo :Person)
)
AnnotationAssertion(rdfs:label :isRelatedTo "is related to"@en)
ObjectPropertyDomain(:isRelatedTo :Person)
ObjectPropertyRange(:isRelatedTo :Person)

)

4.8 Class with Object Property

Figure 35 A class with object property

Ontology(<http://nomagic.com/ontology/example-case/case-03>

Declaration(
Class(:SoccerPlayer)

)
Declaration(

Class(:SoccerTeam)
)
Declaration(

ObjectProperty(:consistsOf)
)
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)
SubClassOf(

:SoccerTeam
ObjectIntersectionOf(

ObjectMaxCardinality(11 :consistsOf :SoccerPlayer)
ObjectMinCardinality(5 :consistsOf :SoccerPlayer)

)
)
AnnotationAssertion(rdfs:label :consistsOf "consists of"@en)
ObjectPropertyDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

)

Copyright © 2017, No Magic, Inc. 44

4.9 Property Holder with Datatype Property

Figure 36 A property holder with datatype property

Ontology(<http://nomagic.com/ontology/example-case/case-03a>

Import(<http://www.omg.org/spec/PrimitiveTypes/20100901>)
Declaration(

DataProperty(:hasName)
)
Declaration(

AnnotationProperty(<http://purl.org/dc/terms/description>)
)
Declaration(

Datatype(xsd:string)
)
SubClassOf(

owl:Thing
ObjectIntersectionOf(

DataMaxCardinality(3 :hasName xsd:string)
DataMinCardinality(2 :hasName xsd:string)

)
)
AnnotationAssertion(rdfs:label :hasName "has name"@en)
DataPropertyRange(:hasName xsd:string)
AnnotationAssertion(http://purl.org/dc/terms/description
<http://www.omg.org/spec/PrimitiveTypes/20100901#String> "An instance of String
defines a piece of text. The semantics of the string itself depends on its purpose, it can be
a comment, computational language expression, OCL expression, etc. It is used for String
attributes and String expressions in the metamodel."@en)

)

http://purl.org/dc/terms/description

Copyright © 2017, No Magic, Inc. 45

4.10 Property Holder with Self-Referential Object Property

Figure 37 A property holder with self-referential object property

Ontology(<http://nomagic.com/ontology/example-case/case-03b>

Declaration(
ObjectProperty(:isRelatedTo)

)
SubClassOf(

owl:Thing
ObjectMinCardinality(1 :isRelatedTo)

)
AnnotationAssertion(rdfs:label :isRelatedTo "is related to"@en)

)

4.11 Property Holder with Object Property

Figure 38 A property holder with object property

Ontology(<http://nomagic.com/ontology/example-case/case-03c>

Declaration(
Class(:Liquid)

)
Declaration(

ObjectProperty(:isDissolvedBy)
)
AnnotationAssertion(rdfs:label :Liquid "Liquid"@en)
SubClassOf(

owl:Thing
ObjectMinCardinality(1 :isDissolvedBy :Liquid)

)
AnnotationAssertion(rdfs:label :isDissolvedBy "is dissolved by"@en)
ObjectPropertyRange(:isDissolvedBy :Liquid)

Copyright © 2017, No Magic, Inc. 46

)

4.12 Class with Object Property without Range

Figure 39 A class with object property without range

Ontology(<http://nomagic.com/ontology/example-case/case-03d>

Declaration(
Class(:Receptacle)

)
Declaration(

ObjectProperty(:holds)
)
AnnotationAssertion(rdfs:label :Receptacle "Receptacle"@en)
AnnotationAssertion(rdfs:label :holds "holds"@en)
ObjectPropertyDomain(:holds :Receptacle)

)

4.13 Class with Subproperty

Figure 40 A class with subproperty

Ontology(<http://nomagic.com/ontology/example-case/case-05>

Declaration(
Class(:FutsalPlayer)

)
Declaration(

Class(:FutsalTeam)
)

Copyright © 2017, No Magic, Inc. 47

Declaration(
Class(:SoccerPlayer)

)
Declaration(

Class(:SoccerTeam)
)
Declaration(

ObjectProperty(:composedOf)
)
Declaration(

ObjectProperty(:consistsOf)
)
AnnotationAssertion(rdfs:label :FutsalPlayer "Futsal Player"@en)
SubClassOf(:FutsalPlayer :SoccerPlayer)
AnnotationAssertion(rdfs:label :FutsalTeam "Futsal Team"@en)
SubClassOf(:FutsalTeam :SoccerTeam)
SubClassOf(

:FutsalTeam
ObjectIntersectionOf(

ObjectMaxCardinality(5 :composedOf :FutsalPlayer)
ObjectMinCardinality(5 :composedOf :FutsalPlayer)

)
)
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)
SubClassOf(

:SoccerTeam
ObjectIntersectionOf(

ObjectMaxCardinality(11 :consistsOf :SoccerPlayer)
ObjectMinCardinality(5 :consistsOf :SoccerPlayer)

)
)
AnnotationAssertion(rdfs:label :composedOf "composed of"@en)
SubObjectPropertyOf(:composedOf :consistsOf)
ObjectPropertyDomain(:composedOf :FutsalTeam)
ObjectPropertyRange(:composedOf :FutsalPlayer)
AnnotationAssertion(rdfs:label :consistsOf "consists of"@en)
ObjectPropertyDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

)

Copyright © 2017, No Magic, Inc. 48

4.14 Class with Universal Quantification Constraint on Property I

Figure 41 A class with universal quantification constraint on property I

Ontology(<http://nomagic.com/ontology/example-case/case-06>

Declaration(
Class(:Dog)

)
Declaration(

Class(:DogOwner)
)
Declaration(

Class(:Person)
)
Declaration(

Class(:Pet)
)
Declaration(

ObjectProperty(:has)
)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog :Pet)
AnnotationAssertion(rdfs:label :DogOwner "Dog Owner"@en)
SubClassOf(:DogOwner :Person)
SubClassOf(

:DogOwner
ObjectIntersectionOf(

ObjectMinCardinality(1 :has :Dog)
ObjectAllValuesFrom(:has :Dog)

)
)
AnnotationAssertion(rdfs:label :Person "Person"@en)

Copyright © 2017, No Magic, Inc. 49

AnnotationAssertion(rdfs:label :Pet "Pet"@en)
AnnotationAssertion(rdfs:label :has "has"@en)
ObjectPropertyDomain(:has :Person)
ObjectPropertyRange(:has :Pet)

)

4.15 Class with Universal Quantification Constraint on Property II
This example differs from the previous example primarily because the superclasses “Person” and
“Pet” are from a different package than their subclasses “Dog Lover” and “Dog,” respectively.
This difference is reflected in the OWL ontology by the import of this namespace.

As shown below in the next diagram, the superclasses “Person” and “Pet”, defined in the
package “Case 06”, are a different color and a lighter shade than the classes defined in the
package “Case 07”. This color differentiation is to distinguish them from the classes defined on
this diagram. MagicDraw’s AutoStyler plugin can automatically set the display properties for
classes and other UML elements using the “defined elsewhere” style; that is, when they are
shown on a non-defining diagram for the UML element (see section 2.2 Automatic Styling of
Concept Models).

Figure 42 A class with universal quantification constraint on property II

Ontology(<http://nomagic.com/ontology/example-case/case-07>

Import(<http://nomagic.com/ontology/example-case/case-06>)
Declaration(

Class(<http://nomagic.com/ontology/example-case/case-06#Person>)
)
Declaration(

Class(<http://nomagic.com/ontology/example-case/case-06#Pet>)
)
Declaration(

Class(:Dog)
)
Declaration(

Class(:DogLover)

Copyright © 2017, No Magic, Inc. 50

)
Declaration(

ObjectProperty(<http://nomagic.com/ontology/example-case/case-06#has>)
)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog <http://nomagic.com/ontology/example-case/case-06#Pet>)
AnnotationAssertion(rdfs:label :DogLover "Dog Lover"@en)
SubClassOf(:DogLover <http://nomagic.com/ontology/example-case/case-06#Person>)
SubClassOf(

:DogLover
ObjectAllValuesFrom(<http://nomagic.com/ontology/example-case/case-
06#has> :Dog)

)
)

4.16 Class with Existential Quantification Constraint on Property

Figure 43 A class with existential quantification constraint on property

Ontology(<http://nomagic.com/ontology/example-case/case-08>

Import(<http://nomagic.com/ontology/example-case/case-06>)
Declaration(

Class(<http://nomagic.com/ontology/example-case/case-06#Person>)
)
Declaration(

Class(<http://nomagic.com/ontology/example-case/case-06#Pet>)
)
Declaration(

Class(:Dog)
)
Declaration(

Class(:DogLover)
)

Copyright © 2017, No Magic, Inc. 51

Declaration(
ObjectProperty(<http://nomagic.com/ontology/example-case/case-06#has>)

)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog <http://nomagic.com/ontology/example-case/case-06#Pet>)
AnnotationAssertion(rdfs:label :DogLover "Dog Lover"@en)
SubClassOf(:DogLover <http://nomagic.com/ontology/example-case/case-06#Person>)
SubClassOf(

:DogLover
ObjectIntersectionOf(

ObjectMinCardinality(1 <http://nomagic.com/ontology/example-
case/case-06#has> :Dog)
ObjectSomeValuesFrom(<http://nomagic.com/ontology/example-
case/case-06#has> :Dog)

)
)

)

4.17 Property Holder with Self-Referential Subproperty

Figure 44 A property holder with self-referential subproperty

Ontology(<http://nomagic.com/ontology/example-case/case-11>

Declaration(
ObjectProperty(:contains)

)
Declaration(

ObjectProperty(:holds)
)
AnnotationAssertion(rdfs:label :contains "contains"@en)
SubObjectPropertyOf(:contains :holds)

Copyright © 2017, No Magic, Inc. 52

AnnotationAssertion(rdfs:label :holds "holds"@en)
)

4.18 Property Holder with Subproperty

Figure 45 A property with subproperty

Ontology(<http://nomagic.com/ontology/example-case/case-18>

Declaration(
Class(:Acid)

)
Declaration(

Class(:Liquid)
)
Declaration(

ObjectProperty(:isCorrodedBy)
)
Declaration(

ObjectProperty(:isDissolvedBy)
)
AnnotationAssertion(rdfs:label :Acid "Acid"@en)
SubClassOf(:Acid :Liquid)
AnnotationAssertion(rdfs:label :Liquid "Liquid"@en)
SubClassOf(

owl:Thing
ObjectIntersectionOf(

ObjectMinCardinality(1 :isCorrodedBy :Acid)
)

)
SubClassOf(

owl:Thing
ObjectIntersectionOf(

ObjectMinCardinality(1 :isDissolvedBy :Liquid)

Copyright © 2017, No Magic, Inc. 53

)
)
AnnotationAssertion(rdfs:label :isCorrodedBy "is corroded by"@en)
SubObjectPropertyOf(:isCorrodedBy :isDissolvedBy)
ObjectPropertyRange(:isCorrodedBy :Acid)
AnnotationAssertion(rdfs:label :isDissolvedBy "is dissolved by"@en)
ObjectPropertyRange(:isDissolvedBy :Liquid)

)

4.19 Class with Subproperty without a Range

Figure 46 A class with subproperty that has no range

Ontology(<http://nomagic.com/ontology/example-case/case-16>

Declaration(
Class(:Game)

)
Declaration(

Class(:SoccerMatch)
)
Declaration(

ObjectProperty(:isACompetitionBetween)
)
Declaration(

ObjectProperty(:isPlayedBetween)
)
AnnotationAssertion(rdfs:label :Game "Game"@en)
SubClassOf(

:Game
ObjectIntersectionOf(

ObjectMinCardinality(2 :isPlayedBetween)
)

)

