.........

- o P - -
e ‘_‘,.é" " ——

& megieeraw

Architecture Made Simple

CAMEO DATA MODELER
PLUGIN

18.5

user guide

No Magic, Inc.
2017

All material contained herein is considered proprietary information owned by No Magic, Inc. and is not to be
shared, copied, or reproduced by any means. All information copyright 2009-2017 by No Magic, Inc. All Rights
Reserved.

Importing Data Models 14
Imported Elements 15

Crow’s Foot Notation in SQL Diagrams 18

Common SQL Element Properties 18
Top Level Elements 19
Database 22
Schema 22
Catalog 22
GLOBALS 22
Tables, Columns, and Views 23
Persistent Table 24
Temporary Table 24
View 25
Column 26
Modeling Types 27
Predefined Type Libraries 27
Type Usage 28
User Defined Types 29
Sequences and Autoincrement Columns 33
Constraints 36
Implicit Primary Key, Unique, Check Constraint, and Index Modeling 37
Explicit Primary Key, Unique, Check Constraint, and Index Modeling 39
Foreign Keys 40
Nullability Constraint 43
Assertion 43
Triggers 44
Routines 45
Procedure 46
Function 47
Method 47
Parameter 47
Cursor and Routine Result Table 48

Access Control 49
User 49
Group 49
Role 50
Privilege 50
Role Authorization 50
Oracle Database Modeling Extensions 51

Code Engineering Set 52

Properties of Code Engineering Set for DDL 53
Supported SQL Statements 55
DDL Dialects 57

Standard SQL2 57

Oracle 57

Cloudscape 58

Transformation Procedure 60
Conversion of Classes 60
Primary Keys Autogeneration 61
Sequence Autogeneration 61
Conversion of Associations 61
Conversion of Identifying Associations 62
Conversion of Multivalued Properties 63
Conversion of Generalizations 63
Conversion of DataTypes 64
Conversion of Enumerations 67
Package Hierarchy Reorganization 69
Naming of Transformed Elements 69
Transforming documentation 71
Excluding elements from transformation 72
Type Mapping 74
UML to SQL Type Map 74
Transformation Properties 76

Identifying Relationships 78

Key Transformation 79

Virtual Entity Transformation 79
Tracing between Data Model Layers 80

Type Mapping 80
Transformation Results 80

Type Mapping 84
Transformation Results 85

Type Mapping 87
Transformation Results 87

Defined stereotypes 93

attribute 95

element 97

complexType 100

attributeGroup 104

simpleType 106

restriction 106

list 106

union 107

minExclusive 112

maxExclusive 113

mininclusive 113

maxInclusive 114

totalDigits 114

fractionDigits 115

lenght 116

minLength 116

maxLength 117

whiteSpace 117

pattern 118

enumeration 118

unique 119

key 120

keyref 120

selector and field 123
XML representations for the three kinds of identity-constraint definitions 124

annotation 125

compositors 127

group 129

any and anyAttribute 130

schema 132

notation 133

redefine 134

import 136

include 138

XML schema namespaces 138

Cameo Data Modeler plugin provides data-related modeling for MagicDraw. It includes entity-relationship,
database and XML schema modeling features.

This plugin enables you to draw entity-relationship diagrams (using the crow's foot notation). This is a full-
featured variant of ER diagram (including extended entity-relationship concepts - like generalization), providing
a spectrum of capabilities for logical data modeling.

This plugin provides SQL database modeling / diagramming and DDL script generation / reverse features. It
supports 11 flavors of databases (including Standard SQL, Oracle, DB2, Microsoft SQL Server, MySQL,
PostgreSQL), has separate type libraries for them, carries additional modeling extensions for Oracle
databases, Transformations from / to plain UML models and from ER models are provided.

This plugin provides XML schema modeling / diagramming and schema file (*.xsd) generation / reversing
features. Transformations from / to plain UML models are provided.

NOTES e Cameo Data Modeler plugin is a separately purchasable add-on for MagicDraw
Standard, Professional, and Architect Editions, and it is free of charge for MagicDraw
Enterprise Edition.

e Cameo Data Modeler plugin replaces previous (free) Data Modeling Notations plugin
that supported the business entity-relationship diagram, a simplified version of entity-
relationship diagram, usable for high level, abstract domain data modeling.

e This plugin repackages database and XML schema modeling functionality, which
was previously available only in MagicDraw Architect and Enterprise editions.

To install Cameo Data Modeler plugin

1. From the Help menu, select Resource/Plugin Manager.
2. Select Cameo Data Modeler plugin to download and install it.
3. Restart MagicDraw to activate Cameo Data Modeler plugin.

Note that when you install the plugin, you get an evaluation key automatically. This key is good for 7 days.
Afterwards you need to purchase a license for a plugin to work on diagrams provided by the plugin (when initial
license expires, diagrams are switched to the read-only mode).

For more information on how to work with the Resource/Plugin Manager dialog, see MagicDraw User's
Manual.pdf.

Cameo Data Modeler plugin brings in the following:
e Entity Relationship profile.
e Entity Relationship diagram.
e Template for new ER project creation.
e Sample, demonstrating ER modeling features.
e ER to SQL (Oracle and Generic) transformation and accompanying traceability features.
e Entity-Relationship and SQL report.

Entity-Relationship diagram, as the name suggests, allows specifying entities and relationships between them.
It is useful for the abstract domain modeling - to provide structure for data in the domain. It is much more
abstract and implementation-independent than the SQL diagram, which shows the concrete implementation of
the data structure in the database.

An entity is any thing that is capable of an existence. An entity usually refers to some aspect of the real world,
which can be distinguished from other aspects of the real world (a person, place, customer transaction,
order...).

An entity is represented by a box shape on the diagram. An entity has two compartments where properties
(columns) of the entity can be specified. The upper compartment holds primary key properties of the entity;
lower - other properties.

A relationship between entities describes how entities are associated. Relationships are represented by lines,
connecting entities. Relationship end adornments indicate multiplicities of these ends. Multiplicity is the number
of entity instances that can be associated with a number of another entity instances. Relationship multiplicity is
represented by three symbols (so called “crow's foot notation” or “Information Engineering notation” - see
Table 1 on page 7).

TABLE 1. Symbols of the relationship multiplicity

Name Value Notation

Zero Zero
o

Vertical One

Crow’s Many
foot <

Multiplicity lower bounds and upper bounds are paired into one adornment - see the possible pairings in
Table 2 on page 8. Note that any lower bound, which is more that O is treated as 1 (this also includes lower
bounds greater than 1 - such as e.g. 2). Also, any upper bound which is greater than 1 is treated as Many (this
also includes upper bounds less than unlimited - such as e.g. 7).

Business Entity-Relationship Diagrams

TABLE 2. Multiplicity bound pairings

Min Max Read As Figure
0 1 One (optional)
-ot
1 1 One (mandatory)
4
0 Many Many (optional)
-C
1 Many Many (mandatory)
+
==gntity== E Mote the number width specified
Person _|as type modifier

==Ph==-id : NUMBER"(20, 0)'5-

-name : String

-currentﬁfeadaﬁ

l -loanedBooks |=<entity=>
__________ 04 Book

Figure 1 -- Basic ER diagram example

Abstractly modeled entity, no
~attribute information shown

NOTES e Some authors use Entity Type term to signify the description of a set of entities and Entity
Instance term to signify concrete exemplar from that set. Entity term used in this manual

corresponds to Entity Type.

e Data modeling world frequently uses term Cardinality to denote the allowable numbers of
entity instances, which can be associated. But with the rise of the UML, the more correct
term Multiplicity was introduced and term Cardinality is only used to denote concrete
numbers of entity instances, which are associated. Hence in the example Person [0..1]------
-[0..*] Book, the ranges [0..1] and [0..*] are called multiplicities. And if we have person “John
Doe” associated with books “Moby Dick” and “Origin of Species”, we have a cardinality of 2
for loaned books role (and 1 on an opposite end - current reader role). Note that cardinality
is always concrete number while multiplicity denotes range of possible cardinalities.

There is a flavor of the ER diagrams, called Business ER diagrams - this is a simplified flavor of the ER
diagram. This diagram only shows entities as boxes (without structure) and relationships between them. It is
useful for high-level, abstract domain modeling - provide a structure for business data, or define business

terminology.

These diagrams can be draw using the same ER diagram simply by suppressing both primary key and column
compartments on all the entities. Convenient way to do this is to multiselect all the entities (hold down ALT and
click any entity) and use the Suppress All button in the Shape Editing toolbar of the diagram.

Identifying Relationships and Dependent Entities

One-to-many (and, very rarely, one-to-one) relationship can be declared identifying. Identifying relationship is a
“stronger” version of the relationship, indicating that the one entity (the one at the multiple end of the
relationship) can not exist without the entity on the other end.

You can create such relationships using buttons on a diagram pallet. You can also turn an existing relationship
into identifying and back again. For this you can choose to do one of the following: either change the Is
Identifying property value in the relationship Specification window or select the appropriate check box on its
shortcut menu.

Identifying relationship is drawn as solid line. Non-identifying relationships use heavy dashes.

Closely related concept is dependent / independent entities. Dependent entities are those, which are at the
multiple end of the identifying relationship. They cannot exist without the independent entity at the other end. In
addition every inherited entity (if you are doing EER modeling) is considered to be dependent.

Dependent entity's primary key includes the other entity's key as part (this is implied, not shown in the model).

Dependent entities are automatically recognized and drawn with rounded corners.

ldentifying Dependent Entity
relationship y

| Mote that, because of the

L idertifying relationship, primary
i I key of Orderttem includes not

| only product column but also

==zentity== | ' [<=entity== E‘ ’(implied) PONr
\ .
PurchaseOrder I ' y Orderitem P
==PK==-PONr : Integer " "™M=<PK==-product : Stringg”
-date : Date -guantity : Integer
AotalZum ; Integer -unitPrice : Integer
-digcount : MUMBER"(3 3)" - 4

Figure 2 -- Example of identifying relationship and dependent entity in ER diagram

You can place XOR constraints (there is also a rarely used OR constraint) between relationships using a
corresponding toolbar button. Note that constraint must join relationships, that have at least one common end -
not any arbitrary relationships.

Current implementation of constraints does not allow placing a constraint on more than 2 relationships.

ER diagram has a support for generalization / specialization modeling. Generalization and Specialization is
really the same relationship, just the different direction of classification (generalization is bottom-up,
specialization is top-down). Hence they use the same model element.

Generalization and Specialization

Generalizations can be joined into generalization sets (trees of generalizations), which allow specifying
additional properties on a group of generalizations - such as disjointness and completeness constraints.

==gntity=:= E
Employee
! - T T T *
| [|
==entity== E || ==entity== E ==entity== E | |==entity== E ||==entity== E
Technician | Engineer Manager | Salaried I Hourly
==zgntity== E | Cle | |
Secretary | I |

==gntity=:= E l
| EngineeringManager |

I Two separate generalization sets, describing two

—parallelizeparate ways how to classify employee, and
standalone generalization (not belonging to any
generalization set)

Figure 3 -- Example of generalization in ER diagram

Disjointness and completeness constraints are specified using the Is Disjoint (true for disjoint, false for
overlapping specialization) and Is Covering (frue for total, false for partial specialization) properties. They can

be set via the relationship shortcut menu or in the Specification window.

Hence there are 4 combinations of these two settings. The “breadloaf’ symbol joining generalizations into a

tree shows these 4 variations - see the following figures.

==entity== E
Shape overlapping, partial

__|(this is default)

==entity== E ==zgntity== E ==entity== E ==entity== E
Circle Square Rectangle Polygon
= ¥ ol
=~ #
~ | P

Mg
overlaps

Figure 4 -- Example of overlapping and partial specialization in ER diagram

Generalization and Specialization

=<gntity=:=
UniversityMember overlapping, total

Ao~

— —
<<entity=:= E ==entity== E
StudentL Staff

- T
" /
!

overlaps, because interns
kelong to both studerts and
staff members

Figure 5 -- Example of overlapping and total specialization in ER diagram

a=gntity == E
Fruit digjoirt, partial

a=gntity== E =gntity == E agntity=: E
Pear Grape Pineapple

Figure 6 -- Example of disjoint and partial specialization in ER diagram

w=gntity=:= E
Human disjoirt, total
&

e

a=gntity== E a=gntity == E
Male Female

Figure 7 -- Example of disjoint and total specialization in ER diagram

NOTE UML terminology (covering / not covering) is used for completeness property name in
Specification window. Other names, more familiar for data modelers, are total / partial and
complete / incomplete. These terms are analogous and can be used interchangeably.

In the specialization hierarchies, there can be several ways how entity instance is assigned to specific entity
subtype. It can be determined by the user - when user himself decides to which subtype given instance belongs
(user-defined specialization). Or it can be determined by actual data values of entity instance (attribute-defined
specialization). The latter case can be further subdivided into two subcases - simple attribute-based
discrimination (when discrimination is performed by doing simple attribute value comparison) and more
complex predicate-based discrimination (when discrimination is specified using more complex, explicitly

specified conditions).

Generalization and Specialization

Examples of these two cases are shown in the following figures.

-~ —Specify dizcriminating columnis)
=<enumeration== =<ertity=> =] 4 gptg;f?ceatn;rﬁhzatmn set
Sex Human I
| E i |\;\
-seX | Sex
F 7 Specify attribute discriminators on
/ each generalization

==gntity=:= E
Female

Figure 8 -- Example of attribute-based discriminator in ER diagram

==zentity== E
Tax Payer Specify predicate discriminators
on each generalization,

Mote that there is no nesd to
_{specify discriminating columns in

_ — —_this case
c‘lﬁ - - g

-income ; Integer

__r_—-' P — ™ Ll r
- o /
- - - - ’
lincome <= 12000} {income =12000 AMD income <= 60000} fincome = 60000}
z=gntity == E [<=gntitys:= E} z<gntitys=
Low Bracket Middle Bracket High Bracket

Figure 9 -- Example of predicate-based discriminator in ER diagram

Discriminators are modeled as special constraints, placed on individual generalization relationships. The
easiest way to access them is from the shortcut menu of the generalization.

Predicate-based discriminator is simpler - you just fill in the Specification field of the predicate with an
appropriate expression text.

Attribute-based discriminator is more complex. First you have to specify columns, by which you will discriminate

the entities into the corresponding subclasses. This is done by filling in the Discriminator field of the

generalization set (you can specify one or several columns there). Then you have to fill in the Template field of

the predicate. This template field holds an instance specification, which is used as template or etalon to
differentiate the entity instances into appropriate subclasses. Fill in the slots for the same columns that you
indicated on the generalization set.

NOTE Category (also know as union) concept is currently not explicitly sup-
ported. Total (but not partial) categories can be “simulated” using the total
specialization tree, just visually reversed.

Key Modeling

Keys of the entity are marked by applying the corresponding stereotype («PrimaryKey», «AlternativeKey») on
the necessary column(s). This can be done from the shortcut menu of the column.

z=gntitys= E
Person Perzon has primary key congisting of one
==PK==-ssn : String b — — — 7 T|column (ssn) and an aternative key consisting
of two columns (name, surname)

==fAH==-name . String
==fK==-surname : String

Figure 10 -- Example of key usage in ER diagram

Primary key columns are grouped into a separate compartment. When the «PrimaryKey» stereotype is applied
/ unapplied, the column migrates between the two compartments.

In rare cases there is a need to specify several alternative keys on the same entry. This can be done, by filling
the “Id” tag field of the key column with key identifier(s). Columns, having the same Id are considered to be
belonging to the same key. Overlapping alternative keys can be specified in the same manner (column can
have several ids specified).

==gntity=:= E
ShippingAddress ShippingAddress has primary key (id column) and
two alternative keys - addr{consisting of country,
—_— = city, street and nr columns) and post{consisting of
=AM =>—country : String{id = "addr, "post"} country and postalCode columns). Mote that
s Ab==-city ¢ Stringfid = "addr"} country column belongs to both keys
=<AR==-street ; String{id = "addr"}
<< fl==-nr String{id = "addr}
=<AR==-postalCode : String{id = "post"}

==PH==-id ;. Integer

Figure 11 -- Example of multiple overlapping alternative keys in ER diagram

Inversion entries are specified analogously. Inversion entry is a non-unique (combination of) column(s), which
nevertheless is used frequently to search for the entity. Marking columns as IE gives hints to database
implementers about which indexes to specify.

<<gntity=:=
InventoryPartType
==PK==-code : String

=<|E==-name : String

Figure 12 -- Example of inversion entry in ER diagram

NOTE Though ER profile carries the «ForeignKey» stereotype, this stereotype is cur-
rently unused. It is reserved for future - for automatic foreign key derivation
functionality. Users should not specify FK columns explicitly on their entities
(FKs are implied), unless needed for some specific purpose - use at your own
risk.

Virtual entities are entities that can be derived from information in other entities. They are marked with keyword
«virtual» on the diagrams. Otherwise they can be handled in the same manner as other entities.

Importing CA ERwin® Data Modeler Projects

Virtual entities roughly correspond to views in databases.

If you need to specify exact way how virtual entities are derived from other entities, you can use Abstraction
relationships from UML,; derivation expression can be specified in the Mapping field.

==vyirtual=>
SalesReport

==PH==-year . Integer
=<PH==-morth : Maorth

-zales : Integer

| AN
| Mapping expression can be show in a diagram using
I naote symbol:
qqam.-amioq” ~|Mapping = SELECT fk_salesmanid, year,
- manth, sumi(total) as sales
| FROM Furchase
GROLUP BY fk_salesmanid, year, month

|
|
=5 \L.

2<gntitys= E i <=gntitys:= E‘ z=gntityss=
Salesman Purchase L u Product
==PK==-id : String C ==PH==-PONr : String i "=<PH==-id : String
-name : String -guantity : Integer -unitPrice ; Integer
-guota : Integer -price\VithDiscount : Integer
-total | Integer
-year : Integer
-monith : Month
-day : Integer
Y, >

Figure 13 -- Example of virtual entity usage in ER diagram

Cameo Data Modeler Plugin for MagicDraw provides import functionality for data models created using CA
ERwin® Data Modeler (henceforth will be referred as ERwin). ERwin is one of the leaders in the data modeling
tools market.

Data models produced in ERwin have a two-layer structure consisting of logical and physical layers that are
tightly synchronized. The physical layer semantically corresponds to the SQL modeling / diagramming /
generation functionality in MagicDraw. The logical layer corresponds to ER diagrams, implemented by Cameo
Data Modeler Plugin.

The import functionality only imports logical layer data from ERwin into ER diagrams / data model in

MagicDraw. Cameo Data Modeler Plugin does not yet support import of physical layer data.

Importing Data Models

Cameo Data Modeler supports model files produced in ERwin version 7.x. It is recommended that the newest
v7.3 should be used since it has been heavily tested. Data models in ERwin must be saved in the *.xml format
(choose the XML Standard File option in the Save As dialog).

Importing CA ERwin® Data Modeler Projects

To import an ERwin model

1. Start MagicDraw.
2. Click File > Import From > CA ERwin Data Modeler v7.x. The Open file dialog will open.

3. Select an ERwin model file (*.xml). A new MagicDraw project will be created and logical model
will be imported from the ERwin model file into that project.

After successful import, you can proceed to edit or manage the model using MagicDraw features.

If you want to include the ER model as part of a larger project in MagicDraw, you can use either module linking
functionality (click File > Use Module) to attach the ER model to your main project model or project import
functionality (click File > Import From > Another MagicDraw Project) to transfer the contents of this ER
model to your main project model.

If you want to update an imported and edited ER model, for example, you have made changes to the ERwin
model and want to import those changes into MagicDraw again, you can use the merge functionality (click
Tools > Project Merge) to import the ERwin model into a new ER model and merge it with the model you have
imported earlier.

Imported Elements
TABLE 3. Import Mapping Reviews and Notes

ERwin Cameo Data Comments
Modeler
Any element Any Element e For each element, it's name, definition, and notes are
imported.

e Definitions are imported as MagicDraw documentation
(special UML comments) and notes are imported as
UML comments.

Entity Entity
Attribute Attribute e The Null / Not Null setting is imported as UML
multiplicities [0..1] / [1].
e Attribute constraints and default value information is
imported.
e Domain information is not imported because domains
are not supported.

e Attribute type information is imported - the standard
primitive types are mapped to the UML primitive types.

e Other types (which are not found in the model) are
created on the fly.

Key Key Marking on e There is no separate standalone model element for a
Attributes key in the Cameo Data Modeler ER diagrams. Instead,
attributes belonging to a key are marked by applying a
stereotype to them (PK, AK, or IE) as necessary.

Relationship Association e Simple relationships are mapped to UML associations.
relationship e Verb phrases are mapped to role names.

e Cardinality and null / not null settings are mapped to
UML multiplicities ([0..1], [1], [0..*], [1..*]).

e Referential integrity information is stored in a special
stereotype / tag.

e Key information is not imported since the current ER
diagrams do not support FK modeling.