Copyright © 2017, No Magic, Inc. 54

AnnotationAssertion(rdfs:label :SoccerMatch "Soccer Match"@en)
SubClassOf(:SoccerMatch :Game)
SubClassOf(

:SoccerMatch
ObjectIntersectionOf(

ObjectMaxCardinality(2 :isACompetitionBetween)
ObjectMinCardinality(2 :isACompetitionBetween)

)
)
AnnotationAssertion(rdfs:label :isACompetitionBetween "is a competition
between"@en)
SubObjectPropertyOf(:isACompetitionBetween :isPlayedBetween)
ObjectPropertyDomain(:isACompetitionBetween :SoccerMatch)
AnnotationAssertion(rdfs:label :isPlayedBetween "is played between"@en)
ObjectPropertyDomain(:isPlayedBetween :Game)

)

4.20 Class with Necessary and Sufficient Property

Figure 47 A class with necessary and sufficient property

Ontology(<http://nomagic.com/ontology/example-case/case-20>

Declaration(
Class(:CarManufacturer)

)
Declaration(

Class(:Manufacturer)
)
Declaration(

Class(:SteeringWheelManufacturer)

Copyright © 2017, No Magic, Inc. 55

)
Declaration(

Class(:WindshieldManufacturer)
)
Declaration(

ObjectProperty(:hasContractWith)
)
AnnotationAssertion(rdfs:label :CarManufacturer "Car Manufacturer"@en)
EquivalentClasses(

:CarManufacturer
 ObjectIntersectionOf(

ObjectMinCardinality(1 :hasContractWith :SteeringWheelManufacturer)
ObjectSomeValuesFrom(:hasContractWith :SteeringWheelManufacturer)

)
)
EquivalentClasses(

:CarManufacturer
ObjectIntersectionOf(

ObjectMinCardinality(1 :hasContractWith :WindshieldManufacturer)
ObjectSomeValuesFrom(:hasContractWith :WindshieldManufacturer)

)
)
SubClassOf(:CarManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :Manufacturer "Manufacturer"@en)
AnnotationAssertion(rdfs:label :SteeringWheelManufacturer "Steering Wheel
Manufacturer"@en)
SubClassOf(:SteeringWheelManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :WindshieldManufacturer "Windshield
Manufacturer"@en)
SubClassOf(:WindshieldManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :hasContractWith "has contract with"@en)
ObjectPropertyDomain(:hasContractWith :Manufacturer)
ObjectPropertyRange(:hasContractWith :Manufacturer)

)

4.21 Class with Property Having Unspecified Multiplicity
UML allows the cardinality of a property to be left unspecified. The concept modeling profile
interprets unspecified cardinalities as being zero to many (“0..*”).

Copyright © 2017, No Magic, Inc. 56

Figure 48 A class with property whose multiplicity is unspecified

Ontology(<http://nomagic.com/ontology/example-case/case-21>

Declaration(
Class(:SoccerPlayer)

)
Declaration(

Class(:SoccerTeam)
)
Declaration(ObjectProperty(:consistsOf))
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)
AnnotationAssertion(rdfs:label :consistsOf "consists of"@en)
ObjectPropertyDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

)

4.22 Class with Inverse Property

Figure 49 A class with inverse property

Ontology(<http://nomagic.com/ontology/example-case/case-24>
 Declaration(
 ObjectProperty(:manufacturedBy)
)
 ObjectPropertyDomain(:manufacturedBy :VideoGameConsole)
 ObjectPropertyRange(:manufacturedBy :VideoGameCompany)
 Declaration(
 ObjectProperty(:manufactures)
)
 InverseObjectProperties(:manufacturedBy :manufactures)
 ObjectPropertyDomain(:manufactures :VideoGameCompany)
 ObjectPropertyRange(:manufactures :VideoGameConsole)
 Declaration(

Copyright © 2017, No Magic, Inc. 57

 Class(:VideoGameCompany)
)
 Declaration(
 Class(:VideoGameConsole)
)
 SubClassOf(
 :VideoGameConsole
 ObjectIntersectionOf(
 ObjectMaxCardinality(1 :manufacturedBy :VideoGameCompany)
 ObjectMinCardinality(1 :manufacturedBy :VideoGameCompany)
)
)
 AnnotationAssertion(rdfs:label :VideoGameCompany "Video Game Company"@en)
 AnnotationAssertion(rdfs:label :VideoGameConsole "Video Game Console"@en)
 AnnotationAssertion(rdfs:label :manufacturedBy "manufactured by"@en)
 AnnotationAssertion(rdfs:label :manufactures "manufactures"@en)
)

4.23 Annotation and Annotation Property

Figure 50 A class with annotation and annotation property

Copyright © 2017, No Magic, Inc. 58

Ontology(<http://nomagic.com/ontology/example-case/case-25>

Declaration(Class(:Book))
Declaration(Class(:Item))
Declaration(Class(:Multimedia))
Declaration(

AnnotationProperty(<http://spec.edmcouncil.org/fibo/FND/Utilities/AnnotationV
ocabulary/explanatoryNote>))

AnnotationAssertion(rdfs:label :Book "Book"@en)
SubClassOf(:Book :Item)
AnnotationAssertion(rdfs:label :Item "Item"@en)
AnnotationAssertion(<http://spec.edmcouncil.org/fibo/FND/Utilities/AnnotationVocabul
ary/explanatoryNote> :Item "This represents any item physical or electronic that can be
lent out by a library."@en)
AnnotationAssertion(rdfs:label :Multimedia "Multimedia"@en)
SubClassOf(:Multimedia :Item)

)

4.24 Asymmetrical Inverse Property

Figure 51 Asymmetrical Inverse Property

Ontology(<http://example.com/ontology/AsymmetricalInverseProperty>

 Declaration(Class(:Mother))
 Declaration(Class(:Son))
 Declaration(ObjectProperty(:hasMother))
 Declaration(ObjectProperty(:hasSon))

Copyright © 2017, No Magic, Inc. 59

 AnnotationAssertion(rdfs:label :Mother "Mother"@en)
 SubClassOf(:Mother ObjectIntersectionOf(ObjectMinCardinality(1 :hasSon :Son)))
 AnnotationAssertion(rdfs:label :Son "Son"@en)
 SubClassOf(owl:Thing ObjectIntersectionOf(ObjectMaxCardinality(1 :hasMother
:Mother) ObjectMinCardinality(1 :hasMother :Mother)))
 AnnotationAssertion(rdfs:label :hasMother "has mother"@en)
 ObjectPropertyRange(:hasMother :Mother)
 AnnotationAssertion(rdfs:label :hasSon "has son"@en)
 ObjectPropertyDomain(:hasSon :Mother)
 ObjectPropertyRange(:hasSon :Son)
)

4.25 Disjoint Classes

Figure 52 Disjoint Dependency

Ontology(<http://www.example.com/ontology/Disjoint>

Declaration(Class(:Daughter))
Declaration(Class(:Parent))
Declaration(Class(:Son))
Declaration(ObjectProperty(:caredForBy))
Declaration(ObjectProperty(:caresFor))
AnnotationAssertion(rdfs:label :Daughter "Daughter"@en)
DisjointClasses(:Daughter :Son)
AnnotationAssertion(rdfs:label :Parent "Parent"@en)
AnnotationAssertion(rdfs:label :Son "Son"@en)
AnnotationAssertion(rdfs:label :caredForBy "cared for by"@en)
InverseObjectProperties(:caredForBy :caresFor)
ObjectPropertyDomain(:caredForBy ObjectUnionOf(:Son :Daughter))
ObjectPropertyRange(:caredForBy :Parent)
AnnotationAssertion(rdfs:label :caresFor "cares for"@en)

Copyright © 2017, No Magic, Inc. 60

ObjectPropertyDomain(:caresFor :Parent)
ObjectPropertyRange(:caresFor ObjectUnionOf(:Son :Daughter))

)

4.26 Property Chain

Figure 53 Properties in a property chain

Ontology(<http://example.com/ontology/Unnamed>

Declaration(Class(:FemalePerson))
Declaration(Class(:MalePerson))
Declaration(Class(:Person))
Declaration(ObjectProperty(:hasBrother))
Declaration(ObjectProperty(:hasFather))
Declaration(ObjectProperty(:hasUncle))
AnnotationAssertion(rdfs:label :FemalePerson "Female Person"@en)

Copyright © 2017, No Magic, Inc. 61

SubClassOf(:FemalePerson :Person)
DisjointClasses(:FemalePerson :MalePerson)
AnnotationAssertion(rdfs:label :MalePerson "Male Person"@en)
SubClassOf(:MalePerson :Person)
AnnotationAssertion(rdfs:label :Person "Person"@en)
SubClassOf(:Person ObjectIntersectionOf(ObjectMaxCardinality(1 :hasFather
:MalePerson) ObjectMinCardinality(1 :hasFather :MalePerson)))
AnnotationAssertion(rdfs:label :hasBrother "has brother"@en)
ObjectPropertyDomain(:hasBrother :Person)
ObjectPropertyRange(:hasBrother :MalePerson)
AnnotationAssertion(rdfs:label :hasFather "has father"@en)
ObjectPropertyDomain(:hasFather :Person)
ObjectPropertyRange(:hasFather :MalePerson)
AnnotationAssertion(rdfs:label :hasUncle "has uncle"@en)
ObjectPropertyDomain(:hasUncle :Person)
ObjectPropertyRange(:hasUncle :MalePerson)
SubObjectPropertyOf(ObjectPropertyChain(:hasFather :hasBrother) :hasUncle)

)

4.27 Equivalent Property

Figure 54 Equivalent properties

Copyright © 2017, No Magic, Inc. 62

Ontology(<http://example.com/ontology/Unnamed>

Declaration(Class(:FemalePerson))
Declaration(Class(:MalePerson))
Declaration(Class(:Person))
Declaration(ObjectProperty(:hasMom))
Declaration(ObjectProperty(:hasMother))
AnnotationAssertion(rdfs:label :FemalePerson "Female Person"@en)
SubClassOf(:FemalePerson :Person)
DisjointClasses(:FemalePerson :MalePerson)
AnnotationAssertion(rdfs:label :MalePerson "Male Person"@en)
SubClassOf(:MalePerson :Person)
AnnotationAssertion(rdfs:label :Person "Person"@en)
SubClassOf(:Person ObjectIntersectionOf(ObjectMaxCardinality(1 :hasMom
:FemalePerson) ObjectMinCardinality(1 :hasMom :FemalePerson)))
SubClassOf(:Person ObjectIntersectionOf(ObjectMaxCardinality(1 :hasMother
:FemalePerson) ObjectMinCardinality(1 :hasMother :FemalePerson)))
AnnotationAssertion(rdfs:label :hasMom "has mom"@en)
EquivalentObjectProperties(:hasMom :hasMother)
ObjectPropertyDomain(:hasMom :Person)
ObjectPropertyRange(:hasMom :FemalePerson)
AnnotationAssertion(rdfs:label :hasMother "has mother"@en)
ObjectPropertyDomain(:hasMother :Person)
ObjectPropertyRange(:hasMother :FemalePerson)

)

4.28 Equivalent Class

Figure 55 Equivalent classes

Ontology(<http://example.com/ontology/Unnamed>

Declaration(Class(:PrincipleResidentOfWhiteHouse))
Declaration(Class(:US-President))
AnnotationAssertion(rdfs:label :PrincipleResidentOfWhiteHouse "Principle Resident of
White House"@en)

Copyright © 2017, No Magic, Inc. 63

EquivalentClasses(:PrincipleResidentOfWhiteHouse :US-President)
AnnotationAssertion(rdfs:label :US-President "US President"@en)

)

5 Usage
5.1 Create a Concept Modeling Project

To create a concept modeling project:

1. Click File > New Project. The New Project dialog will open.
2. Select Concept Modeling Project.
3. Name your project and select your Project location.