Importing CA ERwin® Data Modeler Projects

ERwin

Default Value

Domain

Validation Rule

Display

User Defined
Properties
Dictionary

User Defined
Properties

Cameo Data
Modeler

Generalization
relationship

Instance
Specification

Constraint
ER diagram

Profile / Stereotypes
/ Tags

Tag Values

Comments

e ERwin relationships, which are participating in the
generalization tree, are mapped to UML
generalizations.

e Generalizations are joined into generalization trees.

e Complete / incomplete and overlapping / exclusive
settings are imported / supported.

e Discriminating columns are imported / supported.

e Referential integrity information is stored in a special
stereotype / tag.

e Verb phrase information is not imported.

e A standalone UML instance specification is created to
hold value definition. This instance specification is (or
can be) then referenced from attributes, default value
fields.

e Domains are not yet supported in Cameo Data
Modeler.

e The Validation rule is stored as constraint body text.

e Due to geometric constraints and element size
changes, the diagram layout will be slightly different.

e Paths between elements can be re-routed.

e A custom UML profile is created for the user's property
definitions.

e A custom profile generated from the UDP dictionary is
applied and user property information is stored in the
tag values of the applied custom stereotypes.

Cameo Data Modeler plugin brings the following:

e IMM Relational profile for SQL modeling support (the profile is named according to the OMG
working group name).

Extension profile for Oracle.

SQL diagram, Oracle SQL diagram and customizations for profile.

Code engineering (generation / reverse) features for working with database generation scripts.

Primitive type libraries for database flavors.

Template for new Database project creation.

Sample, demonstrating database modeling features.

UML / ER to SQL (Oracle and generic) and SQL to UML transformations and accompanying
traceability features.

e Entity-Relationship and SQL report.
e Helper functionality for SQL diagrams - notation switch.

Cameo Data Modeler plugin provides support for database modeling and code engineering. It supports
modeling of the database concepts at the level of SQL:1999 (SQL3) standard. A few rarely used concepts (like
collation, translation) are not supported.

IMPORTANT! A BIG DISCLAIMER UPFRONT. In v17.0.1 SQL modeling was significantly extended and
reworked. The new profile for SQL modeling covers more SQL concepts than the old
Generic DDL and Oracle DDL profiles, that were previously used for SQL modeling. How-
ever the code engineering features (script generation and reverse engineering) were not
upgraded yet - code engineering capabilities are almost the same as in v17.0. There is cur-
rently a skew between the modeling and code engineering features. Some things that can
be modeled with the help of the current profile can not yet be not generated / reversed to /
from database script.

Cameo Data Modeler provides a specialized diagram for database modeling. This diagram is called SQL
Diagram and is located under Data Modeling diagram subgroup. This diagram provides means for creating
and depicting various SQL elements.

In addition to the main SQL diagram, there is a slightly modified diagram for Oracle databases. It is called
Oracle SQL Diagram and is located under the same Data Modeling diagram subgroup. This diagram is only
slightly modified - it has an additional diagram button for the Materialized View modeling. Otherwise than that,
it is identical to the main SQL diagram. If you are not modeling materialized views, you can freely use the
generic diagram type instead of specialized one for Oracle modeling.

Database Modeling

Crow’s Foot Notation in SQL Diagrams

Once Cameo Data Modeler plugin is applied to MagicDraw you can display the crow’s foot notation or use

standard UML notation of associations (displaying multiplicities in text format) in the SQL diagram.

To display Multiplicities or crow’s foot notation in a SQL diagram

. Draw two tables.

. Select the General

0 N O O b~ WN -

. Create the SQL diagram.

project options branch.

. Create columns for the tables and some of them as primary keys.
. Connect the table elements with the Foreign Key relationship.

. Define Name, PK, and FK in the open Foreign Key dialog box.

. Open the Project Options dialog box.

. Change the Show relationship ends as property correspondingly to either No special
notation or Crow’s feet. Multiplicities (Figure 14 on page 18) or crow’s foot notation (Figure 15

on page 18) will then be displayed on the Foreign Key ends.

==table==
ORDER

==nat null==-0ORDER_DATE : date
-FE_CUSTOMER | integer

==not null== ==PK==-0RDER_ID: irteger |~

{Fk columns = FK_ORDER,
Pk columns = ORDER_IDY

==table==
ORDERED _ITEMS

==not null== ==PH==-0RDER_ITEM_ID : integer
-FE_ORDER : integer

-FH_ITEM : integer

==not null==-ITEM_COUMT © integer

Figure 14 -- Multiplicities on Foreign Key relationship in SQL diagram

=<takle==
ORDER

==not null== ==PK==-0RDER_|D : integer
==nat null==-0ORDER_DATE : date
-FE_CUSTOMER | integer

==Fl==

Pk columns = ORDER_IDY

==table==
ORDERED _ITEMS

o+
{FE columns = FK_ORDER,

==not null== ==PH==-0RDER_ITEM_ID : integer
-FE_ORDER : integer

-FH_ITEM : integer

==not null==-ITEM_COUMT © integer

Figure 15 -- Crow’s foot notation for Foreign Key relationship in SQL diagram

This chapter covers modeling of various SQL elements - in detail and with examples.

Common SQL Element Properties

These properties are common and available for all SQL model elements in their Specification windows.

Property name Description

Name Name of this SQL model element.

Label Label of SQL model element. Can be used for various referring

purposes (both human and code referral).

Description Longer text, describing this SQL element in more detail.

Database Modeling

Property name Description

TODO Additional remarks about the further modifications, necessary for this
element

In addition to these SQL properties, some common, useful UML model properties are shown in the
Specification windows (only in the Expert mode).

Property name Function

Qualified Name Fully qualified name of this model element - names of all owning parent

elements and this element, concatenated using “::” separators.

Owner Model element, directly owning this element.
Applied Stereotypes, applied on this model element, extending element data
Stereotype over and above the standard UML functionality. SQL extension

stereotypes can be seen here (implementing SQL model features,
described in this document) as well as any additional extensions.

Image Custom image can be set on each model element if necessary.

Top Level Elements

There are several top-level model elements, that serve as the containers for other model elements of the
database model. Those are: Database, Schema, Catalog.

Top level elements are not strictly necessary to begin database modeling. You can start modeling database
elements (like tables) in the standard UML package (even directly under root ‘Data’ model element). But top
level elements help to provide context for those other elements and their naming and positioning in the
database. So, at least one top level element should be present - either Schema element or Database element.
Optimally both Database and Schema element should be present in the model (Schema package inside the
Database package). Catalog modeling is less important, it can be skipped. Not all databases have support for
catalogs.

Database Modeling

When top-level element is created (either on the diagram or in the containment tree), a special dialog is shown
for selecting database flavor.

P* Select DB Type &J

Cloudscape [Derby
DE2

Microsoft Access
Microsoft SQL Server
MySCQL

Orade

Pervasive

PointBase
PostgreSOL
Standard SCL

Sybase

POk | Cancel

Figure 16 -- Database flavor selection dialog

When DB flavor is chosen, the necessary profile for that DB flavor is attached to the project (providing standard
data types for that DBMS and / or additional stereotypes for modeling extensions of that DB flavor). Then profile
application relationship is created from the package that is being created (Database, Schema) to the attached
DB profile. This marks the top level element as belonging to this DB flavor, Other DB elements, created under
that top level element will be automatically considered as belonging to this DB flavor.

If you would like to switch database flavor after creating a top level element, you can do this in the following
way.

To switch database flavor after creating a top level element

IMPORTANT! You must have the necessary module attached to your project (use File>Use Module
menu, choose the necessary module from your <install.root>\profiles predefined loca-
tion)

1. Right-click the top level element.

2. From the shortcut menu, select Apply Profiles.

3. Select the check box near the needed profile and clear the check box near the old profile.
4. Click Apply.

Database Modeling

Top level elements can be explicitly drawn, on the diagram.

zDatabases: E|
Enterprise
zSchemasz E
Sales

zfuncz+SalesForMonthi morth : date) . numeric"(10, 21"

zGlobalsz | | ztables
GLOBALS Purchase
zzedz-IDGenerator = {0 +1} zcolz eph=-id © integer
: : : : scolz-fhProduct : integer
aproce+3ell prod ; integer, amourt © integer, price | numeric"(10,2)")

A aFKs

-product | referencedMembers = id}
etables
Product
zcolz eph=-id ; integer

Imembers = fkiProduct,

Figure 17 -- Database top level containers (Database and Schema) on diagram pane

However, showing top level elements on the diagram, and nesting their contents inside them is often clumsy,
and consumes valuable diagram space. Showing them on the diagram pane is not necessary; it is enough to
create them in the Containment tree (using the New Element command on the shortcut menu). Then, place
your diagram inside the created containers, and the elements that you will be creating in your diagram, will go
into the necessary container. See the following figure (logically equivalent to the previous one), showing a top
level element just in the Containment tree and not displayed on the diagram pane.

._d PALTSU L 20 s LI ey [IVIer L

g ?r;;:l; T':.fp: Lllll:nrar':.f [Grg%etPé%ng
ableDemoSchema ppo oo e

ml TopLevelDema

4[] Enterprise

Diagram
; Relstions Inside
E GloBals | ==——0
Product I

= Purchase

Top Level Elementgl:n:n
Top Level Elements (Conkainers
= ViewTest

& SOLProfile [IMM Relational Profile.n
=1 Unkitled1

._/“" LWL) | 7
A .
SR «Globalss O ctables
-1 Depende. .. GLOBALS Purchase
E=] Image 5... ' wzede-IDGenerator = {0 +1} zcolz aphz-id : inte
o - : - scolz-fhProduct i
Diagram ... ||| [#Rroc=+Sel{ prod @ integer, amount : integer, pric... | L
afunce+SalesForMonthi morth : date) numeric”... | -
o SepE.. Y . . - :
Tables W} - - - - - .. e D . .
le :
@ View Wl T R C /ﬂ‘ zFK= {m
A1 Foreign ' ' ' -product |, ret
| Lo A [L atables
A Gene... - - : : Product
s Mbstraction ||| <cols cpk-id:
== Temp... =

Figure 18 -- Database top level containers (Database and Schema) in Containment tree, but not on diagram pane

There is also one additional complication, steming from the limitations of UML. UML does not allow placing
UML properties (which are used for SQL sequence modeling), or operations (which are used for SQL stored
procedure & function modeling) directly into packages. Properties and operations can only occur in classes. A
special model element was introduced to work around this limitation - GLOBALS element (based on UML
class). This intermediate element can be placed directly inside the top level element (usually Schema, but can

Database Modeling

also be placed under Database) and then the necessary database elements - sequences, stored procedures
can be placed inside it.

Database

NOTE Database is modeled as UML Package with Database stereotype
applied.

Database is a top level element, representing entire database within DBMS.

Besides the standard SQL element properties, database has the following properties available in the
Specification window:

Property name Description

Vendor Specifies the vendor and the version of the database software. These
Versi fields are used for information purposes only. They do not affect the
ersion :)
generation or further modeling.
Schema
NOTE SQL Schema is modeled as UML Package with Schema stereotype

applied.

Schema element represents a collection of database elements - tables, indexes, stored procedures, etc. -
grouped for particular purpose (such as data structures for some particular application).

Catalog

NOTE SQL Catalog is modeled as UML Package with Catalog stereotype
applied.

Catalog element represents intermediate grouping level between database and schema. Catalogs are also
reused for Oracle DB modeling - to implement Oracle packages.

GLOBALS

NOTE GLOBALS is modeled as UML Class with the «Globals» stereotype
applied.

GLOBALS element is a special intermediate element to work around limitation of UML. UML does not allow
placing UML properties (which are used for SQL sequence modeling), or UML operations (which are used for
SQL stored procedure & function modeling) directly into packages. Properties and operations can only occur in
classes.

To work around this limitation, GLOBALS element (based on UML class) was introduced. This intermediate
element can be placed directly inside the top level element (usually Schema, but can also be placed under
Database) and then the necessary database elements - sequences, stored procedures and functions can be
placed inside it.

Name of GLOBALS model element is not important, but for the sake of tidiness it should be named
“GLOBALS”. There should be at most one such element per the container (Schema, Database, Package). This
model element does not carry any additional useful properties; it serves just as a carrier of inner elements -
sequences and routines.

Database Modeling

Tables, Columns, and Views

Tables and their constituent columns are the main elements for describing database data structures. Table
stores multiple rows of data each consisting of several columns. Each cell holds one data value (or is empty).
All values of one column are of the same type. Correspondingly each table description consists of the table
name and a set of column descriptions. Additionally there are various kinds of constraints (including the all-
important primary key and foreign key constraints), that can be applied on tables and triggers, specifying
additional actions to be performed during data manipulation.

See “Constraints” on page 36 for constraints and “Triggers” on page 44 for triggers.

There can be various kinds of tables
e Normal persistent tables
e Temporary tables

e Views (derived tables)

The following figure illustrates various kinds of tables that can be modeled on the diagram.

stables stables
Salesman Purchase
—— Ay aFKas -
acolz apkz-id © integer ecolz aphz-id

-name : varchar"({120})" salesman

acolz-gquota : numeric"(10, 2)" Mmembers = fi_Salesman, |4
referencedMembers = id}

=-Th_Salesman : integer
il=-fk_Product : integer

-guantity : integer
-priceWvithDiscount © numeric"(10, 23"
totalPrice : numeric"{10, 2)"

-year . smallint

oo0Oo00o

-month : smallint
-day . smallirnt
ztables AL aFKe .
Product -product
cols aphz-id : integer ! _ Mmembers = f_Produect,
colz-unitPrice © numeric"(10, 2)" | v encedMembers = id} |
|
|
|
|
stemporary s = aviews Egy
QuotaFulfilment SalesReport
{lacal} fqueryExpression = SELECT
cols spks-year - smalint sum(totalPrice) as sales, year, month
- plez-month : smallint FROM Purchase GROUP BY year, month}
colz=-fk_Salesman : integer zcolz-gales : numeric"(10, 2"
colz-guata : numeric"{10, 2)" -year ; smallint
colz-sales : numeric"(10, 21" seols-month - =mallint

Figure 19 -- Various kinds of tables: persistent tables, temporary tables, and views
Tables can have generalization relationships between them. These relationships correspond to the following
SQL syntax in the create table statement:

CREATE TABLE <name> OF <UDT name> [UNDER <supertable>]
There can be at most 1 outgoing generalization. Generalizations are not widely supported in database

management systems. As of v17.0.1 Cameo Data Modeler supports modeling of these structures. Generation
of corresponding script code is not supported yet.

Database Modeling

Persistent Table

NOTE SQL Persistent Table is modeled as UML Class with the «Persistent-
Table» stereotype applied. For the sake of compactness, these tables
are displayed with the «table» keyword (instead of the long form -
«PersistentTable») on the diagram.

Persistent table is the most often used kind of table.

Besides the standard SQL element properties, persistent table has the following properties available in the
Specification window (these properties are only available in Expert mode).

Property name Description

User-defined Points to structured user defined type, which serves as a base for the
type row type of the table.
Supertable Points to the parent (base) table. Can only be used together with user-

defined type.

Self Ref Column Describes the self-referencing column generation options. Can only be
Generation used together with user-defined type. Corresponds to the following
subclause of SQL create table statement:

REF IS <column name> [SYSTEM GENERATED|USER
GENERATED | DERIVED]

Referencing This is back reference from foreign keys, referencing this table. This field

Foreign Keys is for information purposes only. If you want to change it, change
Referenced Table field of the foreign key instead.

Insertable These are two derived (non editable) fields, describing table data editing

Updatable capabilities. At the moment calculation of these properties is not

implemented - they are always set to false

Temporary Table

NOTE SQL Temporary Table is modeled as UML Class with the « Temporar-
yTable» stereotype applied. For the sake of compactness, these tables
are displayed with the «temporary» keyword (instead of the long form -
«TemporaryTable») on the diagram.

Temporary table is a kind of table, where data is held only temporary. There are two kinds of temporary tables.
Local temporary table persists for the duration of user session and is visible only for the creator user. Global
temporary table is long lived and visible for all users. Note that data in the global temporary table is different for
different users and does not persist throughout user sessions (only global table definition persists).

Temporary tables are created using SQL create table statement (using TEMPORARY option):

CREATE (GLOBAL | LOCAL) TEMPORARY TABLE <table name> ...
[ON COMMIT (PRESERVE | DELETE) ROWS]

Besides the standard SQL element properties and persistent table properties (see section above), temporary
table has the following properties available in the Specification window.

Property name Description

Local Marks the table as local or global temporary table.

Delete On Regulates whether data is deleted or retained on commit.
Commit

Database Modeling

View

NOTE SQL View is modeled as UML Class with the «ViewTable» stereotype
applied. For the sake of compactness, views are displayed with the
«view» keyword (instead of the long form - «ViewTable») on the dia-
gram.

View is a table, whose data is derived from data of other tables (by applying some SQL query).

Views are created using SQL create view statement:

CREATE VIEW <name> [<view column list>]
AS <query expression>
[WITH [CASCADED | LOCAL] CHECK OPTION]

Note that since column definition list is optional in SQL syntax, specifying column definitions in the view is also
optional (columns can be inferred from query expression of the view). However it is often a good idea to include
column definitions, since this allows to see view data structure on the diagram / in the model at a glance,
without parsing the query expression text.

Besides the standard SQL element properties and persistent table properties (see section above), view has the
following properties available in the Specification window

Property name Description

Query A query expression, defining how data is calculated / retrieved for this
Expression view. This is an SQL SELECT statement.
Check Type Describes how check is performed on the data update through the view.

Only meaningful for updateable views (which is rare).

Query expression of the view modeling deserves a special attention. Query expression, defining the view, is not
just a simple string, but a (stereotyped) UML model element. By default query expression model object is
stored within the view definition itself. There is a special constraint, automatically created inside the view, to
hold this expression. When the view is created, Query Expression field (which is a tag of stereotype, applied
on the view) is automatically pointed to this expression.

So by default you just need to fill in the Body text of the expression. To do that you need to double-click on the
Query Expression field. This opens Specification window for the expression itself, where Body can be filled in.
This is the default, no-hassle way to specify view. It is easy. But it has one deficiency. Views created this way do
not have any model references to the underlying table model elements. This may be undesirable from the
dependency tracking standpoint (in the dependency analysis). To remedy this, you can draw an additional
Dependency relationships between the view and base tables.

There is also another way to model the query expression, defining the view. If you click on the ... button of the
Query Expression field, this action opens the element selection dialog, allowing to retarget the Query
Expression pointer choose another expression object, located somewhere else in the model. For example
view definition expression can be located inside the Abstraction relationship, drawn from the view to the base
table (Mapping field of the Abstraction).

To model view queries using abstractions

1. Draw an abstraction relationship between a View and a Table.

2. In the abstraction’s Specification window, fill in the Mapping cell. This will be an inner UML
OpaqueExpression model element with language and body cells. Set language to “SQL” and fill
in the body with the necessary “SELECT ...” expression text.

3. Further open the Specification window of the mapping expression, and apply the
«QueryExpressionDefault» stereotype.

Database Modeling

4. Open the Specification window of the view. Click the ... button in the Query Expression cell. In
the element Selection dialog navigate to the abstraction relationship and select the expression
inside of it.

This way to model view query expressions is rather tedious - so it is not recommended for modeling novices.
But it has an advantage of capturing the real relationship in the model between the view and the constituent
table(s). Also query expression can be shown on the abstraction relationship (using note mechanism) instead
of showing expression on the view.

In the following figure you can see a diagram that illustrates the alternative way of view modeling.

ztables
Purchase

k=il
-fk_Salesman : integer
-fl_Product : integer
-guantity : integer
-priceWithDiscount : numeric"(10, 2)"
-totalPrice . numeric"(10, 2"
-year : smallint
-morith : smallirt
-day : smallirt

T
|

™
' Mapping = SELECT sumi(totalPrice) as sales, year, month FROM Purchase GROUP BY year, month

zabstractionz
praRETraction
|
|
|

aViews B
SalesReport”

lqueryExpression = SELECT
sum(totalPrice) as sales, year, month
FROM Purchase GROUP BY year, month}
zcolz-sales | numeric"({10, 23"

col=-year ;. smallint

colz-maonth : smallirt

Figure 20 -- Alternative notation for modeling view derivation from tables

Column

NOTE SQL Column is modeled as UML Property with «Column» stereotype
applied. For the sake of compactness, columns are displayed with the
«col» keyword (instead of the long form - «Column») on the diagram.

Column model element describes one column of the table. In the most frequent case it’s just a name of the
column and a type. Additionally column can carry default value specification, column constraints.

Column definition syntax in SQL (in CREATE TABLE, ADD COLUMN statements):

<column name> [<data type>]
[DEFAULT <value expression> |
GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY
[Y (' <sequence options> ')’] |
GENERATED ALWAYS AS <expression>]
[<column constraint definition>...]

Database Modeling

Besides the standard SQL element properties, column has the following properties available in the
Specification window.

Property name Description

Type Collectively these two fields describe the type of the column. Type could
be any of the primitive types from the library or user defined type.
Modifier provides additional parameters for the type - such as width of
the character type (when type=varchar and modifier="(20)" - column is
of varchar(20) type). See Type Usage section for details.

Type Modifier

Nullable Marks column as nullable or not. Basically this is an in-line nullability
constraint. See Constraints section for details.

Default Value Carries the default value of the column. This is normally an opaque
expression, allowing to specify the value of the column. However it can
be switched to Identity Specifier. In this case it describes the
autoincrement options of the column. See Sequences section.

Is Derived Standard UML field, used to mark the column as derived (GENERATED
ALWAYS AS <expression>). It works together with Default Value field.
Scope Check Marks this column as scope checked to a particular table and allows

choosing particular referential integrity ensuring action (RESTRICT
CASCADE, etc).

Implementation Marks this column as implementation dependent.
Dependent

Scope Checked

Modeling Types

Cameo Data Modeler provides the standard type libraries as well as ability to model user defined types
(structured user defined types and composites - multiset, array data types). The types can then be used to
specify columns of the tables and / or parameters of procedures and functions. There is also a special
mechanism for using types with modifiers. This mechanism is common in the MagicDraw, however some
explanation is necessary on how to use it in database modeling.

Predefined Type Libraries

Cameo Data Modeler provides predefined type libraries for database flavors it supports. Besides the standard
SQL type library, there are type libraries for Oracle, DB2, MS SQL, MySQL, PostgreSQL, Sybase, Cloudscape
(Derby), Pervasive, MS Access and Pointbase. The standard SQL type library is the main type library, and type
libraries for each flavor import (a subset of) types from it and define additional types, specific for that flavor.

The necessary type library is imported when you create the Database or Schema element in your model and
choose a flavor for it (See Database flavor selection dialog: “Database flavor selection dialog” on page 20).

Database Modeling

Type Usage

eCharacterStringDataType: Eg
varchar — — | Standard type, from library

ffixedLength = false,
primitive Type = CHARACTER_WARYING}

«CharacterStringDataTypes %I:
varchar_of_20 Uger created type,
[characterSet= UTF-8 - 7 7 7 7 Treferencing the standard
a i type and specifying the
length = 20} LENGTH

«CharacterSet:
ACt

UTF-3
stables
Person Two ways to specify the type of the
cols-name : varchar'(20)" ¥ — — _ column - either use the type from

cols-surname © varchar_of 20 1 _ = = stapdard libbrary+ype modifier OR
colz-accourtBalance : numeric"(10,2)"6h. define and then use the type model
) . - elemert.
. Both name and surname column types
are equivalent
S

-,
o

Mare complex type modifier case I_\W

Figure 21 -- Type specifying. Library type and modifier vs. separately modeled type

Usage of a simple SQL type, such as boolean, is very simple. If you want to set it as a type of a column or
operation parameter, you just need to specify it in the type field. However there are types (such as varchar or
numeric) in SQL, which require additional data. There are two mechanisms to specify these kinds of types:
either use the library type+ type modifier mechanism or create your own type element.

Lets take the standard varchar type as an example. It must have the maximum length data provided at each
usage. Semantically there are many different types, one for each length limit - varchar(20), varchar(53),
varchar(255) etc. Now the standard type library can not provide myriad of different varchar types. Library only
provides the varchar type definition.

To specify that column is of varchar(20)

1. Set the type field of the column to varchar type from the library.

2. Set the type modifier field of the column to “(20)” (no quotes). Note that type modifier is a
simple string - whatever is entered in this field, will be used in script generation verbatim,
without additional checks. An example of more complex type modifier would be “(10, 2)” type
modifier for numeric data type.

Alternative way to specify that column is of varchar(20) is to explicitly create a separate type in the model.

Database Modeling

To specify that column is of varchar(20) in the alternative way

1. Create the necessary type (use one of the buttons in the SQL diagram, Primitive Types toolbar)
- character string, fixed precision, integer, approximate, boolean, binary, date or XML types. In
our case this would be character string type.

2. Set the length data in the dedicated tag (look up the length tag in the Tags section of the
Specification window). Note that this is numeric field - you need to input number 20, and not the
“(20)” string as was the case with type modifiers.

3. The name of your type can be whatever you like. For example varchar_of_20. The name is not
important.

4. Inherit (draw generalization relationship) your type from the appropriate type from the type
library. In this case, inherit varchar_of_20 from varchar form the library. This information will be
used for determining the proper type name during script generation (so, in the generated script
you will see the proper type reference - varchar(20)).

5. This created type can now be specified in the type field of the column(s).
There would be one type in the model for each varchar length that you use in your database.

The second way is more tedious - you need to create quite a few types. So by default the first way is used. But
the second way has several advantages, that may outweight it's deficiencies. First - there is one spot where
parameters of the type can be changed. You can easily widen the varchar(20) fields to varchar(40) by editing
just one place in the model. Secondly, you can define some additional parameters of the type - such as
character set.

User Defined Types
edistincts] estructurecs
Furlong Address
IpredefinedRepresentation = int} attre-country : varchar"(3)"
attr=-region : varchar"({s0)"
attr=-city : varchar"{50}"
attr=-street . varchar"(250)"
attr=-streetMo : varchar"{10}"
attrz=-aptMo : varchar"(10}"
=tlamains = | - e
ScalingCoeficient funce+lookup ZIPCode() : varchar"(10)

{00==x==1.0}

{defaultvalue ="0.5",
predefinedRepresentation = float}

zmultisets [
AddressSet
felement = Address}

arrays
AddressArray

felement = Address,
maxCardinality = 1000}

=l0W=z zrefs
RowOfPerson RefAddres
fieldz=-name : varchar freferenced Type = Address}

field=-surname : varchar
figld=-accountBalance : numeric

Figure 22 -- Examples of user defined types

Database Modeling

Besides the primitive / built-in types of the database, user can define additional types for his own schema.

Distinct Type

NOTE SQL Distinct type is modeled as UML DataType with «DistinctUserDe-
finedType» stereotype applied. For the sake of compactness, refer-
ences are displayed with the «distinct» keyword (instead of the long
form - «DistinctUserDefinedType») on the diagram.

Distinct type definition allows to redefine some primitive type in order to enforce the non-assignability rules. For
example, two distinct types Meters and Yards can be defined on the base primitive type float. With this
definition, system would enforce checks that yard fields / columns are not assigned to meter fields / columns
without a conversion (explicit cast).

Besides the standard SQL element properties, distinct type has the following properties available in the
Specification window.

Property name Description

Predefined Points to some base primitive type.
Representation

Domain

NOTE SQL Domain is modeled as UML DataType with «Domain» stereotype
applied. For the sake of compactness, domains are displayed with the
«domain» keyword on the diagram.

Domain allows to define a more narrow set of values than the base primitive type allows. This narrowing is
done by assigning additional constraints on the domain. Columns, whose types are set to the domain, can only
assume values from this more narrow subset.

Besides the standard SQL element properties, domain has the following properties available in the
Specification window.

Property name Description

Predefined Points to some base primitive type.
Representation

Default Value Default value for the column if no value is specified.

Structured User Defined Type

NOTE SQL Structured User Defined Type is modeled as UML DataType with
«StructuredUserDefinedType» stereotype applied. For the sake of com-
pactness, domains are displayed with the «structured» keyword
(instead of the long form - «StructuredUserDefinedType»)on the dia-
gram.

Structured UDT defines a composite datatype. Each value of this type is a tuple of several values; each position
in a tuple has a name. Structured UDT value is analogous to one row of the table. Structured UDTs allow single
inheritance (multiple inheritance is not supported). Inheritance (subtype-supertype relationship) can be
modeled using UML Generalization relationships

Database Modeling

Besides the standard SQL element properties, structured UDT has the following properties available in the
Specification window.

Property name Description

Instantiable Defines
Final Default value for the column if no value is specified.
Super Shows base data types. This is a derived field, it is not editable. To make

changes, use UML Generalization relationships.

Parts of the structured UDT (properties) are called attributes (compare - parts of the table definition are called
columns). Attributes of structured UDT are created like columns of the table, that is, via the Attribute

Definitions tab in the structured UDT Specification window or using an appropriate smart manipulation button
on its shape.

Besides the standard SQL element properties, attribute has the following properties available in the
Specification window.

Property name Description

Type Collectively these two fields describe the type of the attribute. The same
Type Modifier considerations as for column type modeling apply.

Default Value Carries the default value of the attribute.

Scope Check Marks this attribute as scope checked to a particular table and allows

choosing particular referential integrity ensuring action (RESTRICT
Scope Checked -\ sCADE, etc).

Besides attributes, Structured UDTs have a collection of methods - operations, performing actions on values of

this type. Methods are covered in a separate section with stored procedures and functions (see Routines
section).

Array Type

NOTE SQL Array type is modeled as UML DataType with «ArrayDataType»
stereotype applied. For the sake of compactness, arrays are displayed

with the «array» keyword (instead of the long form - «ArrayDataType»)
on the diagram.

Array type defines an array (that is, list of values, with the indexed, O(1) access to the n-th element) of the
values of elementary type.

Besides the standard SQL element properties, array type has the following properties available in the
Specification window.

Property name Description

Element The elementary type of the set elements.
Max Cardinality = The size limit of the array.

Database Modeling

Multiset Type

NOTE SQL Multiset type is modeled as UML DataType with
«MultisetDataType» stereotype applied. For the sake of compactness,
multisets are displayed with the «multiset» keyword (instead of the
long form - «MultisetDataType») on the diagram.

Multiset type defines a set of elements of the elementary type.

Besides the standard SQL element properties, multiset has the following properties available in the
Specification window.

Property name Description

Element The elementary type of the set elements.

Reference Types

NOTE SQL Reference type is modeled as UML DataType with «Reference-
DataType» stereotype applied. For the sake of compactness, refer-
ences are displayed with the «ref» keyword (instead of the long form -
«ReferenceDataType») on the diagram.

Reference type defines a pointer to the data of the referred type.

Besides the standard SQL element properties, reference type has the following properties available in the
Specification window:

Property name Description
Referenced Type The type of the data that is being referenced.

Scope Table Limit the references to the data of the particular table.
Row Type
NOTE SQL Row Data Type is modeled as UML DataType with

«RowDataType» stereotype applied. For the sake of compactness, row
data types are displayed with the «row» keyword (instead of the long
form - «RowDataTypey) on the diagram.

Represents one row of the table. The difference from structured UDT is that row type represents a value stored
in the table, while structured UDT represents “free-floating” value during computation. For example it is
meaningful to take address for the row., but not of the structured UDT value.

Parts of the row data type (properties) are called fields (compare - parts of the table definition are called
columns). Fields for row data type are created like columns of the table, that is, via the Fields tab in the row
data type Specification window or using an appropriate smart manipulation button on its shape.

Besides the standard SQL element properties, field has the following properties available in the Specification
window.

Property name Description

Type Collectively these two fields describe the type of the field. The same

Type Modifier considerations as for column type modeling apply.

Database Modeling

Property name Description

Scope Check Marks this field as scope checked to a particular table and allows

Scope Checked CASCADE, etc).

Sequences and Autoincrement Columns

choosing particular referential integrity ensuring action (RESTRICT

NOTES e SQL Sequence is modeled as UML Property with «Sequence»
stereotype applied. For the sake of compactness, sequences are
displayed with the «seq» keyword (instead of the long form -

«Sequencey) on the diagram.

e Autoincrement parameters (start value, increment, etc.) data is
stored as a separate model element - UML OpaqueExpression, with
«ldentitySpecifier» stereotype applied. This element is set as
defaultValue of the Property - either sequence property (when
standalone sequences are modeled) or column property (when

autoincrement table columns are modeled).

SQL has facilities to generate sequences of numbers (0, 1, 2, 3, ...). These sequences are often used to fill in
values for identifier columns - to uniquely number the row data in the table. There are 2 separate facilities:

e Standalone sequence object. This generator is not tied to any other object. Programer must
explicitly query it to get the next value from the sequence and then use the retrieved value
appropriately (usually in the INSERT statement to insert value for id column). Usually there are
separate sequences for each table; sometimes the same sequence is reused for several

columns.

e Autoincrement columns. Column of the table can be designated as autoincrement. When row
is inserted into the table, if value of such column is not explicitly provided, one is generated

automatically.

zGlobalss | ztables

GLOBALS Product
zei=-PurchaseTablelDGenerator = {0 +1 ﬁ colz eph=-id : integer = {0, +1]

\.‘ - “
-~
b -
At -~
Y -~
s

Autoincrement column and
standalone sequence object

Figure 23 -- Example of sequence and autoincrement column modeling

Cameo Data Modeler has modeling support for both kinds of sequences.

To create a standalone sequence

Do one of the following:

e Select the GLOBALS element shape on a diagram pane and click an appropriate smart

manipulation button.

Database Modeling

e Right-click the GLOBALS element in the Containment tree and on its shortcut menu, select

New Element > Sequence.

NOTE Since a standalone sequence is modeled as a UML Property, it can not be

placed directly into the Schema package.

Autoincrement columns are also supported. To mark a column as autoincrement, you must switch the Default

Value property value type from value expression to identity specifier.

To mark a column as autoincrement

1. Open the column Specification window.
2. Select the Default Value property.

3. Click the black-arrowed button next to the property value and select Value Specification >

IdentitySpecifier as shown in the following figure.

- - —_— w

e
3 Primary Key Member »
Type E integer [AMSI SOL Type Library] I
Type Modifier
Mullable [<undefined=
Scope Checked [<undefined:
Scope Check

{0, +1}

Default Value

-

I Commen
Mame id
Label X Delete Opaque Expression
_IEE:SD‘::FI“” 1% IdentitySpecifier
1 IdentitySpecification {l | OpagueExpression «ValueExpressionDefaults

Open Specification

Select in Containment Tree

Value Specification J

Figure 24 -- Marking column as autoincrement

Database Modeling

After the switching, the Autoincrement property group appears in the Specification window of the column
allowing to specify autoincrement data (start value, increment, etc.).

P® Primary Key Member - id —

Specification of Primary Key Member properties “ ——"_
Spedfy properties of the selected Primary Key Member in the properties specification ‘_-E =y
table. Choose the Expert or All options from the Properties drop-down list to see more E E—_:-I I
properties, =

B ——@ 2 om = Histary % id : integer [TopLevelDemo::Enterprise: Sales:,,, | »

-id 1 AMST SGL Type Librgle
[Usage in Diagrams IE Al Ig' El-i BE Properties: Standard .
| Documenkation/Hype : : :
| Tags B Primary Key Member =
5| Canskrainks Type E inkeger [AMSI SOL Type Library]
------ Language Properties Type Modifier
Mullable [<undefined:>
Scope Checked] <undefined =
Scope Chedk
@Efault value {0, +13 -)
El Common
Mame id =
Label
i Description
To Do
Autoincrement h
Start Value]
Increment i
Minimurm 0
Maxirnurm 0 &
Cyde Option [] false)
B In Check Constraint
Check Constraint Mame
Condition
El In Indicac i
(Name)
(Description)
- lTl . 1~ Type here to filter properties

Figure 25 -- Additional properties in autoincrement column’s Specification window

Besides the standard SQL element properties and sequences, an autoincrement column has the following
properties available in the Autoincrement property group of the Specification window.

Property name Description
Start Value Starting value of the sequence counter.
Increment Delta value of the sequence counter (can be negative - to count down).

Minimum Lower bound of the counter (if any).

Database Modeling

Property name Description
Maximum Upper bound of the counter (if any)

Cycle Option The counter can “wrap around” when it reaches the maximum (or
minimum - for downwards counters)

Additionally sequence has an Identity field and column has the Default Value field, where textual
representation of the counter options can be entered. This feature can be used for nice displaying of the
counter configuration in the diagrams (the start, inc, min, max field data is normally not visible in the diagram).
Some notation convention should be adopted how to map the counter data into the text representation. For
example it could be: {<start>, <inc>, <min>-<max>, <c>}. Then the counter from 0 with +1 increment, min max
of 0 and 1000 and cycle option would be displayed as “{0, +1, 0-1000, C}” string. At the moment this text
representation is not automatically connected to the counter field values, so synchronization has to be done by
hand.

Constraints

Tables have a multitude of constraints between them. These constraints enforce the proper business semantics
for the data in the database tables (relationships between data in different tables, semantical constraints of the
data in the table). There are these available constraint types:

e Primary key constraints - specifying column (or a combination of columns), which uniquely
identify the row in the table.

e Unique constraints. They are very similar to primary key constraints - uniquely identify the row
in the table. One of the unique constraints of the table is designated as primary.

e Foreign key constraints, which establish relationships between two tables.

o Nullability constraints (NOT NULL constraint) - a simple constraint on the column, indicating
that column must have value

e Check constraints establish additional checking conditions on values in the column / table.
e Assertions provide more global check than a check constraint - spanning multiple tables

e indexes are not constraints per se, but they are covered in this section because they are
modeled similarly.

The primary keys, unique and check constraints, indexes can be modeled in two ways. One way is easy and
simple but does not cover all the options provided by SQL. Another way is tedious, but provides full SQL
coverage.

Database Modeling

Implicit Primary Key, Unique, Check Constraint, and Index Modeling

NOTES

e SQL Primary Key (when implicitly modeled) is modeled as an
additional «PrimaryKeyMember» stereotype applied on the SQL
column. This variant is shown in the diagram as an additional «pk»
keyword on the column in the diagram.

e SQL Unique Constraint (when implicitly modeled) is modeled as an
additional «UniqueMember» stereotype applied on the SQL column.
This variant is shown in the diagram as an additional «unique»
keyword on the column in the diagram.

e SQL Check Constraint (when implicitly modeled) is modeled as an
additional «CheckMember» stereotype applied on the SQL column.
This variant is shown in the diagram as an additional «chk» keyword
on the column in the diagram.

e SQL Index (when implicitly modeled) is modeled as an additional
«IndexMember» stereotype applied on the SQL column. This variant
is shown in the diagram as an additional «idx» keyword on the
column in the diagram.

An easy way of modeling this kind of constraint is applying the «PrimaryKeyMember», «UniqueMembery,
«CheckMembery», or «IndexMember» stereotype on the necessary column. PK, unique, and index markers can
be applied on the column via its shortcut menu as shown in the following figure.

ztables

[| LELEen u
colz epk=-id : n
Wcols cuniges-n Specification Enter
colz sunigez-s — ,
.............. R'EFECtDr *
Select in Centainment Tree Alt+EB
e Ceew Related Elements 3
Teols 3
Stereotype 3
Create Role
.............. Is Static
Is Derived
‘* Is Read Only
.............. public
protected
,, package
. private
....... S Muttiplicty }
Kind 3
Type 3
....... o Index Member
IR Prirnary Key Member
Member of Unigue

Figure 26 -- Quick application of PK, Unique, and Index markers

Database Modeling

To apply a check constraint marker on a column

1. Open the Specification window of the column.
2. Define the Condition property value in the In Check Constraint property group.

Thusly marked column is considered as a member of one-column constraint, specified in-line. It is by default an
unnamed constraint. To specify its name, you need to define the Primary Key Name, the Unique Key Names,
the Check Name, or the Index Names property value in the column Specification window.

In the SQL script (in CREATE TABLE, ADD COLUMN statements) this would correspond to the following part of
the column specification:

<column name> [<data type>]

[[<constraint name>] <constraint>...]
<constraint> ::=

| UNIQUE| PRIMARY KEY

| CHECK ' ('<condition>"')'"

If primary key, unique constraint or index must span several columns (in this case constraint is not in-line, near
the column definition, but as a separate definition at the bottom of the table definition), all the columns must be
marked with the appropriate «UniqueMember» / «IndexMember» stereotype and all must have the same name.

Column can participate in several unique or

Various cases of quick constraint modeling are depicted in the following figure.

Primary key
on one column: id
atables __ —~{no name
Person - = inline
colz epke-id . numeric"(10, 07" o
colz suniguez-name ;. varchar1 00" {unigueName = "nsn"} _
colz suniguez-surname : varchar'(100)"{unigueMame = "nsn"j3 __ ™ — _
7 SUnigue constraint
compoged of two columns: name,
sUrname
named "nsn"
nat inline
Check constraint
on ane column: Zip
stables named " alid Zip"
Address inlinge
- i e i heck condition (procedure call):
colz aphz-id : numeric"(10 2) = _
colz echk=-zip ; varchar{checkMame = "ValidZip", condition = "ZIP_VALIDATIOMN Zip)" o5 ZIP_\ALIDATION(zip)
colz echkz-country : varchar{condition = "coutry in {'USA' 'CHN', 'GE', 'DEU""} '8
col ---st_ate : warchar
sl iy Check constrairt
colz-street : varchar on one column; country
colz-streetMo : varchar no name
colz-aptMo : varchar inline
check condition
country in {explict enumeration}

Figure 27 -- Various situations, modeled with quick constraint notation

Database Modeling

Explicit Primary Key, Unique, Check Constraint, and Index Modeling

NOTES e SQL Unique Constraint (when explicitly modeled) is modeled as UML
Constraint with «UniqueConstraint» stereotype applied.

e SQL Check Constraint (when explicitly modeled) is modeled as UML
Constraint with «CheckConstraint» stereotype applied.

e SQL Index (when explicitly modeled) is modeled as UML Constraint
with «Index» stereotype applied.