Figure 56 Selecting the Concept Modeling profile

4. Click OK. A new Concept Modeling diagram will open, complete with the Concept
Modeling diagram palette. This diagram and its palette will also open whenever you
create a new Concept Modeling diagram.

Copyright © 2017, No Magic, Inc. 64

Figure 57 The Concept Modeling diagram and its palette

The following table shows the buttons in the Concept Modeling diagram palette, which represent
the elements you use to create a Concept Modeling diagram. You can drag the button to a
diagram to create that kind of element. The shortcut key may also make it easier for you to create
a specific element.

Buttons

Shortcut Keys

A

Shift + N

H

C

P

Shift + U

K

 S

Copyright © 2017, No Magic, Inc. 65

If you use either Inverse Object Properties or Unidirectional Object Property, the following
things will be created:

(i) When a property’s type does not have a name, “unnamed property” will be used as the
property’s name.

(ii) When a property’s type has a name, the name will be written in lower-case letters and
prepended with “has “ (with a space after). For example, if the property’s type name is
“Boss Deck”, it will be converted to “has boss deck”.

5.2 Create a Concept Model

To create a concept model:

1. Right-click a package in the Containment tree.
2. Select Concept Modeling.
3. Select Create Concept Model.

U

G

Shift + G

D

Shift + D

Copyright © 2017, No Magic, Inc. 66

Figure 58 The Create Concept Model shortcut menu

Note x If an Unnamed package already existed in the Containment tree, a number in

the package name will be added or incremented.

5.2.1 Convert a UML Model into a Concept Model

To change a UML model to a concept model:

1. Open an existing UML project.
2. On the main menu, click File > Use Project > Use Local Project. The Use Project

dialog will open.

Copyright © 2017, No Magic, Inc. 67

Figure 59 The Use Local Project Menu

3. Select Profile and Concept Modeling Profile.

Copyright © 2017, No Magic, Inc. 68

Figure 60 Selecting the Concept Modeling Profile

4. Click Next.

Copyright © 2017, No Magic, Inc. 69

Figure 61 Using the selected Concept Modeling Profile

5. Select usage options and click Finish. You will see the Concept Modeling Profile is

added to your project in the Containment tree.
6. Create a package in your project.
7. Right-click it and select Stereotype.
8. Select the stereotype « » Concept Model [Package] and click Apply.

Copyright © 2017, No Magic, Inc. 70

Figure 62 Applying the « » Concept Model [Package] to the model

9. Open a new concept modeling project (File > Open Project).
10. Click Options > Project to open the Project Options dialog.
11. Click Symbol styles from the tree view, select, and export the Default and Defined

Elsewhere styles to the UML project.

Copyright © 2017, No Magic, Inc. 71

Figure 63 Exporting a project's symbol styles to another project

12. Switch to the previous UML project and click Options > Project to open the Project

Options dialog and import the styles to the project.

Copyright © 2017, No Magic, Inc. 72

Figure 64 Importing another project’s symbol styles into the current project

13. Select Symbol styles and click Import.
14. Select the exported Default and Define Elsewhere styles and click OK. You will see the

imported styles added to the Symbol styles under the Default (Default) style.
15. Select the imported Default style and click Make Default. The imported Default is now

the default style.

Copyright © 2017, No Magic, Inc. 73

Figure 65 Making the imported symbol style as the default one

16. Select the old Default style and click Delete.

Copyright © 2017, No Magic, Inc. 74

Figure 66 Deleting the old symbol style

17. Click OK.
18. Click Options > Project. The Project Options dialog will open.
19. Expand the Default model properties and select Association.
20. Change the Association visibility to public.

Copyright © 2017, No Magic, Inc. 75

Figure 67 Making the Association’s default visibility public

21. Change the Property visibility to public.

Copyright © 2017, No Magic, Inc. 76

Figure 68 Making the property's default visibility public

22. Click OK.

5.2.2 Create a Property Chain

The Concept Modeler allows you to create a property chain by dragging properties, one after
another, to a target property. The drag-and-drop action provides two menu options:

(i) Create subproperty chain
(ii) Add property to subproperty chain

To create a property chain:

1. Drag a property to be composed in the chain, for example, “has father”, to a target
property, for example, “has uncle”, on the diagram pane. A shortcut menu will open.

Copyright © 2017, No Magic, Inc. 77

Figure 69 Dragging a property to a target property to create a property chain

Tip Alternatively, you can create a property chain by right-clicking a target property and

select Create subproperty chain from the shortcut menu, and select the properties to
be composed in the chain from the tree in the Select Property dialog.

2. Select Create subproperty chain from the shortcut menu.

Copyright © 2017, No Magic, Inc. 78

Figure 70 The Create subproperty chain shortcut menu

3. Drag the next property to be composed in the chain, for example, “has brother’, to the

target property and select Add property to subproperty chain. The property chain will
be created (Figure 72).

Copyright © 2017, No Magic, Inc. 79

Figure 71 Adding a property to a property chain

Copyright © 2017, No Magic, Inc. 80

Figure 72 A property chain has been created

You can double-click the property “has uncle” to open its Specification window and see the
tagged value of the property.

You can delete or edit a property chain using the shortcut menus Remove subproperty chain or
Edit subproperty chain.

To delete a property chain:

1. Right-click a target property or a property chain in the diagram pane.

Copyright © 2017, No Magic, Inc. 81

Figure 73 The Remove subproperty chain shortcut menu

2. Select Concept Modeling > Remove subproperty chain for the shortcut menu. The

Concept Modeler will delete all of the properties in the selected property chain.

Tip Alternatively, you can select Concept Modeling > Edit subproperty chain and delete

the property chain by clicking its tagged value > in the Specification
window of the property.

Copyright © 2017, No Magic, Inc. 82

When editing a property chain, you can add, remove, or reorder properties in a chain by using the
Specification window.

To edit a property chain:

1. Right-click a property chain in the diagram pane.

Figure 74 The Edit subproperty chain shortcut menu

2. Select Concept Modeling > Edit subproperty chain. The Specification dialog of the

property will open showing the property chain in the Tags section.

Copyright © 2017, No Magic, Inc. 83

Figure 75 The Specification window of the property "has uncle"

3. Click the tagged value, for example, chain = has father, has brother.

4. Click . The Specification of Slot < > window will open.

Copyright © 2017, No Magic, Inc. 84

Figure 76 Editing the property chain in the Specification of Slot < > window

5. Click Value and click the properties box next to it.
6. You can click:

(i) to add a property to the chain.
(ii) to delete a selected property from the chain.
(iii) to order the properties in the chain.

5.2.3 Create Equivalent Property

Properties can be equivalent to each other. You can make two or more properties equivalent by
dragging a property to the target property. The Concept Modeler provides you with the following
shortcut menus:

(i) Create equivalent property
(ii) Add property to equivalent property

A property is semantically equivalent to another property if it is stereotyped with «Equivalent
Property» and its tagged value is equivalent to.

Copyright © 2017, No Magic, Inc. 85

To create two or more equivalent properties:
1. Drag a property, for example, “has dad” to a target property, for example, “has father” in

the diagram pane. The shortcut menu will open.

Figure 77 The Create equivalent property shortcut menu

2. Select Create equivalent property. The property “has father” is now equivalent to the

property “has dad”.

Copyright © 2017, No Magic, Inc. 86

Figure 78 Two equivalent properties "has father" and "has dad"

3. You may add more properties to the existing equivalent properties by dragging the next
property, for example, “has papa” to the equivalent property “has father” in the diagram
pane.

Copyright © 2017, No Magic, Inc. 87

Figure 79 The Add equivalent property shortcut menu

4. Select Add property to equivalent property. The property “has papa” is now equivalent

to the properties “has father” and “has dad”.

Copyright © 2017, No Magic, Inc. 88

Figure 80 Equivalent properties in the Concept Modeler

Tip Alternatively, you can make a property equivalent to one or more properties by right-

clicking it and select Concept Modeling > Create equivalent property from the
shortcut menu, and select one or more properties from the tree in the Select Property
dialog.

Copyright © 2017, No Magic, Inc. 89

Figure 81 The Select Property dialog

To delete an equivalent property:

1. Right-click the target property, for example, “has father {equivalent to = has dad, has
papa}”, in the diagram pane. The shortcut menu will open.

Copyright © 2017, No Magic, Inc. 90

Figure 82 The Remove equivalent property shortcut menu

2. Select Concept Modeling > Remove equivalent properties. The Concept Modeler will

remove all of the equivalent properties.

To edit an equivalent property:

1. Right-click an equivalent property, for example, “has father”, in the diagram pane.

Copyright © 2017, No Magic, Inc. 91

Figure 83 The Edit equivalent properties shortcut menu

2. Select Concept Modeling > Edit equivalent properties. The Specification of Property

has father window will open showing the equivalent properties under the section Tags.

Copyright © 2017, No Magic, Inc. 92

Figure 84 The Specification window of Property has father

3. Click the tagged value, for example, equivalent to = has dad, has papa.

4. Click . The Specification of Slot < > window will open.

Copyright © 2017, No Magic, Inc. 93

Figure 85 The Specification window of Slot < >

5. Click Value and click the properties box next to it.
6. You can click:

(i) to add another equivalent property.
(ii) to delete a selected equivalent property.
(iii) to order the equivalent properties in the Order Value dialog.

5.2.4 Create Equivalent Classes

To create equivalent classes:

1. Click on the Concept Modeling diagram palette.

2. In the diagram pane, click a class and drag the line to another class to make them
equivalent to each other. A double-headed arrow will be created between the two classes
and the stereotype «Equivalent Class» will be visible.

Copyright © 2017, No Magic, Inc. 94

Figure 86 Creating class equivalence between two classes

Figure 87 The classes are equivalent to each other

5.3 Set the Concept Model URI
URI stands for Uniform Resource Identifier. A URI can provide identification about a location to
a resource (a document, a person, an abstract thing) and a name or both, depending on the
context. The URI is used as a single global identification system in the Web.

On the semantic Web, not only can you use URIs for Web documents (to link to and access them
in a Web browser), but also for real world objects (such as people, cars, and even abstract ideas).

A concept model must have a valid URI before it can be exported to an OWL ontology. If you
forget to change the default URI, the notification window will open and remind you to change it

Copyright © 2017, No Magic, Inc. 95

when you export that concept model to an OWL ontology. The last part of this URI is used as the
filename, and the extension for this file will be derived from the export format. (See section 5.6.2
Set the Concept Model Export URI Style for export format options.)

To set the concept model URI:

1. Right-click on the desired ontology package in the Containment tree.
2. Select Specification.

Figure 88 Opening the Specification dialog of a selected package

3. Scroll down to URI, or type “URI” in the search field at the bottom of page.

Note A default URI will be set for new concept modeling projects and newly created concept

models. Updating the URI to match your ontology is recommended. For situations in
which a URI has not been set, or the default has not been changed, a warning message

Copyright © 2017, No Magic, Inc. 96

will appear in the notification window on OWL export.

4. Click on the field next to URI.
5. Update the URI and click OK.

5.4 Create the XML Catalog File
The XML catalog file can be created using the application Protégé1. The version of Protégé
used in these instructions is version 4.3.0.

To create an XML catalog file for a locally cached set of external ontologies:

1. Open Protégé.
2. Select File > New.

1 Protégé is a free, open-source ontology editor and a framework for building knowledge management systems.

Copyright © 2017, No Magic, Inc. 97

Figure 89 Creating an OWL ontology in Protege application

3. Select Save as…

Copyright © 2017, No Magic, Inc. 98

Figure 90 Saving the OWL ontology in Protégé

4. Click OK.

Figure 91 Selecting an ontology file format option

5. Navigate to a folder location.
6. Name the empty ontology.

Copyright © 2017, No Magic, Inc. 99

7. Click Save.

Figure 92 Saving the OWL ontology file to a selected location

Copyright © 2017, No Magic, Inc. 100

8. Click File > Open.

Figure 93 Opening an OWL ontology menu in Protégé

9. Click Yes.

Figure 94 Opening ontology in the current window option

Copyright © 2017, No Magic, Inc. 101

10. Select the newly created ontology.
11. Click Open.

Figure 95 Selecting an OWL ontology to open

Copyright © 2017, No Magic, Inc. 102

To create an XML catalog file for the desired locally cached set of external ontologies:
1. Click File > Edit active ontology library.

Figure 96 Creating an XML catalog file in Protégé

Copyright © 2017, No Magic, Inc. 103

2. Click on the Folder Repository for the empty ontology.
3. Click Delete (-)

Figure 97 Deleting a folder repository

4. Click Add (+).

Figure 98 Adding a folder repository

5. Click on Folder Repository.
6. Select Recursively search subdirectories.

Figure 99 Locating for a folder repository

Copyright © 2017, No Magic, Inc. 104

7. Select the desired folder.
8. Click Open.

Figure 100 Selecting a folder repository

9. Click OK.

Figure 101 A new folder repository is added

Copyright © 2017, No Magic, Inc. 105

5.5 Import an OWL Ontology to a Concept Model
5.5.1 Update the XML Catalog File
The Concept Modeler can import a local ontology model into the concept model. Occasionally,
an ontology file may contain references to external ontologies (for example, ontologies not
stored locally and not available to import directly into the concept model). An XML catalog
(OASIS Standard V1.1) may be used to locate these external ontologies as a locally cached
equivalent. An XML catalog describes the mapping between external entity references and
locally cached equivalents for an XML external resource. In this case, the external entity
references are URIs to external ontologies, and the locally cached equivalent is a pointer to a
local copy of the root folder containing the external ontologies. For instance, the following entry
from an XML catalog for the Red branch FIBO ontologies tells the Concept Modeler to look for
the ontology named “http://spec.edmcouncil.org/fibo/red/be/” in the folder “be/be.rdf.”

<uri id="Automatically generated entry, Timestamp=1425183124824"
name="http://spec.edmcouncil.org/fibo/red/be/" uri="be/be.rdf"/>

The local copy of this ontology is located relative to the root folder of the locally cached
equivalent. This root folder must be set in the XML catalog file by modifying the “id” attribute
of the element “group” in the XML catalog file:

<group id="Folder Repository, directory=file:///C:/Users/Jplatt/Desktop/FIBO-red/,
recursive=true, Auto-Update=true, version=2" prefer="public"
xml:base="file:///C:/Users/Jplatt/Desktop/FIBO-red/">

The identical, bolded file URIs above point to the folder “FIBO-red” on the Windows desktop of
user “Jplatt.” These file URIs must be set to the location of the local folder containing the locally
cached equivalent of the external ontologies. Windows users should note the use of forward
slashes, as well as the triple forward slash before the Windows file location.

5.5.2 Set the OWL Import Catalog
The OWL import catalog must be set for a MagicDraw project if an XML catalog is used to
import an ontology model.

To set the OWL import catalog to the XML catalog file for the desired external ontologies:

1. Click Options > Project.

http://spec.edmcouncil.org/fibo/red/be/

Copyright © 2017, No Magic, Inc. 106

Figure 102 The Concept Modeler’s Project Options menu

2. Select General Project Options.
3. Click in the field next to OWL Import Catalog.
4. Click the “…” button.

Figure 103 Selecting an XML catalog file as the OWL import catalog

5. Select the XML catalog file.
6. Click Open.

Copyright © 2017, No Magic, Inc. 107

7. Click OK.

5.5.3 Set a Path Variable to Share OWL Import Catalog Files

By permitting a user to set a path variable to a local directory containing OWL import catalog
files, the Concept Modeler allows users to easily share OWL import catalogs and the MagicDraw
projects that use them. Without such a variable, each user may have a different path to the file,
which causes the users to change the path back and forth. To resolve this issue, a user needs to
define a path variable to this local directory on his or her computer that corresponds to the
directory containing the same OWL import catalog files on another user’s computer.

To define a path variable:

1. Click Options > Environment.

Figure 104 The Concept Modeler's Environment Options menu

2. Select Path Variables.
3. Click Add.
4. Name the path in the Name field.
5. Click the “…” button next to the Value text box.

Copyright © 2017, No Magic, Inc. 108

Figure 105 Locating the OWL import catalog

6. Select desired root directory containing OWL import catalog files.
7. Click Open.

Copyright © 2017, No Magic, Inc. 109

Figure 106 Selecting the OWL import catalog

8. Click OK. You will see the created directory appear on the Path Variables list (see the

following figure).

Copyright © 2017, No Magic, Inc. 110

Figure 107 The OWL import catalog is defined as the path variables

8. Click OK.

5.5.4 Use a Path Variable to Share OWL Import Catalog Files

To use a path variable to share OWL import catalog files:
1. Click Options > Project.

Copyright © 2017, No Magic, Inc. 111

Figure 108 Opening the Project Options Dialog

2. Select General project options.
3. Click in the field next to OWL Import Catalog.
4. Click the “…” button.

Figure 109 Selecting the path variables to use in the Project Options dialog

Copyright © 2017, No Magic, Inc. 112

5. Select the XML catalog file.
6. Click Open.

Figure 110 Selecting the XML catalog file

7. Select the path to the OWL import catalog that includes the defined path variable.
8. Click Use Selected.

Figure 111 Using the selected path variables

Copyright © 2017, No Magic, Inc. 113

5.5.5 Import an OWL Ontology file

You can import an OWL ontology file (after setting the OWL import catalog, if necessary) and
reuse or augment it in the Concept Modeler.

When you import an OWL ontology file, the Concept Modeler preserves the URI/IRI for every
OWL class and property and imported it as a tagged value of the corresponding UML class or
property. The tagged value, called IRI, is part of a «Resource» stereotype applied to each UML
element. This tagged value is generally used only for an imported OWL ontology. It allows you
to refer to an OWL ontology from a concept model that has been exported to OWL. The
exported concept model directly imports the original OWL ontology file(s) and can use the
classes and properties defined there with all the correct URIs/IRIs.

Note The Concept Modeler enables you to import an OWL ontology, change the package’s

«Model» stereotype to «Concept Model» and edit the classes or properties within that
package, then export it back to OWL. This round-trip OWL ontology editing (OWL
ontology to a concept model to OWL ontology) gives priority to an IRI tagged value
and therefore, it preserves URIs/IRIs from the original OWL ontology on export. If you
need to use the concept model from this point forward as the source model for an OWL
ontology, you should probably remove the tagged values so that changing class and
property names will keep the URIs/IRIs in sync.

To import an OWL ontology file into a concept model:

1. On the main menu, click File > Import From.
2. Select OWL Ontology File.

Copyright © 2017, No Magic, Inc. 114

Figure 112 The Concept Modeler's import ontology menu

3. Select an ontology file.
4. Click Open (see the following figure).

Copyright © 2017, No Magic, Inc. 115

Figure 113 Selecting the ontology file to import

If the OWL import catalog is set using a path variable (as described in section 5.5.4 Use a Path
Variable to Share OWL Import Catalog Files), and this path variable is not defined (as described
in section 5.5.3 Set a Path Variable to Share OWL Import Catalog Files), the Concept Modeler
will not be able to locate it. Consequently, the following dialog box will be displayed:

Figure 114 A dialog prompting you to specify a path variable

Clicking Yes will allow the user to set the path variable to a root directory containing OWL
import catalog files, and the import of the OWL ontology to proceed.

Copyright © 2017, No Magic, Inc. 116

Figure 115 Setting the path variable to the OWL import catalog files

Once an OWL file has been successfully imported, an Imported Ontologies package will appear
in the Containment tree window containing the imported OWL data.

Figure 116 The imported ontology package appears in the Containment tree

Note The Concept Modeler supports importing classes, properties and packages that have the

same label but different URIs.

5.5.6 Import annotations on an OWL Ontology to a concept model

An OWL ontology may have one or more annotations added to itself. Concept Modeler can
import the annotations as annotations on a concept model. If there is only one annotation on the
OWL ontology, it will show u p in the concept model’s Documentation pane in MagicDraw upon
import. When there are more than one annotations imported, they will not show up automatically

Copyright © 2017, No Magic, Inc. 117

in the Documentation pane. You need to specify which one gets to be displayed as the package’s
default documentation by selecting it from the Preferred annotation property option in the
Project Options dialog. The rest of the annotations will become the package owned comments
(UML comments tagged as Annotation).

5.5.7 Version IRI

An ontology can have multiple published versions. To identify various version separately OWL
provides a mechanism to specify "version IRI". The version IRI may be, but need not be, equal
to the ontology IRI. For instance, an ontology document of an ontology that contains an ontology
IRI <http://www.example.com/my>, a version IRI would look like
<http://www.example.com/my/2.0>
Owl version IRI is specified as follows:
<owl:Ontology rdf:about="http://www.example.com/my">
 <owl:versionIRI rdf:resource="http://www.example.com/my/2.0"/>
</owl:Ontology>
The version IRI of an ontology will show up under corresponding concept model tag
'versionIRI'.

5.5.8 Display and Hide IRI

The IRIs of classes and properties may not be visible in the diagram pane. You can display them
by using the shortcut menu Display IRI tagged value. To hide the IRIs from the diagram pane,
you can select the shortcut menu Hide IRI tagged value.

To display or hide the IRI tagged value of a class or an association end in the diagram pane:

1. Right-click a class or an association end in the diagram pane.
2. Select Concept Modeling and select either Display IRI tagged value or Hide IRI

tagged value.

Figure 117 The Display IRI tagged value shorcut menu

http://www.example.com/my/2.0
http://www.example.com/my

Copyright © 2017, No Magic, Inc. 118

Figure 118 The Hide IRI tagged value shortcut menu

To display or hide the IRI tagged values of all classes or association ends in the diagram pane:

1. On the main menu, click Edit > Select All. All of the elements in the diagram pane will
be selected.

2. Right-click on any element.
3. Select Concept Modeling and select either Display IRI tagged value or Hide IRI

tagged value.

Note x The menu Display IRI tagged value will appear when you right-click an

element whose IRI is hidden from the diagram pane.
x The menu Hide IRI tagged value will appear when you right-click an element

whose IRI is displayed in the diagram pane.

Copyright © 2017, No Magic, Inc. 119

5.6 Export a Concept Model to an OWL Ontology
5.6.1 Set the Concept Model Export Syntax
The Concept Modeler provides many syntaxes (see section 4. UML to Equivalent OWL (in
OWL Functional Syntax)) that you can select to export your concept model project to an OWL
ontology.

If you export your model without selecting a syntax, the Concept Modeler will export it using
RDF/XML, which is the default syntax.

To set the syntax with which to export a concept model for a MagicDraw project:

1. Click Options > Project.

Figure 119 The Concept Modeler's project options menu

2. Select General project options.
3. Click in the field next to OWL Export Syntax.
4. Select a syntax to export the concept model (see the following figure).

Copyright © 2017, No Magic, Inc. 120

Figure 120 The OWL export syntax options

5.6.2 Set the Concept Model Export URI Style
The Web uses Uniform Resource Identifiers (URIs) as a global identification system. A URI is
used to identify a resource, such as a document or an abstract thing, either by a location, such as
a DNS host name and a path on that machine, or a name.

When identifying real-world objects using a URI, you can choose between (i) Hash URI and (ii)
303 URI. The differences are as follows:

(i) Hash URI: for smaller and stable sets of resources that evolve together, for example,
RDF Schema vocabularies and OWL ontologies. The advantage is that all resources
are in the same file because the redirection target cannot be configured separately for
each resource.