The quick, implicit way to model constraints does not cover some cases, allowed by SQL. Constraints in SQL
can be marked as DEFERABLE, INITIALY DEFERRED; constraint in the database can be in active state
(enforced) or disabled. Indexes have various configuration parameters.

Modeling with the help of «XYZMember» stereotypes does not allow to specify this additional information. In
this case modeling with explicit constraint model elements is necessary. This can be done from the
Specification window of table. There are separate tabs for creating these constraint elements: Unique
Constrains (allows creating both primary keys and unique constraints), Check Constraints, Indices. Once
created, additional properties of the constraints can be specified.

Besides the standard SQL element properties, primary key and unique constraint have following properties
available in the Specification window.

Property name Description

Members Columns, constrained by this constraint (must come from the same table
where constraint is located)

Inline Whether constraint is defined near the column definition, or separately,
at the bottom of the bale definition. Only one-column constraints can be
inline.

Deferable Marks the constraint as deferrable.

Initially Deferred Marks the constraint as initially deferred.

Enforced Whether constraint is actively checked in the database (can be changed
with the SQL statements).

Check constraints have the same properties as primary key and unique constraints, and additionally have
following properties available in the Specification window.

Property name Description

Condition Condition to be checked

Besides the standard SQL element properties, index has the following properties available in the Specification
window.

Property name Description

Members Member columns of this index

Member For each member column, ASC or DESC ordering direction
Increment Type

Unique Index is used to enforce uniqueness

System Index is system-generated.

Generated

Database Modeling

Property name Description

Clustered The index is clustered. Only one index per table can be clustered. Non-
clustered indexes are stored separately and do not affect layout of the
data in the table. Clustered index governs the table data layout (table
data pages are leafs of the index tree).

Fill Factor Hash table fill factor of the index

Included Additional member columns of the index. No sorting is done by these
Members columns, however their data is included into index - this provides fast
Included retrieval. This feature is very database-specific (AFAIK only MS SQL
Member Server has those).

Increment Type

Foreign Keys

NOTES e SQL Foreign Key (when modeled with UML Association relationship)
is modeled as UML Association with the «FK» stereotype applied.on
the end of the association (UML Property), which points to the
referenced table

e SQL Foreign Key (when modeled with UML Constraint) is modeled as
UML Constraint with «ForeignKey» stereotype applied.

ztable= A aFKs ztable=
Person’ -Person-Address Address'
colz-id : numeric"(10, 03" Imembers = fkPersonlD, -id : numeric"(10,2)"

colz=-name : varchar™ 00"
colz-surname . varchar"{100}"

-fkPerzoniD . numeric"(10,07"
-Zip : varchar

-country ;- varchar

-state . varchar

-city - varchar

-street ; varchar

-gtreetMo : varchar

-aptMo ; varchar

referencedMembers = id}

Figure 28 -- Foreign key example

Foreign keys describe relationships between two tables. At the detailed understanding level, foreign key is a
constraint on the (group of) columns in the source / referencing table, such that for each row in the source table
their value combination (tuple) is equal to the value combination (tuple) of the (group of) columns for some row
in the target / referenced table.

Foreign keys also have the two ways to be modeled. The main way is described below.
The main way to model foreign keys is to draw association relationship from the referencing table to the

referenced table. The relationship can be simply draw in the diagram from the smart manipulator or from the
button in the diagram toolbar.

Database Modeling

When the FK association is draw, the following dialog pops up:

Ll - - - ==

ation [
P® Foreign Key Iﬁ

an

Y Taue
tesult T,
A | || P or Unique Colurmn FK Colurnn

Mame Person-Address

Figure 29 -- Foreign Key dialog

Note that you have to have the necessary columns in the tables (PK or unique columns in target table,
referencing FK columns in the source table) before drawing the FK relationship. In this dialog, select the
referenced columns (of the target table) in the first column of the table, and corresponding referencing columns
(of the source table). Additionally, foreign key name can be specified.

When dialog is OK’d, foreign key association is created; «FK» stereotype is applied on the referencing
association end and the selected column information is stored in tags.

If foreign key information has to be changes, this is done in the Specification window of the FK property.
Besides the standard SQL element properties foreign key has the following properties available in the
Specification window.

Property name Description

Inline The same functionality as for the explicitly modeled PK, unique
constraints

Deferable

Initially Deferred

Enabled

Match Specifies how the columns in the referenced table and columns in the
referencing table are matched (SIMPLE, FULL, PARTIAL match).

On Delete Referential integrity enforcement action that is performed when the data

in the referenced table is deleted (NO ACTION, RESTRICT, CASCADE,
SET NULL, SET DEFAULT)

On Update Referential integrity enforcement action that is performed when the data
in the referenced table is updated (NO ACTION, RESTRICT,
CASCADE, SET NULL, SET DEFAULT)

Referencing Member columns of the constraint (from the same table where constraint
Members is located). FK constrains values of these columns to point to the data in
the referenced tables

Database Modeling

Property name

Referenced
Members

Referenced
Table

Referenced
Unique
Constraint

Referenced (by
Name) Unique
Constraint

Referenced
Unique Index

Referenced (by
Name) Unique
Index

Description

The set of the columns in the referenced (target) table, to which
referencing columns are matched. There are 6 ways to specify this set -
choose one.

Referenced Members field explicitly lists the target columns.

Referenced Unique Constraint / Index points to the constraint or index in
the target table, and referenced member columns are members of this
constraint / index.

(by Name) option is used when constraint / index is no explicitly
modeled with model element but is just a marking on the column

Referenced Table always points to the target table of the FK (field is not
editable, to change it, reconnect the association). If the referenced
members column list is not specified in any other way, then referenced
columns are taken from the PK of the referenced table

The alternative way of modeling a foreign key is creating a UML constraint with the «ForeignKey» stereotype
applied. This way is less desired than the main way, because it does not visualize relationship between tables.
It is just a constraint in the table. This method may be used when human-readability is not critical, e.g., when
database layout is generated with some custom automated script / transformation in the model.

To create a constraint with the «ForeignKey» stereotype

1. Select a table in the Containment tree.

2. Do one of the following:
e Right-click the selected element and from its shortcut menu select New Element >
Explicit Foreign Key.

e Open the Explicit Foreign Keys tab in the table’s Specification window.
Besides the standard SQL element properties and properties that are available for other explicit constraints

(that is, PK, unique, check constraints), explicit foreign key has the following properties available in the
Specification window.

Property name Description

Match Specifies how the columns in the referenced table and columns in the
referencing table are matched (SIMPLE, FULL, PARTIAL match).

On Delete Referential integrity enforcement action that is performed when the data
in the referenced table is deleted (NO ACTION, RESTRICT, CASCADE,
SET NULL, SET DEFAULT)

On Update Referential integrity enforcement action that is performed when the data

in the referenced table is updated (NO ACTION, RESTRICT,
CASCADE, SET NULL, SET DEFAULT)

Member columns of the constraint (from the same table where constraint
is located). FK constrains values of these columns to point to the data in
the referenced tables

Referencing
Members

Database Modeling

Property name

Referenced
Members

Referenced
Table

Referenced
Unique
Constraint

Referenced (by
Name) Unique

Description

The set of the columns in the referenced (target) table, to which
referencing columns are matched. There are 6 ways to specify this set -
choose one.

Referenced Members field explicitly lists the target columns.

Referenced Table field just specifies the target table, referenced
columns are then taken from the PK of the table

Referenced Unique Constraint / Index points to the constraint or index in
the target table, and referenced member columns are members of this
constraint / index.

Constraint

(by Name) option is used when constraint / index is no explicitly
Referenced modeled with model element but is just a marking on the column

Unique Index

Referenced (by
Name) Unique

Index
Nullability Constraint
NOTE SQL NOT NULL constraint (if modeled explicitly, which is rare!) is

modeled as UML Constraint with «NotNullConstraint» stereotype
applied.

Nullability, or NOT NULL constraint forces the condition that the column must have value. Implicit NOT NULL
constraint is modeled with the nullable field of the column (set nullable=false to specify NOT NULL). This is an
usual and quick way to model these constraints.

Usually there is no need to model these constraints explicitly - create a separate model element for them. But
in the more complex cases these constraints can be created by hand and the «NotNullConstraint» stereotype
applied on them. This allows specifying non-inline constraints, or named constraints, or deferred constraints or
inactive constrains.

NOT NULL constraint does not have any additional properties in the Specification window besides the
properties that all table constraints have.

Assertion

NOTE SQL Assertion is modeled as UML Constraint with «Assertion» stereo-

type applied.

Assertion constraints are very similar to check constraints, but instead of being local to the table, they are
global to the database. Assertions check some condition that must hold through several tables. Assertions are
modeler as explicit constraints; there is no shorthand modeling form - assertion is always an explicit UML
constraint.

To create an assertion

1. Select a schema or a database element in the Containment tree.
2. Right-click the selected element and from its shortcut menu select New Element > Assertion.

Database Modeling

Besides the standard SQL element properties assertion has the following properties available in the
Specification window.

Property name Description

Search The assertion body condition

Condition

Constrained List of the tables on which assertion runs

Tables

Triggers

NOTE SQL Trigger is modeled as UMLOpaqueBehavior with the «Trigger»

stereotype applied.

Trigger describes some action that must be performed when some particular data manipulation action is being
performed in the database table. Trigger can be fired when data is added, deleted or changed in the table and
perform some action (update some other table, calculate additional values, validate data being updated or even
change the data that is being updated).

Trigger is always defined for some table. You can define triggers in the Triggers tab of the table Specification
window. Trigger has an event type (on what actions trigger is fired, that is, on insert, on update, or on delete),
action time (before, after, instead of), and an actual body describing the actions.

Besides the standard SQL element properties, trigger has the following properties available in the Specification
window.

Property name

Action Time

On Insert
On Update
On Delete

Trigger Column

Description

Specifies moment of time when trigger action is performed (before the
specified event, after event, insteadof event).

The event that causes trigger firing.

List of columns, which cause trigger fire on update (must be from the
same table as trigger is located). Used with On Update triggers to
specify that only some column updates cause trigger fire.

Language Trigger implementation language (should be SQL).

Body Trigger body text (operations that are performed on trigger fire)

Time Stamp Trigger creation timestamp

Action Specifies whether trigger fires once per executed statement, or once per

Granularity each affected row

When Specifies additional precondition for trigger firing

New Row These fields can be used for defining variable names for holding new
row / table values and old row / table values - for referencing in trigger

New Table body

Old Row REFERENCING ((NEW|OLD) (TABLE|[ROW) AS <name>)+

Old Table

Additional Additional action statements. This option is rarely used - it is non-

Actions

standard and supported only by some databases. Usually triggers have
just one body.

Database Modeling

Routines
structurecs
ComplexHumber
attr=-x : float
attrz-y : float

funce+ComplexMumber(x : float, v © float) constructor}
Tunce+ComplexMumbert : float, theta ; float J{constructor}
funce+oPolar() . ComplexMumber

funce=+oCaresian() . Complexbumber

aGlobalss |
GLOBALS

+render(paoly : Polygon)

proce+afineTransform(poly : Polygon, & : Matrix, b Column)
funce+igClosed(poly : Polygon) . boolean

funce+isConvex(poly : Polygon) boolean

0o 00

«arrays
Polygon
felement= ComplexNumber,
maxGardinality = 1000}

z@lrays ATays

Matrix Column
felement= Column, felerment = float,
maxCardinality = 2} maxCardinality = 2}

Figure 30 -- Routines example

SQL supports several different kinds of routines. There are global routines, that are not bound to a particular
type but belongs to the schema. There are two kinds of these routines - Procedures and Functions. And there
are routines, that are bound to a particular structured user defined type - Methods. Each routine kind can have
several parameters. Parameters have type and direction (in, out, inout). Functions and methods in SQL have
return types - this is formalized in UML models by having an additional parameter with return direction kind.

There is an UML limitation, that UML does not allow to place UML operations (which are used to model SQL
procedures and functions) directly in the UML packages (which are used to model SQL schemas). For this
reason global routines are placed into a special container class - GLOBALS (see “GLOBALS” on page 22).

Routines can be external (written in some other languages and attached to database engine) or SQL routines.
In the latter case, body of the routine can be specified in the model. Due to UML specifics, there are two ways
to specify the routine body - by filling the UML method field or by filling the UML bodyCondition field of the
operation. These two ways are visible in the Specification window under the field names Source (as method)
and Source (as body condition). When specifying routine body, specify only one of these fields.

To use “as method” way

1. Right-click the GLOBALS element in the Containment tree and from its shortcut menu select
New Element > Source. A source element (a UML OpaqueBehavior with the «Source»
stereotype applied) under the GLOBALS element will be created in your schema.

2. In the Specification window of routine, edit the Source (as method) property value and in the
opened dialog select the source element you've just created.

Database Modeling

To use “as body condition” way, you simply have to fill the field. The routine body model element (in this
caseUML Constraint - holding UML OpaqueExpression) shall be created under your routine model element.

Besides the standard SQL element properties, all 3 kinds of routines have the following properties available in
the Specification window.

Property name Description

Specific Name Additional name for the routine, uniquely identifying it throughout the
system.

Deterministic Specifies whether routine is deterministic (always gives the same output
with the same data input)

Parameter Style SQL or GENERAL

SQL Data Specifies how routine accesses SQL data (NO SQL | CONTAINS SQL |
Access READS SQL DATA | MODIFIES SQL DATA)

Source(as Fields holding routine body text (chose only one).

method)

Source (as body

condition

Creation TS Routine creation and last edit timestamps

Last Altered TS

Authorization ID Authorization identifier which owns this routine (owner of the schema at
routine creation time)

Security Determines the authorization identifier under which this routine runs.
Tipically set to “INVOKER”, “DEFINER”, “IMPLEMENTATION
DEPENDENT”

External Name The name of the external language routine implementation method (if
routine is non-SQL routine)

Procedure

NOTE SQL Procedure is modeled as UML Operation with «Procedure» ste-
reotype applied. For the sake of compactness, procedures are dis-
played with the «proc» keyword (instead of the long form -
«Procedure») on the diagram.

Procedure is an operation that can be SQL-invoked and performs some actions depending on the parameters
supplied. Procedures are global for schema - they are created under the GLOBALS model element.

Besides the standard properties of SQL routines (see “Routines” on page 45), procedure has the following
properties available in the Specification window.

Property name Description

Max Result Sets If result set count returned by procedure is dynamic, this value limits
count thereof (DYMANIC RESULT SETS <max> clause)

Old Save Point Savepoint level indicator for procedure (false means that new savepoint
must be established before the procedure is run)

Database Modeling

Function
NOTE

SQL Function is modeled as UML Operation with «Function» or
«BuiltinFunction» or «UserDefinedFunction» stereotype applied. By
default the «UserDefinedFunctiony is used, however if another kind can
be freely used if it is necessary for modeling needs (e.g. if we are
modeling some built in library and want to specify that functions are
built-in and not user defined).

For the sake of compactness, functions are displayed with the «func»
keyword (instead of the long form) on the diagram.

Function describes some operation that calculates and returns some value depending on the parameters
supplied. Functions are global for schema - they are created under the GLOBALS model element.

Besides the standard properties of SQL routines (see section above), function has the following properties
available in the Specification window.

Property name
Null Call

Type Preserving

Transform
Group

Method
NOTE

Description

Specifies that function returns NULL when called with NULL parameter
value (RETURNS NULL ON NULL INPUT clause)

Specifies that function does not change the type of the supplied
parameter (returns the same object)

Allows to specify TRANSFORM GROUP <groups> clause - single or
multiple.

SQL Method is modeled as UML Operation with «Method» stereotype
applied. For the sake of compactness, methods are displayed with the
«func» keyword (instead of the long form - «Method») on the diagram.

Method is a function of the structured user defined type. It is created inside the structured UDT.

Besides the properties of SQL functions (see section above), method has the following properties available in
the Specification window.

Property name

Constructor

Overriding

Parameter
NOTE

Description

Specifies that function is a constructor (that is, it is used to construct
values of the enclosing structured UDT).

Specifies that function is overriding the same-named function from the
parent structured UDT

SQL Parameter is modeled as UML Parameter with «Parameter» ste-
reotype applied.

This model element specifies data inputs / outputs into routine calculations. Parameter has a type, direction (in
/ out / inout for usual parameters and a single parameter with direction return for functions) and default value.

Database Modeling

Besides the standard SQL element properties, parameter has the following properties available in the
Specification window.

Property name Description

Type Type of the parameter

Type Modifier

Default Value Default value (used when value is not supplied during routine
invocation).

Direction Direction of data flow through the parameter (into the routine, out of the
routine or both)

Locator AS LOCATOR modifier of the type. Specifies that instead of value,
means to locate value are transferred

Stripg Type Only valid when parameter type is XML type. Specifies underlying string

Option datatype.

Cast Type Additional options, specifying that return parameter is cast from another

Cast Locator type (possibly with locator indication).

Cursor and Routine Result Table

NOTE SQL Cursor is modeled as UML Parameter with the «Cursor» stereo-
type applied.

When routine does not return a scalar value but a collection of the table values, cursor is used, instead of the
parameter. Cursor has a type. This type must be some table type instead of the scalar types used for
parameters. It can be an actual table / view from the model, if cursor returns values from that table, or (if cursor
returns data from some SELECT statement) can be a synthetic table. A Routine Result Table model element is
used for this purpose (UML Class with «RoutineResultTable» stereotype applied). It's modeling is exactly the
same as the normal tables - this is just an ephemeral table.

Besides the standard SQL element properties, cursor has the following properties available in the Specification
window:

Property name Description

Type Type of the cursor. Should point to the routine result table.

Type Modifier

Direction Direction of data flow through the parameter (into the routine, out of the
routine, routine result)

Database Modeling

Access Control

18\ Bl y atables
_ S «priviieges B SensitiveTable
ﬂf_.zx «Ers::: taction ="SELECT"} cols-login : varchar'(20)"
colz-passwaord : varchar"{20)"
T
I aprivileges

| faction = "UPDATE",
I actionOhjects = password}

% zauthorization= @

ZQroups —_ - = — ———_-—_— aroles

IT Staff Administrator

fuser= Joe, Fred}

Figure 31 -- Access control example

SQL has means to specify and control the rules of access to various data objects. This subset of SQL language
is sometimes called Data Control Language. The relevant concepts are: User, Group, Role (3 different kinds of
authorization subjects), Permission and Role Authorization (2 kinds of access control rules). Possible object
types for access control varies depending on database flavor, but usually Tables, User-defined Types,
Domains, Routines, Sequences can be specified as the target objects of access control.

User
NOTE SQL User is modeled as UML Actor with the «User» stereotype applied.

User object represents the single user person in the system, User is subject to access control rules.

Besides the standard SQL element properties, user has the following properties available in the Specification
window.

Property name Description
Owned Schema Schemas that are owned by this user,

Group

NOTE SQL Group is modeled as UML Actor with the «Group» stereotype
applied.

Group object represents a collection of Users. Group is subject to access control rules, and allows specifying
access control rules on several users simultaneously.

Besides the standard SQL element properties, group has the following properties available in the Specification
window.

Property name Description
User Collection of users the group is made of.

Owned Schema Schemas that are owned by this group,

Database Modeling

Role
NOTE SQL Role is modeled as UML Actor with the «Role» stereotype applied.

Role object represents a specific role (typical activities) that can be played by users. Role is subject to access
control rules, and allows specifying access control rules for all subjects, playing this role.

Besides the standard SQL element properties, role has the following properties available in the Specification
window.

Property name Description

Owned Schema Schemas that are owned by this role,

Privilege

NOTE SQL Privilege is modeled as UML Dependency with the «Privilege» ste-
reotype applied.

Privilege relationship expresses the fact that the permission to perform specified action on specified object
(relationship target) is granted to specified grantee (relationship source). Grantee can be any authorization
subject - Use, Group or another Role. Object can by another SQL object (the precise list of object types, that
can be targeted by privileges, varies by database type).

Privilege corresponds to SQL grant privilege statement:
GRANT <action>[(<column list>)] ON <object> TO <grantee> [WITH HIERARCHY
OPTION] [WITH GRANT OPTION]

Besides the standard SQL element properties, privilege has the following properties available in the
Specification window.

Property name Description
Action Specifies action that is being granted (such as SELECT or UPDATE).

Action Objects Specifies additional more narrow subobject list, on which the specified
action is permitted (usually column list for SELECT or UPDATE).

Grantable Specifies that this privilege can be further re-granted to other subjects by
the recipients. Corresponds to WITH GRANT OPTION part of GRANT
statement.

With Hierarchy Specifies that this privilege applies to subobjects (subtables).
Corresponds to WITH HIERARCHY OPTION part of the GRANT

statement.
Grantor Subject, who grants this privilege to the grantees.
Role Authorization
NOTE SQL Role Authorization is modeled as UML Dependency with «RoleAu-

thorization» stereotype applied.