(ii) 303 URI: for large-scale data sets that are likely to grow over time. One document
can be used for describing either each or all resources. When using 303 URI for an
ontology, it can reduce a client’s performance and cause higher latency.

Copyright © 2017, No Magic, Inc. 121

Note The Concept Modeler imports and preserves the URI or IRI for every OWL class and
property from an OWL ontology file as the tagged value on the corresponding UML
class and property in the Concept Modeler. When exporting this particular model back
to OWL, the Concept Modeler will not apply the normal automatic URI/IRI generation
and preserve the URI or IRI from the original OWL ontology so that the classes and
properties can be used with their correct URIs/IRIs. The export URI style option also
has no effect on the preserved URI or IRI.

To select a concept model export URI style for a MagicDraw project:

1. Click Options > Project.

Figure 121 The Concept Modeler's project options

2. Select General project options.
3. Click in the field next to URI Construction Strategy.
4. Select either Hash URI or 303 URI.

Copyright © 2017, No Magic, Inc. 122

Figure 122 Selecting a URI construction strategy

5.6.3 OWL Export Folder
Every time you export a concept model to an OWL ontology, it will go into a default export
location. The default location is an OWL directory, which is created automatically next to the
project file. However, you can disable this default directory and enable the option that will allow
you to choose your desired destination folder whenever you export a concept model.

Selecting Always prompt for a file destination when exporting OWL in the Project Options
dialog allows the Concept Modeler to prompt for an export directory to store your «Concept
Model» every time you export one.

x If you have previously selected an export location, a window will open showing the file
path of the former saved location.

x If the previously saved export location is invalid, a message will show in the notification
window, the previously saved location will clear, and a prompt for a file destination will
open to a default location.

Copyright © 2017, No Magic, Inc. 123

x If the previously saved export location no longer exists for any reason, the Concept
Modeler will revert to the default location and prompt for file destination.

Turning off this project option (default) allows the Concept Modeler to automatically remember
and select the last export location for your «Concept Model» without asking you first.

x If the export location no longer exists, it will export your file to the default OWL
directory.

x If there is a valid saved export location, the Concept Modeler will export to the saved
export location.

x If the saved export location is not valid and the default location exists, then the Concept
Modeler will revert to the default location and display an error message; otherwise, it will
create a new OWL folder and revert the saved export location back to the default
location.

x If there is no saved export location and the default location exists, then the Concept
Modeler will set the export location to the default location; otherwise, it will create a new
OWL folder at the project location and set the export location to the default location.

When you would like to select multiple packages, you must right-click on one of the packages to
export. You will always receive a prompt for file destination which is applied to all of your
packages and the same file location will be loaded to all the packages. You are able to select
different file destinations for each package, but the software always loads the same starting
location for each package.

The error that appears in the Notification Window when trying to export the concept model to an
OWL ontology can be caused by entering an incorrect path name or the path name to the
previous export location does not exist anymore. If you encounter this type of error, you need to
open the fileExportPath tagged value in the model’s Specification dialog and correct the path
name, or select another location (Figure 7).

To prompt for a dialog that allows you to select a destination folder on export:

1. Click Options > Project on the main menu. The Project Options dialog will open (see
the following figure).

Copyright © 2017, No Magic, Inc. 124

Figure 123 The OWL export destination folder option

2. Select General > Concept Modeling.
3. Select the check box Always prompt for a file destination when exporting OWL.
4. Click OK.

Copyright © 2017, No Magic, Inc. 125

5.6.4 Export a Concept Model to OWL
Before exporting a model to an OWL ontology, you can specify the file export path in the
Specification window. The fileExportPath property allows you to store the file export path as a
tagged value in the Concept Modeling package (see the following figure).

Figure 124 Specifying the file export path before exporting a concept model to an OWL ontology

To export a concept model to an OWL ontology:

1. Right-click on a concept model in the Containment tree.
2. Select Concept Modeling.
3. Select Export Concept Model to OWL.

Copyright © 2017, No Magic, Inc. 126

Figure 125 The Export Concept Model to OWL menu

5.6.5 Use Path Variables to Export a Concept Model to an OWL Ontology

When you export a «Concept Model» stereotyped package, you must have the 'Always prompt
for a file destination when exporting OWL' set to true. Please refer to section 5.6.3 to see how to
enable this option. This new support allows for users to collaborate their projects with other team
members without having to keep in mind the exact destination of the file.

To use Path Variables to export the concept model to OWL:

1. Find your Concept Model package you wish to export.
2. In your Containment Tree, right click on that package and select Concept Modeling and

then Export Concept Model to OWL.
3. Once clicking those, you should be prompted to select a folder from your directory.

Select the desired the location.
4. The Use Path Variables should pop up next.

a. Note: This popup will appear if and only if the selected destination folder has the
same path destination that is defined for path variable.

Copyright © 2017, No Magic, Inc. 127

5. Now, you may do one of the following:
a. Select Use Selected to show the form highlighted in purple.
b. Select Use Original to show the path shown in quotes right above the highlighted

portion.
6. After clicking the button of your choice, you should have the file generated, exported,

and saved inside the directory path described.

5.7 Add a Concept Model to Teamwork Cloud and Export it as an OWL Ontology

You can collaborate with your team members in constructing a concept model. The collaboration
feature in MagicDraw allows you to add a concept model to the TWCloud server so that
everyone on the team can access the shared model, make changes to it, and commit them to the
server. You can easily update the model every time someone commits the changes to the server.

Once your model or project has been added to TWCloud, you can start a collaborative session.
You can save the model locally so that you can continue working on the model even though you
are not connected to the server (offline mode). This offline mode feature allows you to commit
the changes the next time you are online and connected to the server. (For more information
about offline projects, see http://docs.nomagic.com/display/MD184/Offline+modeling.)

Exporting either a concept model on your local machine or the one in TWCloud to an OWL
ontology works the same way. The Concept Modeler allows you to export it to the default
location, a previous location, or a selected destination folder. Prior to exporting the model, you
can enable the prompt to export OWL to a selected destination so that you can select a desired
location every time you export an OWL ontology.

5.7.1 Add a Concept Model to Teamwork Cloud

Teamwork Cloud (or TWCloud) is a new generation of server that is designed to work with large
amounts of data. TWCloud provides a modeling repository standard that can be

http://docs.nomagic.com/display/MD184/Offline+modeling

Copyright © 2017, No Magic, Inc. 128

transparently scaled from a single workstation to hundreds of servers. It enables multiple servers
to interconnect and share resources (see Teamwork Cloud Documentation for more information
about TWCloud).

Before adding the concept model to the TWCloud server, you must first log into the server.
When adding the concept model to the server, you need to select a category for the model,
because TWCloud groups projects into categories. If you do not select any category, your model
will be stored under the Uncategorized category by default. You can later move your model to
another category using Teamwork Cloud Admin (TWAdmin), which is the user interface of
TWCloud (for more information about moving a project category,
see http://docs.nomagic.com/display/TWCloud184/Moving+projects+from+one+category+to+an
other).

To log into the TWCloud server:

1. Click the main menu Collaborate > Login. The Login dialog will open.

Figure 126 Logging into the Teamwork Cloud server.

http://docs.nomagic.com/display/TWCloud184/Teamwork+Cloud+Documentation
http://docs.nomagic.com/display/TWCloud184/Moving+projects+from+one+category+to+another
http://docs.nomagic.com/display/TWCloud184/Moving+projects+from+one+category+to+another

Copyright © 2017, No Magic, Inc. 129

Figure 127 The Login to the Teamwork Cloud server dialog.

2. Type your username and password, for example, Administrator.
3. Enter the server address, for example, 10.1.1.123.
4. Select Teamwork Cloud as the server type.
5. Click OK. You will be connected to the server.

Once you are logged into TWCloud, you can add a concept model to the server. The following
instructions use the concept model StereotypeDisjointSample as an example.

To add a concept model to the TWCloud server:

1. Open a concept model project.
2. Click the main menu Collaborate > Add Project to Server. The Add Project to Server

dialog will open.

Copyright © 2017, No Magic, Inc. 130

Figure 128 The Add Project to Server menu allows project export to Teamwork Cloud.

Figure 129 Exporting a concept model to Teamwork Cloud.

Copyright © 2017, No Magic, Inc. 131

The name of the active concept model that you are going to add to the server will appear
in the dialog by default. The concept model StereotypeDisjointSample is used in this
example.

3. Select a category for your concept model. The default option is Uncategorized.
4. Click Add. The concept model will be added to the server.

To check if the concept model has been successfully added to TWCloud:
x Click the main menu Collaborate > Projects. The concept model that was added to the

server will appear in the Manage Projects dialog. The concept model used in this
example is StereotypeDisjointSample.

Figure 130 The Manage Projects dialog showing the exported concept model in Teamwork Cloud.

A concept model that has been added to TWCloud is saved on the server as a server project.
Users with the permission to work on server projects can access the concept model. Before
editing the concept model, you first need to lock it to prevent others from editing it at the same
time. (For more information on locking models for editing,
see http://docs.nomagic.com/display/MD184/Locking+model+for+edit.)

To open a concept model in TWCloud

http://docs.nomagic.com/display/MD184/Locking+model+for+edit

Copyright © 2017, No Magic, Inc. 132

1. Log into the TWCloud server.
2. On the MagicDraw main menu, Click Collaborate > Projects to open the Manage

Projects dialog.
3. Select a concept model that you want to open and click Open. The concept model will open in

read-only mode.
4. To edit the model, right-click Data in the Containment tree, and select Lock > Lock Elements

for Edit Recursively. The concept model will be locked for editing.

If you make changes to the model, you need to commit them so that others can update the model
with your changes.
(See http://docs.nomagic.com/display/MD184/Committing+changes+to+CEDW for the
instructions to commit changes to TWCloud.)

5.7.2 Export a Concept Model in Teamwork Cloud to an OWL Ontology

When exporting your model to an OWL ontology, you can let the Concept Modeler export it to
the previous OWL export location or your selected directory. See 5.6.3 OWL Export Folder to
learn more about the OWL export location options.

If the option Always prompt for a file destination when exporting OWL in the Project
Options dialog is enabled, the Concept Modeler will always prompt you to select an OWL
export file location every time you export the concept model. Figure 6 below shows the prompt
for OWL export folder option is enabled (set as “true”).

http://docs.nomagic.com/display/MD184/Committing+changes+to+CEDW

Copyright © 2017, No Magic, Inc. 133

Figure 131 The prompt for an OWL export file destination option in the Project Options dialog.

You do not have to lock the concept model to export it to an OWL ontology. The following
steps explain how to export a concept model that you have added to TWCloud.

How to export a concept model in TWCloud to an OWL ontology

1. Right-click a concept model in the Containment tree.
2. Click Concept Modeling > Export Concept Model to OWL to export the concept model. Any

one of the following will happen:

x If the prompt for export location is either enabled or disabled and you never export the
project to an OWL ontology before, a dialog will open to prompt you to select a desired
location. This location will be set as default.

x When saving new export location and package is unlocked, Concept Modeler will try to lock
it and show message in notification window. If locks cannot be obtained, due to package
being locked by another user, a message will show in notification window and export
location will not be saved, but concept model will still export.

Copyright © 2017, No Magic, Inc. 134

x If the prompt for export location is enabled and you have exported a project before, and the
location is valid, a dialog will open prompting you to select either the previous location or a
new location.

x If the prompt for export location is enabled and you have exported a project before, and the
location is invalid, an error will open in the Notification Window, and a dialog will open
prompting you to select a new location.

x If the prompt for export location is disabled and you have exported a project before, and the
location is valid, the Concept Modeler will export it directly to the location.

x If the prompt for export location is disabled and you have exported a project before, and the
export location is invalid, an error will open in the Notification Window, and the Concept
Modeler will prompt you to select another location.