Role authorization relationship expresses the fact that the specified role (relationship target) is granted to
specified grantee (relationship source). Grantee can be any authorization subject - Use, Group or another Role.

Role authorization corresponds to SQL grant role statement:

GRANT <role> TO <grantee> [WITH ADMIN OPTION]

Database Code Engineering

Besides the standard SQL element properties, role authorization has the following properties available in the
Specification window.

Property name Description

Grantable Specifies that this role can be further re-granted to other subjects by the
recipients. Corresponds to WITH ADMIN OPTION part of GRANT
statement.

Grantor Subject, who grants this role to the grantees.

Oracle Database Modeling Extensions

When the Oracle flavor is chosen for database top level element (schema or database), additional Oracle
extensions are brought in. Elements that are in the scope of this schema or database element obtain additional
Oracle-specific properties in the Specification windows (under the separate Oracle property group). These
properties carry an additional information, that is then used when generating DDL scripts for Oracle.

Most often there is just one Additional Properties property - allowing entering free-form text that is then used
when generating (this can be used to specify any extension texts - such as tablespace options for tables).

Oracle extensions provide means to model synonyms. Synonym is mapped as follows:

e Element of the same type (that is, table, materialized view, stored procedure, sequence) as the
one being aliased is created. It is stereotyped as appropriate, but have no other data - just it's
name is important.

o Additionally, stereotype «OraSynonymy will be applied on the element. It has ref:Element[1]
tag for pointing to the element being aliased. Synonyms of synonyms are handled in the same
way.

Oracle extensions provide means to model materialized views. Materialized view can be created from Oracle
SQL diagram. It is an ordinary SQL view, but with the additional «OraMaterializedView» stereotype applied (in
diagrams, a shortened keyword «materialized» is used for the sake of compactness).

Cameo Data Modeler provides code engineering capabilities database script generation and reverse
engineering. Database model can be generated in to the DDL script, which can then be run on the database
engine to create database structures. And conversely database engine can export database structures into the
DDL script, which can then be reverse-engineered into the database model. In addition to that Cameo Data
Modeler provides reverse engineering directly from live database through JDBC connection.

Cameo Data Modeler code engineering supports the following database dialects for script generation and
reversing:

e Standard SQL
e Oracle

e MS SQL Server
e DB2

e MySQL

e PostgreSQL

e Sybase

Database Code Engineering

Pervasive
Cloudscape / Derby
MS Access

Pointbase

As was mentioned earlier, database modeling was significantly extended in the version v17.0.1. But database
code engineering has remained at the same level as before. Hence currently not all database concepts, that
can be modeled, can be subsequently generated or reverse engineered. This situation will be amended in the

future.

Code Engineering Set

Code engineering set for database scripts can be created in the same manner as CE sets for other code types
(see “Code Engineering Sets” in MagicDraw CodeEngineering UserGuide.pdf). Right-click the Code
engineering Sets, New, DDL, and then the appropriate database flavor. When the CE set is created, database
model elements can be added to it and then DDL script file(s) can be generated OR the script files can be
added to the CE set and then reverse-engineered into the database models. In addition to reversing from files,
there is Reverse from DB radio button. Once it is switched, the options for JDBC connection configuring
appear, allowing to set up connection to the live database.

Box name

Recently
Used

DB

Connection
URL

Driver Files

Driver Class

Username
Password

Catalog

Schema

Description

Contains the list of the recently used reverse templates. Choose the one
you need and click Apply.

The connection URL for the selected profile.

Contains .jar and .zip files or directories with JDBC driver’s classes.

To choose the files or directories you want to add or remove, click the ...
button. The Select Files and/or Directories dialog appears.

NOTE If the driver file is empty, Driver Class is searched from
the classpath.

Contains the connection driver class.

Click the ... button and the list of available driver classes that are

available in the selected driver files is displayed.

NOTE Only in the files that are selected in the Driver Files list,
the system searches for driver classes.

Type the username to connect to the database.

Type the password to connect to the database.

Contains a name of the selected Catalog.

To retrieve the list of available Catalogs from the database, click the ...
button and select the catalog. The catalog name appears in the Catalog
text box.

NOTE Only when all other properties in this dialog box are

correctly defined, the list of catalogs can be retrieved.

Contains a name of the selected Schema.

To retrieve the list of available Schemas from the database, click the ...
button and select the schema. The schema name appears in the
Schema text box.

NOTE Only when all other properties in this dialog box are
correctly defined, the list of schemas can be retrieved.

Database Code Engineering

Box name Description
Property The name of the JDBC driver property.
Name

NOTE: If using Oracle drivers, while retrieving db info from Oracle db:

e To retrieve comments on table and column, set property as
remarks=true.

e To connect to a db as sysdba, set property as internal_logon=sysdba.

Debug JDBC If selected, all output from a JDBC driver will be directed to Message
Driver Window.

Reload Driver By default, the Reload Driver check box is selected. If you want that
driver to not be reloaded, clear the check box.

Properties of Code Engineering Set for DDL

There are two separate properties sets, stored as properties of code engineering set for DDL:
e Properties for DDL script generation

e Properties for DDL script reverse engineering

EEE Properties Editor x|
| Relations I Subobjects I
= B 5%
Column default nullability dialect default -

Create cakalog seks current o, krue
Create schema sets current 5., true
Default atkribuke rmulkiplicity

Defaulk catalog name Mone
Default schema narme Mo
Drop stakements Deferred
Generake Mull constraink krue

Generate extended index name False
Generate extended trigger na. ., False
E - E - E -

Ik | Cancel | Help |

Figure 32 -- DDL properties in CG Properties Editor dialog

Property name Value list Description

Properties for DDL generation

Default attribute 0,0..1, any entered by If the attribute multiplicity is not

multiplicity user specified, the value of this property is
used.

Generate Null True, false (default) If true, generates NULL constraint for

constraint column attribute with [0..1] multiplicity.

If DBMS, you use, support NULL, you
can enable this to generate NULL
constrains.

See also: GenerateNotNullConstraint,
AttributeDefaultMultiplicity

Database Code Engineering

Property name

Generate extended
index name

Generate extended
trigger name

Generate index for
primary key

Generate index for
unique

Generate not Null
constraint

Generate qualified

names

Generate quoted
identifiers

Object creation mode

Properties for DDL script reverse engineering

Value list

True, false (default)

True, false (default)

True (default), false

True (default), false

True (default), false

True (default), false

True, false (default)

Description

If true, generates index name of the
form: TableName_IndexName.

If true, generates trigger name of the
form: TableName_TriggerName.

If the DBMS, you use, requires explicit
indexes for primary key, you may
enable explicit index creation using
this flag.

See also: GeneratelndexForUnique

If the DBMS, you use, requires explicit
indexes for primary key or unique
columns, may enable explicit index
creation using this flag. See also:
GeneratelndexForPK

If true, generates NOT NULL
constraint for column attribute with [1]
multiplicity. If you set
GenerateNullConstraint, you may wish
to do not generate NOT NULL
constrain.

See also: GenerateNullConstraint,
AttributeDefaultMultiplicity

If value of Generate Qualified Names
check box is true, package name is
generated before the table or view
name.

For example: «Database» package
“MQOnline” includes «Table» class
“libraries”. Then check box Generate
Qualified Names is selected as true in
generated source would be written:

CREATE TABLE MQOnline.libraries;

Then check box Generate Qualified
Names is selected as false, in
generated source would be written:

CREATE TABLE libraries;
Specifies whether DDL code generator

should generate quoted names of
identifiers.

The Object Creation Mode combo box has the following

options:

only CREATE statements
DROP & CREATE statements
CREATE OR REPLACE statements (only for Oracle dialect;

default for this dialect)

DROP IF EXISTS & CREATE statements (only for MySQL
dialect; default for this dialect).

Database Code Engineering

Property name Value list Description
Column default Dialect default If column has no NULL or NOT NULL
nullability (default), not constraint specified, the value of this
specified, NULL, property is used.
NOT NULL
Create catalog sets True (default), false Specifies whether create catalog
current catalog statement changes current catalog
name.
Create schema sets True (default), false Specifies whether create schema
current schema statement changes current schema
name.

Default catalog name DefaultCatalogNone Specifies current database name.
(default), Used when DDL script does not
DefaultCatalogPack specify database name explicitly.
age, any entered by
the user

Default schema name DefaultSchemaNone Specifies current schema name. Used
(default), when DDL script does not specify
DefaultSchemaPack schema name explicitly.
age, any entered by
the user

Drop statements Deferred (default), Specifies whether execution of drop
Immediate, Ignored statements may be deferred, or must

be executed, or must be ignored.
Deferred drop may be enabled if
elements are recreated later. This will
save existing views. Attribute
stereotypes, multiplicity and default
value always are not dropped

immediately.
Map Null / not Null Stereotypes When parsing DDLs, the null / not null
constraints to (default), Multiplicity constraints are modeled as either

stereotype tag values or multiplicity.

Map foreign keys True (default), false An association with «FK» stereotype
on the association end is created, to
represent Foreign Key.

Map indexes True (default), false A constraint with «Index» stereotype is
added into table, to represent index.

Map triggers True (default), false ~ An opaque behavior with «Trigger»
stereotype is added into table to
represent trigger.

Map views True (default), false A class with «ViewTable» stereotype is
created to represent view.

Supported SQL Statements

This section lists SQL statements that are supported in the Cameo Data Modeler plugin. They are parsed and
mapped into model constructs.

Database Code Engineering

The following table provides SQL2 SQL schema statements and their support status in the Cameo Data
Modeler plugin (Yes means that a statement can be generated into DLL script from model constructs and
reverse engineered from script into model constructs).

SQL schema statement Supported (Yes / No)
SQL schema definition Schema definition Yes
statement Table definition Yes
View definition Yes
Alter table statement Yes
Grant statement No
Domain definition No
Assertion definition No
Character set definition No
Collation definition No
Translation definition No
SQL schema manipulation Drop table statement Yes
statement Drop view statement Yes
Revoke statement No
Alter domain statement No
Drop assertion statement No
Drop domain statement No

Drop character set statement No
Drop collation statement No

Drop translation statement No

Some SQL schema statements (e.g. schema definition, table definition) allow implicit catalog name and
unqualified schema name. In addition to SQL schema statements, the following SQL session statements must
be supported:

e Set catalog statement - sets the current default catalog name.

e Set schema statement - sets the current default unqualified schema name.

Cameo Data Modeler supports the following widely used by dialects statements that are not the part of SQL2:
e Database definition statement (CREATE DATABASE) that creates database
e Index statements (CREATE INDEX, DROP INDEX) that create an index on table and remove it

e Trigger statements (CREATE TRIGGER, DROP TRIGGER) that create a trigger on table and
remove it.

The following table provides details on mapping on the supported SQL schema manipulation statements into
SQL constructs.

DDL Statement or Concept Action, model Description Visible
Item
Alter table statement Modify class Elements: table name and alter table Yes

action. Alter table action — one of: add
column, add table constraint, alter
column, drop table constraint, drop
column.

Database Code Engineering

DDL Statement or Concept Action, model Description Visible
Item

Add column definition Define attribute Elements: column definition. Yes

Add table constraint Define method Elements: table constraint definition. Yes

definition

Alter column definition Modify attribute Elements: mandatory column name, Yes
default clause (for add default statement
only).

Drop table constraint Delete method Elements: constraint name, drop Yes

definition behavior

Drop column definition Delete attribute Elements: column name, drop behavior Yes

Drop schema statement Delete package Elements: schema name, drop behavior Yes

Drop table statement Delete class Elements: table name, drop behavior Yes

Drop view statement Delete class Elements: table name, drop behavior Yes

Drop behavior Action property Modifiers: CASCADE, RESTRICT No

DDL Dialects

This section reviews Cameo Data Modeler support for DDL script flavors from different vendors.

Standard SQL2

For SQL2 statements supported by Cameo Data Modeler see Section Supported SQL Statements, “Supported
SQL Statements”, on page 55.

MagicDraw UML schema package is located within a database package. Database definition statement is not
the part of the SQL2 standard - it is an analogue of a Database (a Catalog).

NOTE A Catalog has no explicit definition statement. If a database package
for a Catalog does not exist, it should be created (when it is referred for
the first time).

Oracle

Cameo Data Modeler Oracle DDL script generation is based on the Velocity engine. This provides ability to
change generated DDL script by changing velocity template. In this chapter we will introduce how Oracle DDL
generation works in MagicDraw, how to change template for some specific things.

Knowledge of the Velocity Template Language is necessary for understanding, editing, or creating templates.
Velocity documentation can be downloaded from: http://click.sourceforge.net/docs/velocity/Velocity-
UsersGuide.pdf.

For more information about Oracle DDL generation and customization, see MagicDraw OpenAPI
UserGuide.pdf.

Oracle dialect

For more information about Oracle DDL 11g, see http://download.oracle.com/docs/cd/B28359 01/ server.111/
b28286/toc.htm

Database Code Engineering

Oracle dialect has CREATE DATABASE, CREATE INDEX, and CREATE TRIGGER statements that are not the
part of SQL2 standard but that are taken into account while reversing DDL script of this dialect.

This dialect has some syntax differences from SQL2 standard because of extensions (e.g. some schema
definition statements can have STORAGE clause). These extensions are ignored while reversing.

Code engineering features for Oracle dialect are more extensive that code engineering for other dialects. In
addition to the concepts, supported by Standard SQL generation, Oracle generation supports generation and
reverse of:

Sequences
e Synonym

Structured user-defined types (with methods, map & order functions)

Function and Procedure

Users, Roles Grants

Materialized Views

Cloudscape

Informix Cloudscape v3.5 dialect has no database definitions statement. A database package with the name
specified by CurrentDatabaseName property is used.

This dialect has CREATE INDEX and CREATE TRIGGER statements that are not the part of a SQL2 standard
but that should be taken into account while reversing DDL script of this dialect.

This dialect has some syntax differences from SQL2 standard because of extensions (e.g. some schema
definition statements can have PROPERTIES clause). These extensions are ignored while reversing.

NOTE Transformation engine implementation code is available from the
MagicDraw Standard Edition upwards. However, there are just a couple
of transformations in the MagicDraw (Any-to-Any and Profile Migration
transformations). The Cameo Data Modeler plugin brings in a set of
transformations between various kinds of data models.

The Cameo Data Modeler plugin for MagicDraw provides a set of transformation for transforming between
various kinds of data models. There are transformations for transforming:

e UML models to SQL models (2 flavors - generic and Oracle)

e ER models to SQL models (2 flavors - generic and Oracle)

e SQL models to UML models (suitable for all flavors of databases)
e UML models to XML schema models

e XML schema models to UML models

After the transformation, user can further refine the resulting model as necessary, and generate the artifact files
from those models. Actual DDL scripts, XML schema files can be generated using the code engineering
facilities.

Since the Cameo Data Modeler plugin provides more powerful modeling and generation features for Oracle
database flavor (there are Oracle-specific modeling extensions, and code engineering features for Oracle
database scripts cover more features), there are two separate transformation flavors as well - “ER to SQL
(Generic)” and “ER to SQL (Oracle)”.

NOTE As of version 17.0.1 the Generic-Oracle DDL(SQL) transformation is no
longer available in MagicDraw. The transformation is no longer needed,
because of unification of previously separate profiles for generic SQL
and Oracle SQL modeling.

Functionality of performing model transformations in MagicDraw is accessible by the Model Transformations
Wizard. The wizard is used for creating new transformations.

To open the Model Transformations Wizard
Do one of the following:

e From the Tools menu, choose Model Transformations.
e Select one or more packages. From the shortcut menu, choose Tools > Transform.

NOTE For more information about this wizard, see “Model Transformation Wizard”
in MagicDraw UserManual.pdf.

UML to SQL Transformation

Each transformation has its own default type map for replacing data types from the source domain into the
appropriate data types of the result domain. If this type map is not suitable, the default type map can be
modified or an entirely different type map can be provided if necessary.

NOTE e For more information on how to create your own transformation rules or
change mapping behavior, see “Transformation Type Mapping” in the
MagicDraw UserManual.pdf.

e For more information on how to set up the mapping, watch the
“Transformations” online demo at http://www.nomagic.com/support/
demos.html.

There are two very similar UML to DDL transformations:

1. UML to SQL (Generic)
2. UML to SQL (Oracle)

These transformations convert the selected part of a UML model with class diagrams into Generic or Oracle
SQL models with Oracle SQL diagrams respectively.

Transformation Procedure

UML to SQL (Generic / Oracle) transformation is based on the same copy mechanism as the other
transformations are. It copies the source model part to the destination (unless the in-place transformation is
performed), remaps types, and then performs model reorganization to turn the model into an SQL model.

To transform a UML model to SQL

1. Open the UML model you want to transform or create a new one.
2. Open the Model Transformation Wizard. Do one of the following:

e On the main menu, click Tools > Model Transformations.

e Select the package in the Model Browser and click Tools > Transform on it's
shortcut menu.

3. Perform the steps of the wizard:

3.1 Select the transformation type.

3.2 Select the transformation source and specify the location wherein the output
should be placed. If you open the wizard from the shortcut menu of a package, this
package and all it’s content will be automatically selected as the source.

3.3 Check type mappings. You can select the transformation type map profile in this
step.
3.4 Specify transformation details.
4. Click Finish when you are done.

Conversion of Classes

UML classes from the source model are converted into tables.

http://www.nomagic.com/support/demos.html
http://www.nomagic.com/support/demos.html

UML to SQL Transformation

Each property of the source class becomes a column in the result table. If a property in the UML model had the
explicit multiplicity specified, nullable=true (for [0..1] multiplicity in source property) and nullable=false (for [1]
multiplicity in source property) marking is applied on result columns.

Operations contained in the source class are not copied into the result table.

Primary Keys Autogeneration

If a UML class in the source model had no primary key (it is declared by applying an appropriate stereotype), an
ID column is generated and marked as the primary key (PK).

TIP! You can turn off the automatic generation of PKs during the model trans-
formation. For this, click to clear the Autogenerate PK check box in the
Transformation Details pane (the 4th step of the Model Transforma-
tion Wizard)

In this case you must specify PKs and FKs manually after the model
transformation!

The Autogenerated PK name template transformation property governs the name of the generated 1D
column. The %t pattern in the name template is expanded to the current table name.

The Autogenerated PK type transformation property determines the type of the ID column. The default type is
integer.

Sequence Autogeneration

NOTE This feature is only available in UML to SQL (Oracle) transformations.
Generic SQL models do not have sequence support yet.

For each single-column PK in the destination a sequence object can be generated.

The Autogenerate Sequences transformation property governs the sequence autogeneration. Possible
choices for setting the property value are as follows:

1. Do not generate sequences choice switches sequence generation off.
2. Generate sequences for all single-column PKs choice switches sequence generation on.

3. Generate sequences for all autogenerated PKs choice switches sequence generation on but
only for those PKs that there automatically generated by the tool (but not for PKs which were
declared by the user).

Conversion of Associations

One-to-one and one-to-many associations between classes in the source UML model are converted to foreign
key relationships and to foreign key columns in the table, which is at the multiple end.

The Autogenerated FK column name template transformation property governs the name of the generated
FK column. A name template can use the following patterns:

e %t is replaced by the name of the table, the foreign key is pointing to.

e %k is replaced by the key name, this foreign key is pointing to.

e %r is replaced by the name of the relationship role, which is realized by this foreign key.

Note that the type of the FK column matches the type of the PK column, to which this key is pointing.

UML to SQL Transformation

Many-to-Many associations are transformed into the intermediate table. An intermediate table is generated for
an association and has two FK relationships pointing to the tables at association ends. FK are generated in the
same way as for one-to-many associations.

The Autogenerated table name template transformation property governs the name of the generated
intermediate table (%t1 and %t2 are replaced by the names of the tables at relationship ends).

You can create your own Autogenerated FK constraint name template. It makes easier to find FKs in the
generated code. Also it is helpful if you have some naming convention at your company.

You can use the same described patterns to specify the FK name template. For example, if you define the FK
constraint name template as “fk_%r”, appropriate relations in the model will look like it is depicted in the
following figure.

A wFKas
atablex -fk_Master wtablex
Human Imembers = fi_ Humanid, Dog
colz-Name : varchar'(235) referencedMembers = id} cols-Name : varchar"(255)
cols-id : integer cols-id : integer

»-fk_Humanid : integer{nullable = falze]

Figure 33 -- Example of transformation when FK name template is used

The same sample in the, for example, SQL code will look as follows:

CREATE SEQUENCE pets.Dog SEQ;
CREATE SEQUENCE pets.Human SEQ;

CREATE TABLE pets.Human
(

Name varchar (255),
id integer,
PRIMARY KEY (id)

);

CREATE TABLE pets.Dog
(
Name varchar (255),
id integer,
fk Humanid integer NOT NULL,
PRIMARY KEY (id),
CONSTRAINT fk_Master FOREIGN KEY(fk_Humanid) REFERENCES pets.Human (id)

)i

To create the FK constraint name template

1. In the Transformation Details (the 4th step of the Model Transformation Wizard), click the
Autogenerated FK constraint name template specification cell. The Edit button appears.

2. Click the Edit button and, in the opened Autogenerated FK constraint name template dialog,
define the FK name template. You can use specific names and patterns, such as %t (a table
name) or %r (a relationship role) in the name template definition.

3. Click OK when you are done and continue the transformation setup process.

Conversion of Identifying Associations

Some relationships in the source model are treated as identifying relationships. In case of identifying a
relationship, the objects of the class, which is at the multiple end of the association, are not independent, that
is, they can exist only in association with the objects at the singular end of the association. In the resulting SQL
model, the FK of these relationships is included into the PK of the table.

The PK of the dependent table is composite and contains two columns as a result:

UML to SQL Transformation

1. 1D column of the table
2. FK to the independent table

Unfortunately UML models lack model data and notation to specify, which associations are identified. Hence
transformation has to guess this. It uses the following heuristics - the composite associations are treated as
identifying, while the other associations are not.

The Treat composition relationships as identifying transformation property governs these heuristics. If this
property set to false, all associations are treated as not identifying.

Conversion of Multivalued Properties

In UML models, properties can be multi-valued (e.g. [0..7], [2..*]). However in databases columns they can be
only single-valued. Transformation uses two strategies to handle multi-valued properties in the source model.

If the upper multiplicity limit is small and fixed, e.g., [0..3], then columns are simply multiplied the necessary
number of times. The result table will have multiple columns with sequence numbers appended to their names
(like “phone1”, “phone2”, and “phone3” columns in the result for a single phone[0..3] property in the source).

The Max Duplicated Columns transformation property governs the maximum number of columns, that are
generated using this strategy.

If the upper multiplicity upper bound is larger than this limit or unlimited, then an auxiliary value table is
generated for such multi-valued properties. This table is FK-related to the main table of the class, and holds a
“value” column for storing property values.

The Value table name transformation property governs the name of the generated table (%t in this property is
replaced by the name of the table and %r - by the property name). So, the table name template
“%t_%r VALUES” gives a “Person_Phone VALUES” table name for the Person::phone property).

Conversion of Generalizations

In UML, generalizations are used extensively, while SQL domain lacks the concept of generalizations. Hence
during the transformation, generalization trees are transformed into different concepts to simulate the
generalization approximately.

There are three different strategies for simulating generalizations in the result domain:

1. Multiple Tables, Decomposed Object strategy.
2. Multiple Tables, Copy Down strategy.
3. One Table, Merged strategy.

Specify the strategy for converting generalization trees in the Generalization Tree transformation strategy
transformation property.

Multiple Tables, Decomposed Object strategy

This strategy consists of the following actions:

1. Each class is converted to a separate table.
2. Direct (not inherited) properties of the class are converted to the columns of the table.

3. A foreign key to the table of the base class is created. The table of the base class carries the
inherited columns.

4. Primary keys of all the classes participating in a hierarchy tree are the same (there can be
several hierarchy trees in the same transformation source, and each one is handled
separately). PK of the specific tables is also a FK to the parent table.

UML to SQL Transformation

This strategy is the closest one to UML and fits nicely from theoretical standpoint since there is no data
duplication. The only problem of this approach is the performance of data retrieval and storage. During the
storing operation, objects are decomposed into several parts, each stored in a different table (that is why the
strategy is called Decomposed Obiject strategy), and for retrieving the object you have to query several tables
(with resulting multi-level joins).

Multiple Tables, Copy Down strategy

This strategy consists of the following actions:

1. Each class is converted to a separate table.

2. The table of each class holds columns for properties of that class AND all the columns, copied
from the base class (that is why this strategy is called Copy Down strategy).

As a result each table possesses the complete column set to carry data about an object of particular type. All
the data of the object is stored in one table.

The weak point of this strategy is that the association relationships between tables are copied down also.
Hence each association in the source can produce many foreign keys in the target. Writing SQL queries against
this database layout is not very convenient. Also, if you want to retrieve all the objects of the particular class,
you have to query several tables and union the results.

One Table, Merged strategy

This strategy consists of the following actions:

1. All the classes in the generalization hierarchy are folded into one large table.

2. All the properties of all the classes become table columns (note that columns that were
mandatory in the specific classes become optional in the merged table).

3. A separate selector column is generated, which indicates the type of the object carried by the
particular line.

The Selector Column Name, Selector Column Type and Selector Column Type Modifier transformation
properties determine the selector column format.

This strategy is suitable for very small hierarchies usually of just one hierarchy level with a couple of
specialization classes, each adding a small number of properties to the base class. E.g., general class
“VehicleRegistration” and a couple of subclasses: “CarRegistration” and “TruckRegistration”.

This strategy suites simple cases well. It is simple and fast. However it does not scale for larger hierarchies and
produces sparse tables (tables with many null values in the unused columns) in this case.

Conclusions and future improvements
Note that all hierarchies from the transformation source are converted using the same method. You cannot

choose different strategies for each particular case of the generalization tree. This is considered as a future
improvement for the transformations.

Conversion of DataTypes

You can choose two strategies to transform datatype of data to SQL:

UML to SQL Transformation

e To transform datatypes to structured user defined types. This is a default case.

1
Before transformation | After transformation
Shape I xtables
attributes Shape

QR e | [ecob-rect : Rectangle
| |#cole-id_Shape . integer

wdataTypes l wstructureds =
Rectangle | Rectangle
atinbuies | |#colz-upperLeft . Point2D
-upperleft : PointZ2D «cols-lowerRight : Point2D

-lowerRight : Point2D |

wdataTypes | wstructureds =]
Point2D I Point2D
attnbutes acols-X | integer
-X . integer | | xcoke-y : integer
=¥ . integer I

Figure 34 -- Example of datatype transformation to structured user defined types

The same sample in the, for example, Oracle SQL code will look as follows:

CREATE SEQUENCE Shapes.Shape SEQ;

CREATE OR REPLACE TYPE Shapes.integer AS OBJECT NOT FINAL INSTANTIABLE;
/
CREATE OR REPLACE TYPE Shapes.Point2D AS OBJECT
(
X integer,
Y integer
) NOT FINAL INSTANTIABLE;
/
CREATE OR REPLACE TYPE Shapes.Rectangle AS OBJECT
(
upperlLeft Point2D,
lowerRight Point2D
) NOT FINAIL INSTANTIABLE;
/
CREATE TABLE Shapes.Shape
(
rect Rectangle,
id integer,
PRIMARY KEY (id)
)
e To expand datatypes into separate columns at the point of usage. Each property of a class
having a datatype as a type is expanded into a set of columns—one column per each attribute
of the datatype (including inherited attributes). Column types are copied from the source

datatype attribute types (modulo the transformation type mapping). If the original datatype

UML to SQL Transformation

attribute is multivalued, the resulting column is further modified in the same manner as
multivalued class attributes. The datatype expansion is recursive.

After transformation

xtables
Shape

Before transformation

Shape

-rect : Rectangle xcols-rect_upperLeft X : integer

acole-rect_upperLeft Y : integer

w-rect_lowerRight_X : integer
acolz-rect_lowerRight_™ : integer
zCole-id_Shape : integer

1

|

|

|

|

|
wdataTypes l
Rectangle |
|

|

|

|

|

|

|

=ttt

-upperLeft : Point2D
-lowerRight ; Point2D

wdataTypes
Point2D

aiinbues

-X | intege
=% integer

Figure 35 -- Example of DataType transformation to separate columns

The same sample in the, for example, Oracle SQL code will look as follows:

CREATE TABLE Shapes.Shape

(
X upperLeft rect integer,
Y upperLeft rect integer,
X lowerRight rect integer,
Y lowerRight rect integer,
id integer,
PRIMARY KEY (id)

)i

On the conversion of DataTypes into separate columns at the point of usage, you can define names of the
columns. By default, the format “%r_%a” is used, where %r is a name of a class attribute and %a is a name of
a DataType attribute. In the example depicted in the preceding figure, column names are constructed according
to the default template, like rect_upperLeft_X, rect_lowerRight_Y and so on.

To select a strategy for the DataType transformation

1. In the Transformation Details (the 4th step of the Model Transformation Wizard), set the
Expand datatypes value to:
e False to transform datatypes to structured user defined types.

e True to expand datatypes into separate columns at the point of usage
2. Continue the transformation setup process.

To define a template name for columns

1. In the Transformation Details (the 4th step of the Model Transformation Wizard), click the
Expanded datatype column name template specification cell. The Edit button appears.

2. Click the Edit button and, in the opened Expanded datatype column name template dialog,
define the column name. In the column name definition, you can use specific convenient names
and the following patterns:

e %r - a name of a class attribute

e %a - a name of a datatype attribute

e %t - a name of table

UML to SQL Transformation

3. Click OK when you are done and continue the transformation setup process.

The column name template is defined in the Expanded datatype column name template property.

Conversion of Enumerations

When transforming enumerations, you can choose two strategies:

e To transform the enumeration to check constraints at the point of usage. This is the default
case. Every class attribute of the enumeration type in the transformation source is transformed
to the table column of a char type.

Before transformation After transformation

Account «tablex
Account

fcurrency in CEUR’, "JPY", 'LTL', "USD")}

-currency : Currency

wola-currency : char(3)

«Enumeration: s-id_Account : integer
Currency T
-longDescription : Stringke—
-USDRate : Real o | | N
h-gﬁ- I The table has an additional check
FUR constraint
JPY | fcurrency in CEUR", "JPY", "LTL", "USD')}

MNote that enumeration
properties are lost (not
transformed) in this
mode

Figure 36 -- Example of enumeration transformation to check constraints

The same sample in the, for example, SQL code will look as follows:

CREATE TABLE Enumeration CheckConstraint.Account
(

currency char (3),

id Account integer,

CHECK (currency in ('EUR', 'JPY', 'LTL', 'USD')),
PRIMARY KEY (idiACCOunt)

e To transform enumerations to lookup tables. This strategy can handle the more complex
enumerations, for example, enumerations having their own attributes. The lookup table is
automatically populated with enumeration literal values, and INSERT statements are generated
during the SQL code generation. For each attribute that enumeration source has (including
inherited attributes) the column in the target table is created. Attributes are transformed using
the normal transformation rules for class attributes (including the type mapping, data type
expansion, if requested, and multivalue-attribute expansion). The name column is added to the
lookup table and the primary key is automatically generated, see “Primary Keys
Autogeneration” on page 61. Every class attribute of the enumeration type in the transformation

UML to SQL Transformation

Befo

source is transformed t

|
re transformation

o the foreign key.

After transformation

Account

-currency : Currency

stables
Account

wenumeration:

s—currency : integer
»=-id_Account : integer

Currency |

-longDescription : String |
-USDRate : Real

LTL

UsD
EUR
JPY

[Imembers = cumency,
| A% «FKs [referencedMembers = id_Cumency}

stables
Currency

| zcolz-longDescription : varchar™(258)
xcols-USDRate : Real

| wcola-id_Currency : integer

swcols-name . char"(3)"{nullable = falze}

aliniwies

| |EuR

| PY
LTL

| |usD

enumeration [iterals

Figure 37 -- Example of enumeration transformation to lookup tables

The same sample in the, for example, SQL code will look as follows:

CREATE TABLE Enumeration LookupTables.Currency

(

) ;

longDescription varchar
USDRate,

id Currency integer,
name char (3) NOT NULL,
PRIMARY KEY (id Currency)

INSERT INTO Enumeration Look
INSERT INTO Enumeration Look
INSERT INTO Enumeration Look
INSERT INTO Enumeration Look

CREATE SEQUENCE Enumeration

CREATE SEQUENCE Enumeration

CREATE TABLE Enumeration Loo

(

(id_

);

currency integer,
id Account integer,
PRIMARY KEY (id Account),

(255),

upTables.Currency
upTables.Currency
upTables.Currency
upTables.Currency

id Currency,
id Currency,
id Currency,
id Currency,

LookupTables.Currency SEQ;
LookupTables.Account SEQ;

kupTables.Account

name
name
name
name

—_— — — —

VALUES
VALUES
VALUES
VALUES

0,
1,
2,
3

4

—~ e~~~

FOREIGN KEY (currency) REFERENCES Enumeration LookupTables.Currency

Currency)

To select a strategy for the Enumeration transformation

1. In the Transformation Details (the 4th step of the Model Transformation Wizard), click the
Enumeration transformation strategy specification cell. The list of available strategies
appears. Select one of the following:

e Check Constraints to transform the enumeration to check constraints at the point

of usage.

UML to SQL Transformation

e Lookup Table to transform enumeration to lookup tables.

2. Continue the transformation setup process.

Package Hierarchy Reorganization

UML models usually have a moderately deep package nesting organization, while SQL models can have at
most one package level - the schemas. Hence during the transformation, packages should be reorganized.

The Change package hierarchy transformation property governs the package reorganization. Possible
choices for setting the property value are as follows:
1. Leave intact choice switches reorganization off.
2. Flatten packages choice forces flattening of the packages of the source, leaving only the top
level packages in the destination.
3. Strip packages choice removes all packages of the source.

Naming of Transformed Elements

While transforming your UML models to SQL, you can modify names of the transformed elements according to
given naming rules. There are several predefined rules:

e Replace spaces or special characters in the element name with the underscore sign “_”. For
example, the name in source “Customer Profile” and “Terms&Conditions” could be transformed

as “Customer_Profile” and “Terms_Conditions” accordingly.

e Capitalize element names after the transformation. For example, the name in source
“Customer” could be transformed as “CUSTOMER”.

e Pluralize element names after transformation. For example, the name in source “Customer”
could be transformed as “Customers”.

e Detect the camel case edge in element names on transformation. For example, the name in
source “CustomerProfile” could be transformed as “Customer_Profile”.

To select a naming rule

1. In the Transformation Details (this is the last step of the Model Transformation Wizard),
click the Name conversion rules specification cell. The cell expands and the Edit button
appears.

2. Click the Edit button. The Select Opaque Behavior «Naming Rule» dialog opens.

3. In the opened dialog, select naming rules you want to use in transforming element names. You
may select more than one rule.

NOTE e Be sure the search includes auxiliary resources! To turn on the
appropriate search mode, click Include elements from modules
into search results.

e To select several naming rules, click the Multiple Selection
button.

Naming rules are as follows:

Rule name Description Example
CamelCaseSeparator Detects all the occurrences in the original name of the CustomerProfile >
situation where lower case letter is followed by upper Customer_Profile

case letter and insert the underscore sign'_' character
between.

UML to SQL Transformation

Rule name Description Example

LowerCase All Unicode letter characters in the source name are CUSTOMER 1 >
converted to their lower case version in the result name. customer 1
Other character are passed through unchanged.

Pluralization All original names that do not end with character 'S' or's' Customer >
will have the 's' character appended. Customers

SpecialCharacterEscape

UpperCase

WhitespaceEscape

All Unicode characters in the source name that are not
letters and not numbers are converted to an underscore
sign ‘_’ in the result name. Other character are passed
through unchanged.

All Unicode letter characters in the source name are
converted to their upper case version in the result name.
Other character are passed through unchanged.

All Unicode whitespace characters in the source name
are converted to an underscore sign ‘_’ in the result

Terms&Conditions >
Terms_Conditions

Customer 1 >
CUSTOMER 1

Customer 1 >
Customer_1

name. Other character are passed through unchanged.

For more information about selecting elements, see “Selecting an Element” in MagicDraw
UserManual.pdf.

4. Click OK when you are done.

You can also create your custom naming rules using structured expressions or various scripts. The naming rule
is an executable opaque behavior. For more information about executable opaque behaviors, see “Creating
executable opaque behaviors” in MagicDraw UserManual.pdf. The following procedure describes one of the
possible ways to create a custom naming rule.

To create a custom naming rule

1. Create a package for the naming rule data.

2. In this package, create an Opaque Behavior with the following parameters exactly in the same
order as follows:

e sourceElement : Element
e targetElement : Element
e initialName : String
The return parameter is of a java.lang.Object type.

E%u MyRule(sourcelElement : Element [1], targetElement : Element [1], initialMame : String [1]) : java.lang.Object [1]
& in sourcelElement : Element [1]
& in targetElement : Element [1]
- @ in initialName : String [1]
b 8 return out : java.lang.Object [1]

3. Use the Model Transformation Profile.mdzip module. On the main menu, click File > Use
Module. The required module is located in the
<install.root>\profiles\Model_Transformation_Profile.mdzip. Click Finish after you have
selected the module.

4. In the Model Browser, select the Opaque Behavior you have created and apply the
«NamingRule» stereotype on it. Open the opaque behavior’s shortcut menu and click
Stereotype. In the opened Select Stereotype list, select the «NamingRule» stereotype and
click Apply.

5. Open the opaque behavior’s Specification window and specify the Body and Language
property. Actually, this is a property where you define your custom naming rule. Click property
specification cell and then click the Edit button.

UML to SQL Transformation

6. In the opened Body and Language dialog, select a language for defining your naming rule and
create the rule’s body.

NOTE e The SQL language is not suitable for defining naming rules.

e If you choose the Structured Expression language, turn on the
Expert mode to get the all list of possible operations.

7. Click OK when you are done. The naming rule you have created appears in the Name
conversion rules selection list.

Transforming documentation

Documentation can be copied either with or without HTML formatting information. If you need to retain the
formatting information, click to select the Allow HTML in comments check box in the Transformation Details
pane (the 4th step of the Model Transformation Wizard).

The model element documentation is turned into SQL comments during the DDL script generation.

TIP! You can turn off the comment generation. For this, do the following:

1. From the Options menu, select Project. The Project Options dialog opens.

2. Select DDL Language Options on the left (you may need to expand the Code
Engineering node). The appropriately named pane opens on the right.

3. Click to clear the Generate documentation check box.
4. Click OK.

UML to SQL Transformation

-
Specification of Class
--5tores dog registration records.

Specification of documentation and hyperlinks CREATE TAELE UML.DogQ

Write documentation for the selected Class and assign
element, web page, or file,

)i

T
Sllowe HTML in comments=false

@& =

=

i] Documentation/Hyperlinks
e] A | - B IO

Stores dog registration records. |

Usage in Diagrams
Attributes

Sllow HTML in comments=true

—-—<html>

-- <head=

- <style>

- p ipadding:0px; margin:Opx;
- </ styles=

- =/ head>

-- <hody>

- <p>
——Stureg <b=dog registration =<span style="color:#ff0000; "=

- <yu=records</u></sparns-.
-- </p=

-—<=/hod

——</html>

({::R.EATE TAELE UML.DoOQ

)

Figure 38 -- SQL comments with and without HTML formatting information

Excluding elements from transformation

Elements can be excluded from the transformation in one of the following ways:
e By deselecting these elements in the 2nd step of the Model Transformation Wizard.

e By specifying rules for the automatic exclusion of elements in the 4th step of the wizard. These
rules must be defined as executable opaque behaviors.

To define a rule for automatic elements’ exclusion

1. Create an executable opaque behavior.

For more information, see “Creating executable opaque behaviors” in
MagicDraw UserManual.pdf.

2. Create an input parameter, whose type is Element, the abstract UML metaclass, and multiplicity
is [1].

3. Create a return parameter, whose type is java.lang.Object and multiplicity is [1].

4. Specify the Language and Body property value for the new opaque behavior.

UML to SQL Transformation

EXAMPLE Let's say we need to exclude from the transformation all the classes with the
«pendingReview» stereotype applied.

For this, we must do the following:

1. Select StructuredExpression as language of the opaque behavior body.

2. Define the body by creating a TypeTest operation, which takes the
collection of elements and returns only the ones with the «pendingReview»
stereotype applied (see the following figure).

For more information about the TypeTest operation, see “Calling operations
from the model” in MagicDraw UserManual.pdf.

Edit Body and Language

Select language from the language list and specify body in a dedicated editor,

Language:

StructuredExpression

Body:

(C) Body
5 B

- [€] Element = THIS
E} Type = Collection

Create operation...

|E| pendingReview [Class]
i [#] Create operation...
o[] Include Subtypes = false

Type Test () [Ise as Condition of a new Filter operation] [Remove

Operation Mame:

Type: |pendingReview [Class]

’ [] Indude Subtypes &

To specify the rules for the automatic elements’ exclusion from the transformation

1. In the Transformation Details pane (the 4th step of the Model Transformation Wizard), click
the Elements exclusion rules specification cell. The Edit button appears.

2. Click the button and select one or more rules in the Select Opaque Behavior dialog.
3. Click OK when you are done and continue the transformation setup process.

UML to SQL Transformation

Before transformation

spendingReview s
Municipal Pet Reqgistry

-registeredat

-registeredPet |0..*

Dog
-pet |0.*

-master

Human

After transformation

spendingReview »
Municipal Pet Registry

«tablex
Dog

xzcolz-id_Dog : integer
wcole-Tk_Humanid_Human : integer{nullable =

falze}

Imembers = fi_ Humanid_Human,

referencedMembers = id_Human}
A% wFKa
xtablex
Human

«cole-id_Human : integer

Figure 39 -- Example of transformation with excluded class

Type Mapping

Default type maps of the UML to SQL (Generic / Oracle) transformations remap the types that are commonly
used in the UML modeling domain (such as String) into types that are suitable for SQL domain (such as

varchar).