When you would like to select multiple packages, you must right-click on one of the packages to
export. You will always receive a prompt for file destination which is applied to all of your
packages and the same file location will be loaded to all the packages. You are able to select
different file destinations for each package, but the software always saves the same starting
location for each package.

The error that appears in the Notification Window when trying to export the concept model to an
OWL ontology can be caused by entering an incorrect path name or the path name to the
previous export location does not exist anymore. If you encounter this type of error, you need to
open the fileExportPath tagged value in the model’s Specification dialog and correct the path
name, or select another location (Figure 7).

Copyright © 2017, No Magic, Inc. 135

Figure 132 The OWL export destination directory in the model's Specification dialog.

For more information about changing the OWL export location, see 5.6.4 Export a Concept
Model to OWL.

5.8 Automatically Generate Glossaries

The Concept Modeler can automatically generate glossaries for classes, association ends,
attributes, enumerations, and enumeration literals in a concept model upon importing an OWL
ontology. Additionally, it can generate glossary entries when those concept model elements are
created or edited in the diagram or the containment tree.

To set the options for automatic generation of glossaries:

1. Select Project from the Options menu.

Copyright © 2017, No Magic, Inc. 136

Figure 133 The Concept Modeler's project options

2. Select General project options.
3. Click on the corresponding checkbox for the option to enable or disable the following

options (by default, these options are disabled):
a. Add classes to the glossary.
b. Add association ends to the glossary.
c. Add attributes to the glossary.
d. Add enumerations to the glossary.
e. Add enumeration literals to the glossary.

4. Click OK.

Figure 134 The Concept Modeler's glossary options

5.9 Create a Glossary Table
In a concept model, a glossary table contains the names and descriptions of classes, association
ends, attributes, enumerations, and enumeration literals that are defined in the concept model.

Copyright © 2017, No Magic, Inc. 137

To create a glossary table:
1. Right-click the owning package.

Note The owning package must have the correct «Model» or «Concept Model» stereotype

for these menus to appear.

2. Select Concept Modeling > Create Glossary Table (see the following figure).

Note If a glossary table already exists in the owning package, the Create Glossary Table

menu option will not be available.

Figure 135 The Concept Modeler's Create Glossary Table menu

At least one glossary generation project option must be enabled. If all of the options are turned
off, the Create Glossary Table menu option will be disabled.

Copyright © 2017, No Magic, Inc. 138

Figure 136 The glossary creation menu is disabled

5.10 Rebuild a Glossary Table
When the glossary-generation options change, one may want to rebuild existing glossary tables
to only contain the specified kinds of entries.

To rebuild an existing glossary table for a concept model:

1. Right-click on the existing concept modeling generated glossary.
2. Select Concept Modeling.
3. Select Rebuild Glossary Table.

Note The owning package must have the correct «Model» or «Concept Model» stereotype

and a glossary table must not already exist for this menu item to appear.

Copyright © 2017, No Magic, Inc. 139

Figure 137 The Concept Modeler's Rebuild Glossary Table menu

Note At least one glossary generation project option must be enabled for the Rebuild

Glossary Table menu item to be enabled, otherwise it will look like the last menu item
in the following figure.

Figure 138 The Rebuild Glossary Table menu is disabled

Copyright © 2017, No Magic, Inc. 140

5.11 View a Glossary
The generated glossary is created in the package of the owning concept model.

To view a glossary’s contents:

x Double-click the glossary in the Containment tree.

Figure 139 A generated glossary in the Containment tree

Figure 140 A Concept Modeler's glossary table

Editing the glossary name or a description in the glossary will automatically update the
corresponding element in the concept model.

Furthermore, clicking the name of a class, association end, attribute, enumeration, or
enumeration literal will display the provided element’s description.

Copyright © 2017, No Magic, Inc. 141

Figure 141 A element’s description in the Concept Modeler

For additional information on how to manually create, delete, and update elements in the
glossary, please refer to the user manual for MagicDraw 18.0 SP4 or higher.

5.12 Create a Property Holder

To create a property holder (UML class stereotyped as «Anything»):

1. Create a UML class (named “Thing” below).

Figure 142 A UML class

2. Right-click on the created class.
3. Click Stereotype.

Copyright © 2017, No Magic, Inc. 142

Figure 143 The Stereotype shortcut menu of the class

4. Type “Anything” in the search box.
5. Select the stereotype “Anything”.
6. Click Apply.

Figure 144 Selecting the Anything stereotype for the class

Copyright © 2017, No Magic, Inc. 143

5.13 Universal Quantification Constraints for an Existing Property
In the concept modeling interpretation of UML, redefining an existing property creates a
universal quantification constraint in the context of the owning class (see section 3.6 Universal
Quantification Constraint). This interpretation is based on {redefines} in UML, which allows for
more specific constraints to be added to an existing property without defining a new one.

5.13.1 Add a Universal Quantification

To add a universal quantification:

1. Drag and drop a property to be redefined (for example, “has” from “Person”) onto a
redefining property (for example, “has” from “Dog Lover”).

Note The property is owned by the class at the opposite end of the association. Additionally,
the target can have the same name as the source or be unnamed. The resulting
redefinition’s multiplicity is adjusted to conform to the multiplicity of the dragged,
redefined property.

Figure 145 Dragging the property to be redefined to the redefining property

2. Click Create universal quantification.

Figure 146 The Create universal quantification shortcut menu

Copyright © 2017, No Magic, Inc. 144

5.13.2 Remove a Universal Quantification

To remove a property redefinition from a property:
1. Right-click a redefining property.
2. Select Concept Modeling.
3. Select Remove universal quantification.

Figure 147 Removing a universal quantification constraint from a property

5.14 Subproperties
In the Concept Modeling interpretation of UML, subsetting a property creates a subproperty
when the subsetting property has a different name than the subsetted property (see section 3.4
Subproperty). UML provides a {subsets} constraint that asserts that the values within a

Copyright © 2017, No Magic, Inc. 145

subsetting property are also in the set of values within a subsetted property. The concept
modeling profile interprets a subproperty as a subsetting property that has a different name.

5.14.1 Add a Subproperty

To add a subproperty:

1. Drag and drop a subsetted property (for example, “consists of” from “Soccer Team”)
onto a property (for example, “composed of” from “Futsal Team”).

Note The property is owned by the class at the opposite end of the association. Additionally,
the target can have the same name as the source or be unnamed. The resulting
redefinition’s multiplicity is adjusted to conform to the multiplicity of the dragged,
subsetted property.

2. Click on Create subproperty.

Figure 148 Dragging a subsetted property to another property to create a subproperty

5.14.2 Remove a SubProperty

To remove a property subsetting from a property:

1. Right-click a subsetting property (for example, “composed of” from “Futsal Team”).
2. Select Concept Modeling > Remove subproperty.

Copyright © 2017, No Magic, Inc. 146

Figure 149 Removing a property subsetting from a property

5.15 Create an Existential Quantification (Qualified) Constraint for a Property
In the Concept Modeling interpretation of UML, subsetting a property without giving the new
property a different name (or leaving off the new property name altogether) creates an existential
quantification constraint (see section 3.5 Existential Quantification Constraint). As {subsets}
with an omitted name is not well defined in UML, it is used in the Concept Modeling profile to
express that a subset of values must meet the stated cardinality and type constraints of the
subsetting property.

Copyright © 2017, No Magic, Inc. 147

5.15.1 Add an Existential Quantification

To add an existential quantification constraint to a property:

1. Drag and drop a subsetted property (for example, “has” from “Person”) onto the
cardinality of the property that will subset another property (for example, “unnamed”
from “Dog Caretaker”). Note that the target can have the same name as the source or be
unnamed.

Note The resulting subsetting property’s multiplicity is adjusted to conform to the dragged,
subsetted property, and to have a minimum cardinality of at least one.

Figure 150 Dragging a subsetted property to a cardinality of another property to create an existential quantification constraint

2. Right-click the subsetted property and select Create existential quantification.

Figure 151 The Create existential quantification shortcut menu

Copyright © 2017, No Magic, Inc. 148

5.15.2 Remove an Existential Quantification

To remove an existential qualification constraint:

1. Right-click a subsetting property.
2. Select Concept Modeling.
3. Select Remove existential quantification.

Figure 152 The Remove existential quantification shortcut menu

Copyright © 2017, No Magic, Inc. 149

5.16 Go to Redefined Property
It is often useful to go to a redefined property to see its original definition. There are two ways to
do so. The first is to go to the redefined property in the Containment tree. The second is to go to
the redefined property on a diagram.

5.16.1 Go To Redefined Property in Containment Tree

To go to a redefined property in the Containment tree:

1. Right-click a redefining property, its multiplicity, or its redefinition.

Figure 153 A redefining property in Concept Modeler

2. Select Go To > Redefined property in containment tree.

Figure 154 The Redefined property in containment tree shortcut menu

Copyright © 2017, No Magic, Inc. 150

The focus will jump to the redefined property in the containment tree, as shown in the diagram
below.

Figure 155 The Concept Modeler highlights the redefined property in the Containment tree

5.16.2 Go To Redefined Property on Diagram

To focus on a redefined property on a diagram:

1. Right-click a redefining property, its multiplicity, or its redefinition.

Figure 156 A redefining property in the Concept Modeler

2. Select Go To > Redefined property on diagram and choose a diagram.

Copyright © 2017, No Magic, Inc. 151

Figure 157 The Redefined property on diagram shortcut menu

Focus will jump to the redefined property on the chosen diagram.

Figure 158 The Concept Modeler highlights the redefined property on the selected diagram

5.17 Go To Subsetted Property
It is often useful to go to a subsetted property to see its original definition. There are two ways to
do so. The first is to go to the subsetted property in the Containment tree. The second is to go to
the subsetted property on a diagram.

5.17.1 Go To Subsetted Property in Containment Tree

To focus on a subsetting property in the Containment tree:

1. Right-click on the subsetting property, its multiplicity, or its {subsets}.

Figure 159 A subsetting property in the Concept Modeler

Copyright © 2017, No Magic, Inc. 152

2. Select Go To > Subsetted property in containment tree.

Figure 160 The Subsetted property in the Containment tree

The focus will jump to the subsetted property in the Containment tree.

Figure 161 The Concept Modeler highlights the subsetted property in the Containment tree

Copyright © 2017, No Magic, Inc. 153

5.17.2 Go To Subsetted Property on Diagram

To focus on a subsetted property on a diagram:
1. Right-click on the subsetting property, its multiplicity, or its {subsets}.

Figure 162 A subsetting property in the Concept Modeler

2. Select Go To > Subsetted property on diagram and select a diagram.

Figure 163 The Subsetted property on diagram shortcut menu

The focus will jump to the subsetted property on the chosen diagram.

Figure 164 The Concept Modeler highlights the subsetted property on the selected diagram

Copyright © 2017, No Magic, Inc. 154

5.18 Create a Necessary and Sufficient Condition
5.18.1 Add a Sufficient Condition
In the Concept Modeling interpretation of UML, a property that has the {sufficient} constraint
applied to it indicates that when an instance satisfies the multiplicity and type constraints for the
property’s values, not only is a necessary condition to be an instance of the class
met, a sufficient condition is also met (see section 3.7 Necessary and Sufficient Condition).

To create a sufficient condition:

1. Right-click the association end for the property to which the {sufficient} constraint will
be applied (unnamed from “Dog Owner”). Remember that the property is owned by the
class at the opposite end of the association.

2. Select Concept Modeling > Make property sufficient to classify an instance in the
shortcut menu.

Figure 165 Make property sufficient to classify an instance shortcut menu

Copyright © 2017, No Magic, Inc. 155

 The {sufficient} constraint is toggled on for the property.

5.18.2 Remove a Sufficient Condition

To remove a sufficient condition on a property:

1. Right-click the association end for the property to which the {sufficient} constraint will
be removed (unnamed from “Dog Owner”).