UML to SQL Type Map

The default type map for these transformations is stored in the UML to SQL Type Map profile and
automatically gets attached to your project at the 3rd step (the type mapping step) of the transformation wizard.
If necessary it can be changed.

UML to SQL Transformation

The Default map carries the following type conversions.

Source Type Result Type

String varchar (default)
varchar2
char varying
character varying
nvarchar
nvarchar2
nchar varying
national char varying
national character varying
longvarchar
long varchar
char
character
nchar
national char
national character

long char
short smallint
long number(20)
Integer integer
int int
float float
double double precision
date date
char char(default)
character
nchar

national char
national character

byte number(3)

boolean number(1)

If you have a situation when one type map imports another type map, you can specify another default mapping
rule. Such situation appears, for example, in the Oracle type map, inheriting from the Standard type map where
the Oracle mapping rule String-->varchar2 overrides the base mapping rule String-->varchar. For more
information about the type mapping, see “Transformation Type Mapping” and “Controlling Type Mapping Rule
Behavior” in MagicDraw UserManual.pdf.

NOTE This feature is available with MagicDraw 18.0 SP1 or later.

UML to SQL Transformation

Transformation Properties

This is the complete list of properties available in UML to SQL(Generic / Oracle) transformation in the Model
Transformation Wizard (for more information about this wizard, see “Model Transformation Wizard” in
MagicDraw UserManual.pdf).

85 Mot Tnstormaion Ve S =)

| Specify transformation details ' = [X
Adjust the selected transformation type behavior. ']_—DT}

&

R

Transformation Details
1 1. Select transformation type = | a: :
: typ (s = B B

~1 2. Select source fdestination B General

") 3. Check mappings e true

Autogenerated PK name template id_%&t

@ 4. Specify transformation details Autogenerated P type template integer
Autogenerated FK name template fle_=iataek
FK. name template
Autogenerated table name template Botl_%et2
Generate index for alternative key group || false
Index name template indexof_%eg

Type here to filter properties

[Reset to Defaults]

MNext = [Finish H Cancel][Help]

Figure 40 -- Model Transformation Wizard for UML to SQL (Generic / Oracle) transformation. Specify Transformation
Details wizard step

Property name Description
Autogenerated PK name If the class has no PK column in the ER model, this transformation
template parameter for the autogenerated column name will generate the

PK. You may specify the pattern for the PK name.
Default "id_%t", where %t is replaced by the name of the table.

Autogenerated PK type Specifies the type of the autogenerated PKs.

template Default: integer.

Autogenerated FK name The foreign keys are automatically generated to implement the
template relationships between classes.

This transformation parameter autogenerates a FK name. You may
specify the pattern for the name. Default: "fk_%t%k%r", where %t
is replaced by the name of the table, the foreign key is pointing.
The %k is replaced by the key name, to which this foreign key
points. The %r is replaced by the name of the relationship, which is
realized with this foreign key.

Autogenerated table name This transformation parameter autogenerates table name. You

template may specify the pattern for the name. Default "%t1_%t2", where
%t1 is replaced by the name of the first table, %t2 - second table.
The %r pattern (name of relationship) is also supported.

UML to SQL Transformation

Property name

Generated index for
alternative keys

Index name template

Change package hierarchy

Treat composition
relationship as identifying

Default association end
multiplicity

Generalization Tree
transformation strategy

Selector Column Name

Selector Column Type

Selector Column Type
Modifier

Max Duplicated Columns

Value Table Name

Autogenerate Sequences*

Autogenerated Sequence
Name*

Autogenerate PK

Description

If true, generates index for «AK».
Default: false
If the above option is set to frue, you may choose the template for

the index name. Template may contain %g pattern, which will be
replaced with AK group name.

Default: indexof_%g
Choose option for packages from transformation source: to strip all

the package hierarchy, or flatten the package hierarchy down to the
first level where each package is transformed into the schema.

Default: Flatten packages

If this option is set to true, the composition associations are treated
as if the «identifying» stereotype were applied to them.

Default: true

If multiplicity was not specified in model, defined multiplicity will be
set after transformation.

Default: 1

Selects the strategy to be used for converting generalization trees.
Default: Multiple Values, Decomposed Object

Name of selector column for the merged table strategy of
generalization conversion

Default: typeSelector

Note: together with selector type and type modifier this gives
typeSelector:char(255) column.

Type of the selector column for the merged table strategy of
generalization conversion.

Default: char

Type modifier of the selector column for the merged table strategy
of generalization conversion

Default: 255

Threshold for multivalue property conversion strategies - maximum

number of columns for which the column duplication strategy is
used. If exceeded, auxiliary value table is used.

Default:3
Name of the value table (to be generated when converting

multivalue properties). %t pattern is expanded to table name, %r -
name of the original property.

Default: %t_%r_ VALUES

(e.g Person_phone_VALUES table will be generated for
Person::phone[0..5] property in the source)

Selects wherever and when sequences are generated for PKs
Default: Generate sequences for all single-column PKs

Name of the generated sequences. %t pattern is expanded to table
name.

Default: %t_SEQ
If true, primary keys are generated automatically.
For more information, “Primary Keys Autogeneration” on page 61.

ER to SQL (Generic / Oracle) Transformations

Property name Description

Enumeration For more information, see “Conversion of Enumerations” on
transformation strategy page 67.

Expand datatypes For more information, see “Conversion of DataTypes” on page 64.

Expanded datatype column For more information, see “Conversion of DataTypes” on page 64.
name template

Name conversion rules One or more rules for element name conversion.
For more information, see “Naming of Transformed Elements” on
page 69.

FK name template An FK name template definition. You can use specific names and

patterns, such as %t (a table name) or %r (a relationship role).

For more information, see “Conversion of Associations” on
page 61.

Elements exclusion rules One or more rules for elements’ exclusion from the transformation.

For more information, see “Excluding elements from
transformation” on page 72.

Allow HTML in comments If true, SQL comments in DDL script retain HTML formatting
information.

For more information, see “Transforming documentation” on
page 71.

* - These properties are available only for UML to SQL (Oracle) transformation.

Both generic and Oracle transformation flavors are very similar, so they will be described together.
Furthermore, these transformations are based on and very similar to the UML to SQL(Generic / Oracle)
transformations with several extensions, relevant to ER modeling.

Hence this chapter only describes this extended behavior of ER to SQL(Generic / Oracle) transformation. To
see the full transformation feature set (which includes conversion of many-to-many relationships into an
intermediate table, three different methods of transforming generalizations into table layouts, autogenerating
primary keys, unique constraints and indexes, generating additional tables for multivalue attributes, type
remapping between UML and database worlds, sequence generation, and package hierarchy flattening),
please, see “UML to SQL Transformation” on page 60.

NOTE Please note that the SQL model, produced by the transformation, is usually not
optimal (e.g. all the generalizations are transformed using the same chosen
strategy, while usually different strategies are chosen for each particular case -
at the discretion of DBA). Hence it is frequently advisable to refine / edit the pro-
duced model after the transformation.

Identifying Relationships

Identifying relationships are transformed in the same way as in the UML to SQL transformation, that is, the
foreign key of the transformation gets to be included into the primary key of the dependent entity (the one at the
multiple end of the relationship). The difference in ER to SQL transformation case is that the ER model
eliminates guessing, which relationships are identifying and which ones are not. UML to SQL transformation
guesses, which UML associations should be identifying, by using a heuristic method - composition associations

ER to SQL (Generic / Oracle) Transformations

are treated as identifying (this heuristic is controlled by the Treat compositions as identifying transformation
property). In ER models, identifying relationships are explicitly marked as such, hence there is no need to
guess (“Identifying Relationships and Dependent Entities” on page 9 specifies how identifying relationships are
modeled).

Key Transformation

Keys in ER models are transformed into constraints in a DDL model.

These are the rules for key transformations into DDL constraints:

1. The Primary key of the entity in the ER model is transformed into a primary key constraint in the
SQL model.

2. The Alternative keys of the entities in the ER model are transformed into unique constraints in
the SQL model.

3. The Inversion entries of the entities in the ER model are transformed into indexes in the SQL
model.

4. If key or entry in ER model has a name (identifier tag), this information is preserved in the SQL
model. The corresponding key / index will also have a name in the SQL model.

Lets review an example of key modeling, which has been described in “Key Modeling” on page 13. After the
transformation, the three entities of the ER model are transformed into the three tables of the SQL model
respectively.

ztable=
Person

«PlK=-gsn :varchar
-name :varchar
-surname ;varchar

zUNigue=+{{columns = name, surname}

«tables
ShippingAddress
zFPl=-id integer
-country : varchar
-city svarchar
-street : varchar
-nr:varchar

-postalCode varchar

zuUnique=+addrQ{columns = country, city, street, ..

zUNigue=+post){columns = country, postalCode}
ztables
InventoryPartType

zFl=-code varchar
-name :varchar

zindex=+indexof_{ name)

Figure 41 -- TBD Screenshot Example of key transformation results

Virtual Entity Transformation

Virtual entities of ER models can be transformed into different elements of SQL models:

SQL to UML Transformation

e Tables (just as ordinary, non-virtual entities).

e SQL views (ER to SQL(Oracle) transformation has an additional choice of simple views or
materialized views).

The choice is controlled by the Virtual Entities Transformed To transformation property.

Tracing between Data Model Layers

After the transformation, a relationship is established between the logical data model layer, which is
represented by the ER model, and the physical data model layer, which is represented by a SQL model
respectively. It is possible to navigate between the connected elements in the forward (ER -> SQL) and
backward (SQL -> ER) directions using the dedicated submenu - Go To - on the element’s shortcut menu.

To go to the corresponding element in the forward direction

1. Right-click the element.

2. On it’s shortcut menu, click Go To > Traceability > Model Transformations > Transformed
To.

To go to the corresponding element in the backward direction

1. Right-click the element.

2. On it’s shortcut menu, click Go To > Traceability > Model Transformations > Transformed
From.

The same tracing information is visible in the element’s Specification window and Properties panel under the
Traceability tab. This information is also reflected in the Entity-Relationship and SQL Report using navigable

references between the report section. Traceability information can also be depicted in a relation map or in a
tabular format using the capabilities of the custom dependency matrix feature.

The SQL models and diagrams will be transformed into the platform-independent UML models and UML class
diagrams. SQL to UML transformation can be applied to SQL models of any database flavor.

Type Mapping

If there are types specified in the SQL model for elements, after transformation SQL types should be converted
to UML types. Because of that, there is a type mapping from SQL types to UML types.

Mapping rules are based on dependencies, which contains the SQL to UML Type Map profile. This profile is
automatically attached, when SQL to UML transformation is performed.

Transformation Results

The SQL stereotypes are discarded from tables, views, fields, and associations (except the PK stereotype).

Views are discarded in transformed class diagram.

SQL to UML Transformation

There are additional properties to choose for SQL to UML transformation in the Model Transformation Wizard
(for more information about the wizard, see “Model Transformations Wizard” in MagicDraw UserManual.pdf.)

EMDdEl Transformation Wizard x|
Transformation Details
i~ 1. Select transformation type B A E E‘i B
i~ 2. 5elect source/destination B General
Lse P [+ true
" 3.5elect t i
Sl LB Use IE [False
{+ 4. Specify transformation details IJse Ak [~ False
Specify transformation details.
(Mame)
iDescription)
Reset bo Defaults |
< Back [[=F = Cancel Help |

Figure 42 -- Model Transformation Wizard for SQL to UML transformation. Specify Transformation Details wizard step

Option name Type Description

Use PK Check box If set to “true”, appropriate columns with the primary key
stereotype are marked after transformation.

Use IE Check box If set to “true”, indexed columns with the inverted entity
stereotype are marked after transformation.

Use AK Check Box If set to “true”, unique columns with the alternative key
stereotype are marked after transformation.

The «IE» stereotype is applied to the columns in the UML model from indexes in the SQL.
The «AK» stereotypes are applied to the columns in the UML model from unique constraints in the SQL.

If the unique or index of the SQL contains more than one column, the group tag is created on the
corresponding columns. The value of the tag is the name of the unique / index.

If the PK, unique constraint or index of the SQL contains more than one column, the orderInXXGroup tag is
created on the corresponding columns. The value of the tag is the place number of the column in the PK,
unique constraint or index (first column gets tag value=1, second column - 2, etc).

Example TBD 3 SQL screenshotsBefore transformation:

==tahle==
Person

-0
-Mame
-Bank account

==unigque==+salamny 1D, Kame)

SQL to UML Transformation

After transformation:

Person

e ==IDygrouplk = zalary, ardeflnAKGroup =1}
==k ==-MameigroupAh = salary, arderlnAHGroup = 2}
-Bank accourt

There are some foreign key cases, when after transformation, association with multiplicities are created in class
diagram:

Transforming foreign key, when the «unique» stereotype is set

Before transformation:

==tahleg==

Person <<fahle=>
Account
==P==-|D eSS (4 _
-Mame FK columns = Account | <Unique==-hurmber

; -Currenc
==unigue==-Account|PK columns = Number} v

After transformation:

Person Account
-1D 0.1 0.1 |-Mumber
-Marme -CUrrency

Transforming foreign key, when the «not null» stereotype is set

Before transformation:

==tahbla==

Person <<takle=>
z=Flns Account
waeibioniliE) | [". .
-Marme {FK columns = Account, [<Zunigue=>-Number

==not null==-Account | PK columns = Mumber} L

After transformation:

Person Account

-0 0.* 1 -Mumber
-Marme -CUrrency

UML to XML Schema Transformation

Transforming foreign key, when the «null» stereotype is set

Before transformation:

==table== FE
Person AECoUnt
R - - - - = - =l ==unigue==-Mumber
Ul sz -Currency
==null==-Account| IFK columns = Account,
PK columns = Number}

After transformation:
Person Account
0.t 0.1
-k -Murnkber
-Mame -iCUFrEnCy

Transforming foreign key, when the «unique» and the «not null» stereotypes are set

Before transformation:

==tahblg==

==tahle==
Person

Account

= ==Unigue==-pMumber
-Mame aFH ==

. -CUrrency
==not null== ==unigue==-Account| {FK columns= Account,

PK columns= Number}

After transformation:

Perzson Account
0.1 1

- -Murnber

-Marme -CUFrEency

The UML to XML Schema transformation helps to create the equivalent XML schema model from the given
UML model.

Basically this transformation is the copying of a source UML model, and then applying the necessary
stereotypes according to the XML schema modeling rules.

UML to XML Schema Transformation

Type Mapping

This type map stores mapping between primitive UML data types and primitive XML Schema data types.

zdataTypes |[emap= [«XS0DsimpleTypes=
«XSDsimpleTypes: [| «£XSDsimpleType= =XSDsimpleTypes boolean boolean
integer unsignedint positivelnteger {id="boolean"}
{id ="integer'} [{id="unsignedInt"} rid = "positivelnteger"}
T n El
\ / ’
\ «mgps - «X30simpleTypes zflataTypes= _«m_ap»é «XS0simpleTypes
\&maps emaps . nonNegativelnteger byte hyte
{default} | o tid = "nonkegativelnteger} {id = "hyte"}
=
i1 | Iar’n}‘ap»__, -
\ oy - -~ «X30simpleTypes
aprimitive s _f__«m_ap»; i _nllI:nPnsrtrfrglnteger ! zdataTypes [map= |«XS0simpleTypes=
Integer | {id ="nonPositivelnteger'} o L — short
T~ e fid="shart'}
P, ™ 3 .
/ \ «maph «=XS0simpleTypes
. negativelnteger
! A (id ="negativelnteger'}
«maps maps U\ edataTypes |«maps [«XSDsimpleTypes
f \ - — int I int
/ \ EXSD_mmpleTyrpe» {id ="int"}
unsignedLong
! \ fid ="unsignedLong"}
i]
zXS0simpleTypes= «XSDsimpleTypes= -
unsignedByte unsignedShort zdataType= [=maps zxS0simpleTypes=
lid = "unsignedBtype"} | [id="unsignedShort'} long long
fid="long"}
«X30simpleTypes «X50simpleTypes zdataTypes zfataTypes [emap= |«X30simpleTypes=
base64Binary hexBinary char float | — float
{id="hase64Binary"} {id ="hexBinan/"} | fid ="float"}
™ il |
N /
Y eMaps 4 l
\ J Emapsz «mapL zdataTypes [map= |«XS0simpleTypes=
\ / I double o double
W s {id="douhle"}
primitives B emaps exS0simpleTypes=
String {_defgult}_ - 3 string
/ N, - {id ="string"}
«maps , \&maps~ _amaps
y %, = .
L 4 Il
eXS0simpleTypes «XSDsimpleType= zXS0simpleTypes=
anyURI COName decimal
{id = "anyURI"} fid ="QMNamea"} {id="decimal"}

Figure 43 -- UML to XML schema type map (1)

UML to XML Schema Transformation

eXS0simpleTypes «XS0DsimpleTypes=
duration date
{id ="duration"} {id="date"}
vl -
Fa
/ -~
sMaps / «Maps _ “
/ -~ «X30simpleTypes
;i .) dateTime
;- smapz . — | {id="dateTime"}
zX50simpleTypes eMmaps zdataTypes |— — “{default}
gDay = — — T 7| date —
(id="gDay) RN
«maps < I“ ”‘\ S - ré-.x}(SDsitrnpleType»
- ’ . ime
e " =Mmaps R {id = "time"}
=X30simpleTypes ! \ ~
gMonthDay ! Y .
{id = "gMonthDay"} " y Sy
«X30simpleTypes exsDsimpleTypes «X30simpleTypes
gMonth gYearMonth gyear
{id ="gMaonth"} {id="gYearMonth"} {id="gYear"}

Figure 44 -- UML to XML schema type map (2)

Transformation Results

For each class in the transformation destination set, the «XSDcomplexType» stereotype is applied, unless this
class is derived from the simple XML type (that is, one of the basic types, or type, stereotyped with
XSDsimpleType). In that case a «XSDsimpleType» stereotype is applied.

If the class is derived from another class, which is stereotyped as «XSDcomplexType», additionally the
«XSDcomplexContent» stereotype is applied on this class with «XSDextension» on the corresponding
generalization relationship.

If the class is derived from another class, which is stereotyped as «XSDsimpleType», additionally the
«XSDrestriction» stereotype is applied on the corresponding generalization relationship.

If the class is not derived from anything, and has attributes with the XSDelement tag, the
«XSDcomplexContent» stereotype is applied on this class.

If the class is not derived from anything, and has no attributes with the XSDelement tag, no «XXXXContent»
stereotype is applied on this class - the class has an empty content.

The UML datatypes in the transformation source set are transformed into the classes with the
«XSDsimpleType» stereotype - unless after the type map this class appears to be derived from a class with the
«XSDcomplexType» stereotype. Then the «XSDcomplexType» stereotype is used.

For each attribute of the class, which is NOT of the simple XML type (that is, one of the basic types, or type,
stereotyped with the «XSDsimpleType») or has a multiplicity > 1, the «XSDelement» stereotype is applied.

For each composition association, linking 2 classes stereotyped as XML schema types, the stereotype on the
association end is applied, the same as the rules for attributes.

UML to XML Schema Transformation

Enumerations in the UML model are transformed into the enumerations in the XML Schema model (classes
with the «XSDsimpleType» stereotype are derived by restriction from the XML string type, where all the
elements of the original enumeration are converted into the attributes with an «XSDenumeration» stereotype).

For each package in the transformation set, the «xXSDnamespace» stereotype is applied.

In each package, one additional class for the XML schema is created. The name of the schema class is
constructed by taking the name of the package and then appending the .xsd to it (e.g. if the package in the
source model set is named "user", then name the schema class "user.xsd" in the destination package).

The targetNamespace value is added to the schema class, with the name of it's parent (e.g. if the schema is
placed in the "http://magicdraw.com/User" package, the targetNamespace=" http://magicdraw.com/User" is set
on the schema class).

Schema class and the namespaces http://www.w3c.org/2001/XMLSchema [XML Schema profile] and its target
namespace are linked using the xmins relationships. The names of these links are: the same as target
namespace, for the link to target namespace; "xs" for the XML Schema namespace.

Class diagrams are transformed into XML Schema diagrams.

The model elements, which have no meaning in the XML schemas, are discarded. This includes (without
limitation) behavioral features of classes, interfaces, actors, use cases, states, activities, objects, messages,
stereotypes and tag definitions.