2. Select Concept Modeling > Make property insufficient to classify an instance.

Copyright © 2017, No Magic, Inc. 156

Figure 166 Make property insufficient to classify an instance

5.19 Working with Subclasses
Users may want to make a set of existing subclasses disjoint, overlapping, complete, or
incomplete. The Concept Modeler provides a quick method for adding a generalization set to
your concept model and setting its properties.

Note x Creating generalization sets through the Concept Modeler is only applicable to

generalization relationships connected together through the shared target
notation. The manual method of creating generalization sets will still be
available through the Specification window. Please see the MagicDraw user
guide for additional information.

x Anonymous unions are incompatible with {incomplete} because an instance
can only be classified by one or more classes in a union, not the union itself.

Copyright © 2017, No Magic, Inc. 157

5.19.1 Make Subclasses Disjoint

To make subclasses disjoint:

1. Right-click on the generalization relationship.
2. Select Concept Modeling.
3. Select Make subclasses disjoint.

Figure 167 Make subclasses disjoint shortcut menu

5.19.2 Make Subclasses Complete

To make subclasses complete:

1. Right-click on the generalization relationship.
2. Select Concept Modeling.
3. Select Make subclasses complete.

Figure 168 Make subclasses complete shortcut menu

Copyright © 2017, No Magic, Inc. 158

5.19.3 Make Subclasses Overlapping

To make subclasses overlapping:

1. Right-click on the generalization relationship.
2. Select Concept Modeling.
3. Select Make subclasses overlapping.

Figure 169 Make subclasses overlapping shortcut menu

Note x Setting the {incomplete, disjoint} constraint back to the default setting of

{incomplete, overlapping} will result in the removal of the generalization set,
which has the same meaning.

x Starting from MagicDraw 18.3, the Concept Modeling menu is disabled when
you right-click a tree or a generalization set on a diagram because the menu
options for creating a generalization set have been moved outside the Concept
Modeling menu (see the following menu example).

Copyright © 2017, No Magic, Inc. 159

Figure 170 The Concept Modeling menu is disable in MagicDraw 18.3

x Starting from MagicDraw 18.3, the Concept Modeling menu options (i) Make

subclasses complete and (ii) Make subclasses disjoint have been replaced with
Subclasses Complete and Subclasses Disjoint respectively (see the following
figure).

Copyright © 2017, No Magic, Inc. 160

Figure 171 The Concept Modeling menu options

The following is how the menu options work:
(i) When you make subclasses complete, there is a check mark before

Subclasses Complete. If it is not complete, there is no check mark before
the menu item.

(ii) When you make subclasses disjoint, there is a check mark before
Subclasses Disjoint. If it is not disjoint, there is no check mark before the
menu item.

5.19.4 Make Subclasses Incomplete

To make subclasses incomplete:

1. Right-click on the generalization relationship.
2. Select Concept Modeling.
3. Select Make subclasses incomplete.

Copyright © 2017, No Magic, Inc. 161

Figure 172 Make subclasses incomplete

Note Setting the {complete, overlapping} constraint back to the default setting of
{incomplete, overlapping} will result in the removal of the generalization set, which
has the same meaning.

5.20 Working with Annotations
UML comments can be stereotyped as an «Annotation», then tied to a property that is
stereotyped as an «Annotation Property». When a concept model is exported to OWL, these
stereotyped UML comments become OWL annotations.

There are two ways that a user can add annotation properties to annotations: by importing an
OWL ontology that defines annotation properties, or by defining a property and stereotyping it as
an «Annotation Property».

5.20.1 Import an Ontology that Defines Annotation Properties

To import an ontology into an existing concept model:

1. Select File > Import From > OWL Ontology File.
2. Browse and select an OWL Ontology file.

Copyright © 2017, No Magic, Inc. 162

Figure 173 Importing an OWL ontology file to the Concept Modeler

3. Annotation properties imported from the OWL ontology will be displayed in the
Containment tree under Imported Ontologies as shown in the following figure.

Copyright © 2017, No Magic, Inc. 163

Figure 174 The imported ontology file is highlighted in the Containment tree

5.20.2 Define an Annotation Property

To define an annotation property for a property:

1. Create a UML property.
2. Open the property’s Specification by double-clicking the property in a diagram or the

Containment tree.
3. In the Specification window, select Annotation Property under the Applied

Stereotype option.
4. Click Apply.

Copyright © 2017, No Magic, Inc. 164

Figure 175 Applying an Annotation Property stereotype to a property

5.20.3 Apply an Annotation Stereotype

To apply an annotation stereotype to a comment:

1. Create a UML Comment containing whatever text you like, and anchor it to the
element to be annotated.

2. Double-click the Comment to open its specification.
3. In the specification window, select Annotation under the Applied Stereotype option.
4. Click Apply.

Copyright © 2017, No Magic, Inc. 165

Figure 176 Applying Annotation stereotype to a comment

5.20.4 Associate an Annotation Property with an Annotation
The UML comment specification dialog allows you to select a particular kind of annotation
property for each annotation.

To select a type of annotation property for an annotation:

1. Double-click an annotation on the diagram pane. The Specification window of the
selected annotation will open (see the following figure).

Copyright © 2017, No Magic, Inc. 166

Figure 177 Selecting an annotation property tagged value

Copyright © 2017, No Magic, Inc. 167

2. Select Tags on the left-hand side list and select annotationProperty.
3. Click Create Value. The Select Property dialog will open (see the following figure).

Figure 178 Selecting explanatory note as the annotation property tagged value

Copyright © 2017, No Magic, Inc. 168

4. Select an annotation property and click OK. The selected annotation property will be

created for the annotation (see the following figure).

Figure 179 Types of annotation property available in the Specification window

Copyright © 2017, No Magic, Inc. 169

In this example (see the preceding figure), the annotation property explanatory note is a UML
property stereotyped with «Annotation Property».

5.20.5 Show Annotations on the Diagram

A diagram may contain annotations for a class or a property. They may not appear on the
diagram pane, but you can see them in the Containment tree. The following steps will show you
how to make them appear on the diagram.

To show an annotation(s) for a class on a diagram:
1. Right-click a class and select Related Elements > Display Related Elements.

Figure 180 The Display Related Elements menu

Copyright © 2017, No Magic, Inc. 170

2. In the Display Related Elements dialog, select Comment > OK (see the following
figure). The annotation(s) for the class will appear on the diagram.

Figure 181 The Display Related Elements dialog

Copyright © 2017, No Magic, Inc. 171

To show an annotation(s) for a property on a diagram:

1. Drag an annotation(s) from the Containment tree to the diagram pane.

Figure 182 Dragging annotations from the Containment tree to the diagram pane

Copyright © 2017, No Magic, Inc. 172

2. Right-click the annotation(s) and select Related Elements > Display Paths (see the
following figure). A question dialog will open.

Figure 183 The Display Paths menu item

Copyright © 2017, No Magic, Inc. 173

3. Click No.

Figure 184 The Display Related Elements menu of a property

The annotation(s) for the property(ies) will appear on the diagram (see the following
figure).

Copyright © 2017, No Magic, Inc. 174

Figure 185 The annotations for the properties showing on the diagram

Copyright © 2017, No Magic, Inc. 175

5.20.6 Show an Annotation in the Documentation Pane

There are several ways to make an annotation for a class or a property appears in the
Documentation pane any time you click the annotation in the Containment tree or in the diagram
pane.

To show an annotation for a class in the Documentation pane when you click the class:

1. Drag the annotation (either on the diagram or in the Containment tree) to the class. (This
makes it owned by the class.)

Figure 186 Dragging an annotation to a class

Copyright © 2017, No Magic, Inc. 176

2. Click the class. The annotation will show up in the Documentation pane.

Figure 187 The annotation owned by the class shows in the Documentation pane

Copyright © 2017, No Magic, Inc. 177

To make an annotation for a property appear in the Documentation pane when you click the
property:

1. Double-click an annotation in the Containment tree to open its Specification dialog.

Figure 188 An annotation in the Containment tree

Copyright © 2017, No Magic, Inc. 178

2. In the Specification dialog, click next to Annotated Element. The Select Elements

dialog will open.

Figure 189 The Specification dialog of a selected annotation

Copyright © 2017, No Magic, Inc. 179

3. Remove the current element, in this example, Item, from the Selected elements pane by

selecting it and click .
4. Select a property that will be the new annotated element of the annotation from the Tree

view list, for example, loans, and click .

Figure 190 Selecting annotated element for an annotation in the Select Elements dialog

Copyright © 2017, No Magic, Inc. 180

5. Click OK. The Annotated Element of the annotation has been changed, in this example,
from Item to loans.

Figure 191 The annotated element for the annotation is set to the selected property

Copyright © 2017, No Magic, Inc. 181

6. Click Close to close the Specification dialog.
7. On the main menu, click Options > Project to open the Project Options dialog.
8. Click General > Concept Modeling.
9. Click next to Preferred annotation property.
10. Select the preferred annotation property tagged value (the value must be the same as that

of the selected annotation), for example, explanatory note, and click OK. The
Preferred annotation property tagged value is now explanatory note.

Figure 192 Selecting the preferred annotation property tagged value

Copyright © 2017, No Magic, Inc. 182

11. Click OK to close the Project Options dialog. The annotation will be moved to the

property loans. Any time you click loans in either the Containment tree or the diagram
pane, the annotation will appear in the Documentation pane.

Figure 193 The annotation for the property shows in the Documentation pane

Note x If you drag more than one annotation to a class or a property, only the first
created annotation will appear in the Documentation pane and in the class’
Specification window (under the Documentation/Hyperlink property).

x An annotation for a property will appear in the Documentation pane only if its
annotated element is set to the property and its preferred annotation property
tagged value is specified or updated.

x In this current release, only annotations that have been adjusted to show in the
Documentation pane will appear in the Natural Language Glossary.

Copyright © 2017, No Magic, Inc. 183

You can also create a new property and a new annotation for the property, and make the
annotation appears in the Documentation any time you click the property in either the
Containment tree or the diagram pane. The Library loans.mdzip sample is used in the following
instructions.

5.20.7 Select a Preferred Annotation Property for a UML Comment or «Annotation»

To select a preferred annotation property tagged value for an existing «Annotation» of an
element:

1. With your project open, on the main menu, click Options > Project. The Project
Options dialog will open.

2. Select General > Concept Modeling (see the following figure).

Figure 194 The Preferred annotation property option in the Project Options dialog

Copyright © 2017, No Magic, Inc. 184

3. Click . The Select Property «Annotation Property» dialog will open (see the

following figure).

Figure 195 Selecting a preferred annotation property

Copyright © 2017, No Magic, Inc. 185

4. Click the List tab and select an annotation property for the comments, for example,

definition.
5. Click OK > OK. The selected annotation property tagged value definition will be made

as the current preferred annotation property for all comments/annotations in your model
(see the following figure).

Figure 196 The selected preferred annotation property

After clicking OK, a progress bar will appear. If your project is a TWC project, Concept Modeler
will attempt to lock the project’s elements. If any of the elements cannot be locked, whether it is
locked by another user, then the dialog box with the OK button will say “Cannot lock all
elements for edit to allow preferred annotations to be used as element documentation. You may
refer to the Lock View tab to see what still needs to be locked.” Furthermore, an additional
message will appear in the notification window saying “The preferred annotation property

Copyright © 2017, No Magic, Inc. 186

change has been reverted.” After these two messages will appear, the preferred annotation
property will revert back to its previous value.
So after they click OK, they should see progress bar and if it is TWC project, concept modeler
will try and lock elements, then you need to mention what happens if locks cannot be acquired.

The following example shows you how to change the tagged value definition to an unspecified
preferred annotation property.

To change a current preferred annotation property tagged value to an unspecified preferred
annotation property tagged value:

1. On the main menu, click Options > Project. The Project Options dialog will open.
2. Select General > Concept Modeling.
3. Click next to Preferred annotation property. The Select Property «Annotation

Property» dialog will open.
4. Select <UNSPECIFIED> and click OK (see the following figure).

Copyright © 2017, No Magic, Inc. 187

Figure 197 Selecting the default <UNSPECIFIED> preferred annotation property

5. Click OK. The definition tagged value will be removed from Preferred annotation

property box and the annotation will be moved back under the owning folder, in this
example, it is the package Agents.

Copyright © 2017, No Magic, Inc. 188

You can also add annotation properties manually in your Concept Modeling project. The
following instructions show you how to create an annotation property in your model.

To add documentation to your model by using the Documentation pane:

1. Right-click the Data package in the Containment tree and select Concept Modeling >
Create Concept Model to create a new concept model.

2. Create a property under the Anything and name it, for example, annotationTest.
3. Right-click the property and select Annotation Property as its stereotype.
4. Create a class.
5. Click it and click the Documentation pane.
6. Type, for example, This is a test class.
7. Right-click the class and select Display > Display Related Elements. The Display

Related Elements dialog will open.
8. Select the Comment check-box.
9. Clear the Always create new symbol check-box.
10. Click OK.
11. The annotation “This is a test class.” will appear above the class.

To add documentation to your model by using the Specification window:

1. Right-click the Data package in the Containment tree and select Concept Modeling >
Create Concept Model to create a new concept model.

2. Create a property under the Anything and name it, for example, annotationTest.
3. Right-click the property and select Annotation Property as its stereotype.
4. Create a class.
5. Double-click it to open the Specification window.
6. Type in the Documentation pane, for example, This is a test class.
7. Right-click the class and select Display > Display Related Elements. The Display

Related Elements dialog will open.
8. Select the Comment check-box.
9. Clear the Always create new symbol check-box.
10. Click OK.
11. The annotation “This is a test class.” will appear above the class.

To add documentation to your model by using the Concept Modeling Diagram palette:

1. Right-click the Data package in the Containment tree and select Concept Modeling >
Create Concept Model to create a new concept model.

2. Create a property under the Anything and name it, for example, annotationTest.
3. Right-click the property and select Annotation Property as its stereotype.
4. Create a class.

5. Drag from the diagram palette to the diagram pane to
create an «Annotation».

6. Click the created «Annotation» in the diagram pane.

Copyright © 2017, No Magic, Inc. 189

7. Type, for example, This is a test class, either in the Documentation pane in the bottom
left of the screen or in the Annotation itself.

8. Click from the diagram palette and click «Annotation» and
the class. The documentation will be created. Any time you click the class, the
documentation will appear in the Documentation pane.

5.21 Generate a Natural Language Glossary

To generate a Natural Language Glossary:

1. Select Tools > Report Wizard from the main menu.
2. Expand the Concept Modeler folder.
3. Select Natural Language Glossary.

Figure 198 The Natural Language Glossary option in the Report Wizard dialog

4. Click the Next button.
5. Select Built-in.

Copyright © 2017, No Magic, Inc. 190

Figure 199 Selecting the built-in glossary creation option

6. Click the Next button.
7. Select the package(s) you want to generate a natural language glossary for.
8. Click the Add button.
9. Click the Next button.

Copyright © 2017, No Magic, Inc. 191

Figure 200 Selected the scope of the glossary

10. Name your file and file location for your file.
11. Click the Generate button.

Copyright © 2017, No Magic, Inc. 192

Figure 201 Generating a glossary

5.21.1 Updating symbol styles in older projects

In the message prompt, if you select No, the prompt will always pop up; otherwise, Concept
Modeler will update your styles. The option called “Ask to update outdated symbol styles”
which prompts you to update symbol styles when styles are out of date is set to True by default.
However, if you set it to False, then the prompt window will not show.

Figure 202 You will get this popup message when you load an older Concept Modeling project with an older set of symbol styles.

Copyright © 2017, No Magic, Inc. 193

To enable/disable the “Ask to update outdated symbol styles” option:
1. On the main menu, click Options then Project.
2. In the Project Options window, click on General then Concept Modeling.
3. In that window, find the “Ask to update outdated symbol styles” field and check the box

so it says true.

4. Click OK.

5.21.2 Selecting a List of Ordered Annotation Properties

We have added a new feature which allows you to select an ordered list of annotation properties
which will be displayed in the Natural Language Glossary.

To select an ordered list of annotation properties:

1. Click Options then Project.
2. In the Project options window, select General then click on Concept Modeling.
3. Find the Natural Language Glossary annotation property list field and add properties.
4. Click OK.
5. You should see the changes in effect when you generate a Natural Language Report.

Copyright © 2017, No Magic, Inc. 194

5.21.3 Include Property Definitions in the Natural Language Glossary

You must enable the option labeled “Include property definitions in the Natural Language
Glossary” which lists property definitions in addition to class definitions in the Natural Language
Glossary.

To enable the “Include property definitions in the Natural Language Glossary” option:

1. Click Options then Project.
2. Click on General and select Concept Modeling.
3. Scroll down through the Concept Modeling screen and find the Include property

definitions in the Natural Language Glossary option.
4. Click the checkbox so it says “true.”

5. Click OK.
6. You should see this change in your NLG report.

Copyright © 2017, No Magic, Inc. 195

Figure 203 Segmented shot of a report showing the property definitions corresponding to the annotation
property list.

6 References
[1] OMG, MDA Guide rev. 2.0, OMG Document ormsc/2014-06-01
[2] https://www.ietf.org/rfc/rfc3987.txt
[3] http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#description

http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms%23description
https://www.ietf.org/rfc/rfc3987.txt

	1 Introduction
	1.1 MDA
	1.2 Concept Modeling Purpose
	1.3 The Role of Ontologies and Reasoners
	1.4 Open World Assumption vs. Closed World Assumption
	1.5 Information Modeling Purpose

	2 Concept Modeler Capabilities
	2.1 SME Friendly Graphical Notation
	2.2 Automatic Styling of Concept Models
	2.3 Automatic Glossary Generation
	2.4 Concept Model Authoring
	2.5 UML Model Traceability
	2.6 Semantic Integration of Multiple Information Models
	2.7 Natural Language Glossary
	1.1
	1.1
	2.8 Annotation Properties in the Natural Language Glossary
	2.9 Preferred Annotation Property
	2.10 Creation of Multiple Data Models from One Concept Model
	2.11 Connection of Multiple Existing Data Models to One Concept Model
	2.12 Updating Symbol Styles
	2.13 Diagram Preservation After Ontology Import

	3 Concept Modeling Semantics
	3.1 Class
	3.2 Property Ownership
	3.3 Global Properties
	3.4 Subproperty
	3.5 Existential Quantification Constraint
	3.6 Universal Quantification Constraint
	3.7 Necessary and Sufficient Condition
	3.8 Generalization
	3.8.1 Overlapping and Incomplete Subclasses
	3.8.2 Disjoint Subclasses
	3.8.3 Complete Subclasses
	3.8.4 Disjoint and Complete Subclasses

	3.9 Anonymous Union Class
	3.10 Inverse Properties
	3.11 Property Restrictions
	3.12 Annotation and Annotation Properties
	3.13 Preferred Annotation Property
	3.14 Property Chain
	3.15 Equivalent Properties
	3.16 Equivalent Classes

	4 UML to Equivalent OWL (in OWL Functional Syntax)
	4.1 Class
	4.2 Class Generalization
	4.3 Generalization with Disjoint Subclasses
	4.4 Generalization with Subclass Completeness
	4.5 Anonymous Union Class
	4.6 Class with Datatype Property
	4.7 Class with Self-Referential Object Property
	4.8 Class with Object Property
	4.9 Property Holder with Datatype Property
	4.10 Property Holder with Self-Referential Object Property
	4.11 Property Holder with Object Property
	4.12 Class with Object Property without Range
	4.13 Class with Subproperty
	4.14 Class with Universal Quantification Constraint on Property I
	4.15 Class with Universal Quantification Constraint on Property II
	4.16 Class with Existential Quantification Constraint on Property
	4.17 Property Holder with Self-Referential Subproperty
	4.18 Property Holder with Subproperty
	4.19 Class with Subproperty without a Range
	4.20 Class with Necessary and Sufficient Property
	4.21 Class with Property Having Unspecified Multiplicity
	4.22 Class with Inverse Property
	4.23 Annotation and Annotation Property
	4.24 Asymmetrical Inverse Property
	4.25 Disjoint Classes
	4.26 Property Chain
	4.27 Equivalent Property
	4.28 Equivalent Class

	5 Usage
	5.1 Create a Concept Modeling Project
	5.2 Create a Concept Model
	5.2.1 Convert a UML Model into a Concept Model
	5.2.2 Create a Property Chain
	5.2.3 Create Equivalent Property
	5.2.4 Create Equivalent Classes

	5.3 Set the Concept Model URI
	5.4 Create the XML Catalog File
	5.5 Import an OWL Ontology to a Concept Model
	5.5.1 Update the XML Catalog File
	5.5.2 Set the OWL Import Catalog
	5.5.3 Set a Path Variable to Share OWL Import Catalog Files
	5.5.4 Use a Path Variable to Share OWL Import Catalog Files
	5.5.5 Import an OWL Ontology file
	5.5.6 Import annotations on an OWL Ontology to a concept model
	5.5.7 Version IRI
	5.5.8 Display and Hide IRI

	5.6 Export a Concept Model to an OWL Ontology
	5.6.1 Set the Concept Model Export Syntax
	5.6.2 Set the Concept Model Export URI Style
	5.6.3 OWL Export Folder
	5.6.4 Export a Concept Model to OWL
	5.6.5 Use Path Variables to Export a Concept Model to an OWL Ontology

	5.7 Add a Concept Model to Teamwork Cloud and Export it as an OWL Ontology
	5.8 Automatically Generate Glossaries
	5.9 Create a Glossary Table
	5.10 Rebuild a Glossary Table
	5.11 View a Glossary
	5.12 Create a Property Holder
	5.13 Universal Quantification Constraints for an Existing Property
	5.13.1 Add a Universal Quantification
	5.13.2 Remove a Universal Quantification

	5.14 Subproperties
	5.14.1 Add a Subproperty
	5.14.2 Remove a SubProperty

	5.15 Create an Existential Quantification (Qualified) Constraint for a Property
	5.15.1 Add an Existential Quantification
	5.15.2 Remove an Existential Quantification

	5.16 Go to Redefined Property
	5.16.1 Go To Redefined Property in Containment Tree
	5.16.2 Go To Redefined Property on Diagram

	5.17 Go To Subsetted Property
	5.17.1 Go To Subsetted Property in Containment Tree
	5.17.2 Go To Subsetted Property on Diagram

	5.18 Create a Necessary and Sufficient Condition
	5.18.1 Add a Sufficient Condition
	5.18.2 Remove a Sufficient Condition

	5.19 Working with Subclasses
	5.19.1 Make Subclasses Disjoint
	5.19.2 Make Subclasses Complete
	5.19.3 Make Subclasses Overlapping
	5.19.4 Make Subclasses Incomplete

	5.20 Working with Annotations
	5.20.1 Import an Ontology that Defines Annotation Properties
	5.20.2 Define an Annotation Property
	5.20.3 Apply an Annotation Stereotype
	5.20.4 Associate an Annotation Property with an Annotation
	5.20.5 Show Annotations on the Diagram
	5.20.6 Show an Annotation in the Documentation Pane
	1.1.1
	1.1.1
	5.20.7 Select a Preferred Annotation Property for a UML Comment or «Annotation»

	5.21 Generate a Natural Language Glossary
	5.21.1 Updating symbol styles in older projects
	5.21.2 Selecting a List of Ordered Annotation Properties
	5.21.3 Include Property Definitions in the Natural Language Glossary

	6 References