There are additional properties to choose for UML to XML Schema transformation in the
ModelTransformation Wizard (for more information about the wizard, see “Model Transformations” in
MagicDraw UserManual.pdf.)

mMudEI Transformation Wizard |
Transformation Dekails

{~ 1. Select transformation bype B AL = E"i B3

€ 2. Select source/destination Bleneral |

A 3 select t) Cefault Compositor #5Dall

« FEIEEE LYRE Mappings Default Attribute Kind xsDelement

{* 4, specify transformation details

Specify transformation details.
General
Fesek bo Defaults |
< Back Mexk = Finish Cancel Help |

Figure 45 -- Model Transformation Wizard for UML to XML Schema transformation. Specify Transformation Details

XML Schema to UML Transformation

Option name Type Description
Default Combo box Possible choices: XSDall, XSDchoice, XSDsequence
Compositor Determines element grouping in complex types of XML
Schema.
Default: XSDall
Default Attribute = Combo box Determines to what attribute kind, XSDelement or
Kind XSDattribute UML attribute will be mapped.

Default: XSDelement

The XML Schema to UML transformation helps to extract the abstract UML model from the XML schema
model.

Type Mapping
Type maps store mapping between primitive UML data types and primitive XML Schema data types, the same

applies for UML to XML Schema Transformation just in reversed order. For XML Schema to UML element type
mapping diagram, see “Type Mapping” on page 84.

Transformation Results

The XML Schema diagrams are transformed to the Class diagrams.
Unnecessary stereotypes (XSDxxxx) are discarded from the classes.
Attributes of the classes are gathered if they were spread into several different classes.

Attributes of the classes may be realized as associations. In this case the main class gathers all the
associations of the members.

The same principle is applied when elements are in a group, shared by two or more classes. Elements
(attributes) are copied into both destination classes.

The attributes with the «XSDgroupRef» stereotype are treated as if the group relationship has been drawn and
transformed accordingly - discarded in the UML model, and the group content (elements / attributes) placed in
their place.

Simple XML schema types (classes with the «XSDsimpleType» stereotype), which after copying and type
remap happen to be derived from any data type (UML DataType) or not derived from anything and are
transformed into the UML data types.

Simple XML schema types, which are derived by restriction from string and are restricted by enumerating string
values and are converted into enumerations in the UML diagrams.

The classes with the «XSDschema» stereotype are not copied into a destination model.

The «XDSkey», «XSDkeyref», and «XSDunique» stereotyped attributes are not copied into a destination
model.

XML Schema to UML Transformation

The «XDSany», «XSDanyAttribute» stereotyped attributes are not copied into a destination model.
The «XDSnotation» stereotyped attributes are not copied into a destination model.

The «XDSlength», «XDSminLength», «xXDSmaxLength», «XSDpattern», «XSDfractionDigits»,
«XSDtotalDigits», «kXDSmaxExclusive», «kXDSmaxInclusive», «xXDSminExclusive», and «XDSminInclusive»
stereotyped attributes are not copied into a destination model.

The XML schemas (classes with the «xXSDschema» stereotype) should not be transformed, but they may
contain inner classes (anonymous types of schema elements). These inner classes are transformed using
usual rules for UML type transformation - as if they were not inner classes but normal XML schema types.

MagicDraw provides a report template for generating reports of the data models. The report template is
suitable for reporting both ER and SQL models. If your project contains both ER and SQL models, a unified
report covering both models can be produced.

The report can be generated using the Report Wizard feature.

To generate a report

1. On the Tools menu, click Report Wizard.

2. In the Select Template area, select Data Modeling > Entity-Relationship and DDL Report
and then click Next >.

3. Click Next > again.

NOTE In this step, you can edit report variables. To start editing
variables, click the Variable button.

4. In the Select Element Scope area, define the scope for the report, using the buttons placed
between the two lists, and then click Next >.

5. In the Output Options area, define the appropriate options.

6. Click Generate. Wait a moment while the report is generated (generation time depends on the
selected scope).

The Report Wizard produces an .rtf file. This file contains sections for each reported model entity, its attributes,
relationships with other entities (both simple relationships and generalization / specialization relationships), and
keys. The SQL part of the file contains sections for each table (with its columns, constraints, indexes, and
triggers), each standalone sequence, each global procedure or function, each user defined type (with its
attributes and methods), and each authorization identifier (users, groups, roles, and permissions).

The report has a boilerplate beginning and includes a cover page, table of contents, and a table of figures.
Sections such as “Purpose”, “Scope”, “Overview”, and “Revision History” can be customized by changing the
predefined report variables (see the 3rd step of the report generation procedure, described above). The report

also has an appendix containing all the diagrams in your model.

If the model contains both ER and SQL models and is linked by traceability references, the report will link (with
active references) the appropriate report sections of entities and tables that are traceable in the model.

Entity-Relationship Modding ER&S0L Report
Date: March 26, 2010 Revison: 1.0
Entity Purchase
Transformed To: Purchase
Attributes:

= POMNrSing

= guantity:Integer

&« pricaVithDiscount: Integer
&+ totzl:Integer

» yeanlnteger
« month:Month

+ day:Integer
Kays:

* Primany {anomymousk POMr
Relstionships:

+ many{opticnal-oone{mandatony) Salesman (a5 NAR Identifying NA
+ many{opticnal-iorone{mandatony) Product (25 NA): Identifying NA

e T T T

T

Confidential < Your Comipany Name:= 12

Figure 46 -- Fragment of ER model report example

Entity-Relationship Modeling ER&SOL Report
Date: March 26, 2010 Revison: 1.0

Table Virtual_Entities.Purchase
Transformed From: Purchase
Columns:
* POMrvarchar
= guantityiinteger
« priceédithDismunt:integer
+ totalinteger
= yeaninteger
+ month:Month
s« daywinteger
& fk_Salesmanidivarchar NOT MULL
« fk_Productid:varchar MOT NULL
Kews Constraints/Indeses Triggers:
Primary (anomymous) PONr, f_Salesmanid, flk_Productid
& Foreign (anomymous): o table Salesman, fk_Salesmanid=Salesman.id
* Foreign (anomymous){1) to table Product, f_Productid=Product.id

* gsyumeger
= fk_Salesmanidivarchar MOT MULL
s fk_Productid:varchar MOT MULL

KewsfConstraints/Indeses Triggers:
* Primary {ancmymousk PONr, fk_Salesmanid, fk_Productid
Foreign (anomymous): o table Salesman, fk_Salesmanid=Salesman.id
Foreign {anocmymous)(1)k to table Product, f_Productid=Product.id

T T T

fﬁf

Contidential < Your Comipany MName:= 22

Figure 47 -- Fragment of SQL model report example

91 Copyright © 2009-2017 No Magic, Inc.

XML SCHEMAS

Introduction

Reference:_http://www.w3.org/TR/xmlschema-2/

92

Copyright © 2009-2017 No Magic, Inc.

http://www.w3.org/TR/xmlschema-2/

XML Schema Mapping to UML Elements

Defined stereotypes

Stereotype name

XSDcomponent

XSDattribute

XSDelement

XSDcomplexType

XSDsimpleConte
nt

XSDcomplexCont
ent

XSDgroup

Base
Stereotype

XSDcomponent

XSDcomponent

XSDcomponent

XSDcomponent

Applies on

Class

Attribute
AssociationEnd
Binding
Generalization
Comment
Component
Attribute

Attribute
AssociationEnd

Class

Class

Class

Class

Defined TagDefinitions

id — string

Details: The base and abstract stereotype for all
XML Schema stereotypes used in UML profile

fixed — some fixed element value
form — (qualified | unqualified)

refString — string representation of reference to
other attribute.

ref — actual reference to other attribute

use — (optional | prohibited | required) : optional
abstract — (true | false)

block - (extension | restriction | substitution)
final - (extension | restriction)

fixed — some fixed element value

form - (qualified | unqualified)

nillable — (true | false)

refString — string representation of reference to
other attribute.

ref — actual reference to other attribute

substitutionGroup — actual reference to UML
ModelElement

substitutionGroupString — string representation
of substitution group

key_unique_keyRef — a list of referenced UML
Attributes

sequenceOrder — a number in sequence order
block — (extension | restriction)

final — (extension | restriction)

mixed — (true | false)

simpleContentld — string

complexContentld — string
complexContentMixed

XML Schema Mapping to UML Elements

Stereotype name

XSDgroupRef

XSDall

XSDchoice

XSDsequence

XSDrestriction

XSDextension

XSDattributeGrou

p

XSDsimpleType

XSDlist
XSDunion

XSDannotation

XSDany

XSDanyAttribute

XSDschema

Base
Stereotype

XSDcomponent

XSDcomponent
XSDcomponent

XSDcomponent

XSDcomponent

XSDcomponent
XSDcomponent

XSDcomponent

XSDcomponent

XSDcomponent

XSDcomponent

Applies on

Attribute
AssociationEnd
Class

Class

Class

Generalization
Generalization

Class

Class

Class
Class

Comment

Attribute

Attribute

Class

Defined TagDefinitions

sequenceOrder — a number in sequence order

allld — string

maxQOccurs

minOccurs

choiceld — string

maxOccurs

minOccurs

sequenceOrder — a number in sequence order
sequenceld — string

maxOccurs

minOccurs

sequenceOrder — a number in sequence order

final - (#all | (list | union | restriction))

listld - string
unionld - string

applnfoSource
applnfoContent
source

xml:lang
namespace — string

processContents - (lax | skip | strict);
default strict

sequenceOrder — a number in sequence order
namespace — string

processContents - (lax | skip | strict);
default strict

attributeFormDefault
blockDefault
elementFormDefault
finalDefault

targetNamespace — reference to some
ModelPackage

version

xml:lang

XML Schema Mapping to UML Elements

e name — to UML Attribute or AssociationEnd name.

Stereotype name Base Applies on Defined TagDefinitions
Stereotype
XSDnotation XSDcomponent Attribute public
system
XSDredefine XSDcomponent Class
XSDimport XSDcomponent Permision schemal.ocation
«import»
XSDinclude XSDcomponent Component
XSDminExclusive XSDcomponent Attribute fixed = boolean : false
XSDminlnclusive XSDcomponent Attribute fixed = boolean : false
XSDmaxExclusiv XSDcomponent Attribute fixed = boolean : false
e
XSDmaxInclusive XSDcomponent Attribute fixed = boolean : false
XSDtotalDigits XSDcomponent Attribute fixed = boolean : false
XSDfractionDigits XSDcomponent Attribute fixed = boolean : false
XSDlength XSDcomponent Attribute fixed = boolean : false
XSDminLength XSDcomponent Attribute fixed = boolean : false
XSDmaxLength XSDcomponent Attribute fixed = boolean : false
XSDwhiteSpace @ XSDcomponent Attribute fixed = boolean : false
value
XSDpattern XSDcomponent Attribute
XSDenumeration XSDcomponent Attribute
XSDunique Attribute selector
field
XSDkey Attribute selector
field
XSDkeyref Attribute selector
field
refer — UML Attribute
referString - String
XSDnamespace ModelPackage
xmins Permission
attribute

XML schema attribute maps to UML Attribute with stereotype XSDattribute.
default maps to initial UML Attribute or AssociationEnd value.
annotation — to UML Attribute or AssociationEnd documentation.

type or content simpleType — to UML Attribute or AssociationEnd type.

XML Schema Mapping to UML Elements

Other attributes or elements maps to corresponding tagged values.

<attribute
default = string
fixed = string

form = (qualified | unqualified)
id = ID
name = NCName
ref = QName
type = QName
use = (optional | prohibited | required)<4:doptional
{any attributes with non-schema namespace . . .} >
Content: (annotation?, (simpleType?))

</attribute>

Example:

<xs:attribute name="age" type="xs:positivelnteger" use="required"/>

ref value is generated from ref or refString TaggedValue.

One of ref or name must be present, but not both.

If ref is present, then all of <simpleType>, form and type must be absent.
type and <simpleType> must not both be present.

attribute UML Model example:

z=¥slschema==
schema.xsd
Ttargethamespace=http/fMomagic.cam}

==xS0atmbute=>-address | annomymous{ixed=fixed wvalue, form=qualified, use=optional}
=<HE0atmbute=>-name : string = mindeffixed=hwed value, form=gualified, use=nptionalt
=={S0atrbute=>-surmame : siring

T

=<xEDattributeGroup==
attr_group

==xS0simpleType==
anhohymous

<=xz=Dattribute ==-{ref=name}
s=dsDattribute>>{ref=surname}

XML Schema Mapping to UML Elements

<xs:schema xmins:nm = "http://nomagic.com" xmins:xs = "http://www.w3.0rg/2001/XMLSchema"
targetNamespace = "http://nomagic.com”

«xg:attribute name = "name® type = "xs:string" default = "minde"
fixed = "fixed wvalue" form = "gualified" use = "gptional" =
cxg:annotation »
<xg:documentation -name attribute
documentations=/xs:documentation=
= /Hzannotations
< /xgrattribute:s
=xg:attribute name = "address" fixed = "fixed wvalue" form =
fqualified" use = "optionmal" =
¥z :annotation =
cxg:documentation =gurname attribute
documentations/xs:documentations=
=/xs:annctations
=x5:2impleType =
cxg:regstriction bagse = "xg:string" /-
=/xs:simpleType>
</xg:rattributes

«xg:attribute name = "gurname" type = "xs:string® /s
<xg:attributeGroup name = "attr group" -
zxgSrattribute ref = "nm:namg” =

«¥g:annotation =
=xg:documentation »reference
documentations/xs:documentations
«f¥sannotations
< /xs:attributes
cxgrattribute ref = "nm:surname”® [
«/xg:attributeGroups
< /¥ achemas

element

Maps to UML Attribute or UML AssociationEnd with stereotype XSDelement.
e annotation — to UML Attribute or UML AssociationEnd documentation.
e default - to initial UML Attribute or UML AssociationEnd value.
e maxOccurs - to multiplicity upper range. Value unbounded maps to asterisk in UML.
e minOccurs — to multiplicity lower range.
e name — to UML Attribute or UML AssociationEnd name.
e type or content (simpleType | complexType) — to UML Attribute or UML AssociationEnd type.

Other properties maps to corresponding tagged values.

XML Schema Mapping to UML Elements

XML Representation Summary: element Element Information Item

zglement
abstract = pQoglean @ false
block = (#all | List of (extension | restriction | substitution))
default = gtripg
final = (#all | List of (extension | restriction))
fixed = gtring
form = (gualified | ungualirfied)
id = 1D
maxfoours =

(agoNegativelpnteger | umbounded) : 1
minOccurs = popNegativelnteger : 1

name = NCHame
nillable = poglean @ false

ref = COName

substictuticonGroup = QName

type = QHame

fany attributes with non-schema namespace . . . J=

Coptent: (annotation?, ((simpleTyvpe | complexTvpel?, (unigue | kev | kewr
= /element =

ref value is generated from ref or refString TaggedValue.

One of ref or name must be present, but not both.

If ref is present, then all of <complexType>, <simpleType>, <key>, <keyref>, <unique>, nillable, default, fixed,

form, block and type must be absent, i.e. only minOccurs, maxOccurs, id are allowed in addition to ref, along
with <annotation>

XML Schema Mapping to UML Elements

Example:

<xs:element name="PurchaseOrder" type="PurchaseOrderType"/>

<xs:element name="gift">

<xs:complexType>
<xXs:sequence>
<xs:element name="birthday" type="xs:date"/>
<xs:element ref="PurchaseOrder"/>

</xs:complexType>

</xs:element>

element UML Model example:

¢ B Dechemas =
zoharna
{tr gz ame sp apre= htp:fnomagic
wrm lne: nm =k tpet om agic.

LR e
= anSCHete me ke > -count : counType
= rS0ele me rkx » -hour : inceger
= «¥E0ele ma rtx > -minubs : inke ger{subs iutionGroup Sting = nmecoant
< ¢ S0elemerty > -name: shing = mindedblodk= exension. nillable. absrack finalzre stricion, form=qualified. sub<tinbonGroops count fwed: Ared Yalee, id=eleme nt

=] {.
< HE0=simple Typer o M500e [ments:
courdTyo= 1
-EUFR am
v.L string
rurnber

it HSDOoomple wTypesr ¢
<o EDall

sorme_type

-hiou et [0.1]
-minuteReH0.1]

XML Schema Mapping to UML Elements

<xg:schema xmlns:nm = "http://nomagic.com" xmlnsg:xs =

"heep: //www. w3 . org/2001/X¥MLSchema® targetNamespace = "http://nomagic.com" =
<x5:element name = "name" type = "xs:string® default = "minde" id = "elementID"

abstract = "true' block = "extension" final = "restriction" fixed = "fixedValue" form =

"gqualified" nillable = "true" substituticnGroup = "nm:count" >

<¥S:annotation >
=xg:documentation =element name documentations/xs:documentations
z/xg:rannotation>
</%g:element >
<¥g:element name = "count® =
<¥S:annotation >
zxg:documentation =element count documenations/xs:documentations
z/xg:rannotation>
=xg:simpleType =
=¥g:restriction bage = "xs:number® /=
= /xs:simpleType=
= /xz:element =

=xg:element name = "hour" type = "xs:integer" />
=xg:element name = "minute® type = "xg:integer” substitutionGroup = "nm:count” f=
<xg:element name = "surname® type = "xg:string” minfccurs = "1" maxOcours =
"unbounded" /=
«xs:complexType name = “"some bype” =
«=¥8:all =
<xg:element ref = "nm-hour' minCcours = "09 maxOocurs = "19

cxgrannotation =
z=xg:documentation =hour ref
documentatuions=/xs:documentations
</xg:rannotations
z/xgrelement »
cxg:element ref = "nm:minute" minQccurs = "0" maxOccurs = "1" /=

c/xg:alls
= /xs: complexTypes

complexType

Complex type maps to UML Class with stereotype XSDcomplexType.
e abstract - to UML Class abstract value(true | false).
e annotation - to UML Class documentation.
e attribute — to inner UML Class Attribute or UML Association End.
e attributeGroup — to UML AssociationEnd or UML Attribute with type XSDattributeGroup.

name — to UML Class name.

This class also can have stereotypes XSDsimpleContent, XSDcomplexContent, XSDall, XSDchoice,
XSDsequence.

No stereotype — the same as “XSDsequence”.

Generalization between complex type and other type has stereotype XSDrestriction or XSDextension. We
assume stereotype XSDextension if generalization do not have stereotype.

Some complex mapping:
e complexType with simpleContent — to UML Class. This class must be derived from other class
and can must have stereotype XSDsimpleContent.

e complexType with complexContent — to UML Class. This class must be derived from other
class and must have stereotype XSDcomplexContent.

XML Schema Mapping to UML Elements

complexType with group, all, choice or sequence — to UML class with appropriate stereotype.

zcomplexType

abstract = boolean : false

block = (#all | List of {(extension | restrictionm))

final = (#all | List of {extension | restriction))

id = ID

mixed = hoglean @ false

name = NCName

fany attributes with non-schema namespace . . .jJ=

Content: (annotation?, (simpleContent | complexCoptent | {(gxoup | al
{lattribute | attributeGroup)*, anyAttribute?)}))}

= /complexTypes

When the <simpleContent> alternative is chosen, the following elements are relevant, and the remaining

property mappings are as below. Note that either <restriction> or <extension> must be chosen as the content of

<simpleContent>

zsimpleContent
id = ID
fany attributes with non-schema namespace . . . /=
Content: (annotation?, {(restriction extension))

=/simpleContent >
cregbriction
bage = (JName

id = ID

{fany acrributes with non-schema namespace . . . }=

Content: (annotation?, (zimpleType?, (minExclusive | minInclusive | maxE:
maxlnclusive | totalligits | fracticonDigits | length | minlength | maxLendg

. IR i . . P L o* . 2
pattern 1 attrzibute : i)

z/regtriction>

cgxtension

base = QName

id = 1D

{fany acrributes with non-schema namespace . . . }=

Content: (annotaticn?, (l(attribute | attributeGroun) *, anvhttribute?))

«/extensions
zattributeiroup

id = ID
ref = QOName
{any attributes with non-schema namespace . . . }=

Content: (aonotation?)
=jattributeiroups
zanyvAttribute

When the <complexContent> alternative is chosen, the following elements are relevant (as are the

<attributeGroup> and <anyAttribute> elements, not repeated here), and the additional property mappings are
as below. Note that either <restriction> or <extension> must be chosen as the content of <complexContent>,

but their content models are different in this case from the case above when they occur as children of
<simpleContent>.

The property mappings below are also used in the case where the third alternative (neither <simpleContent>

nor <complexContent>) is chosen. This case is understood as shorthand for complex content restricting the ur-

type definition, and the details of the mappings should be modified as necessary.

XML Schema Mapping to UML Elements

zcomplexContent
id = ID
mixed = hocolean
{any attributes with non-schema namespace . . .J}=
Content: (aonotaticn?, (restriction | extensicn))
= fcomplexContent »
zrestriction
base = QName
id = ID
{any attributes with non-schema namespace . . .}=
Content: (aonotation?, (group | all | choice | sequence)?, ((attribute |
attributegroup)*, anvittribute?))
= /restriction=
zextensicn

base = (QName

id = ID

{fany acrributes with non-schema namespace . . . J}=

Content: (annotation?, ((group | all | choice | seguence)?, ((attribute

attributedroup) *, anwAttribute?))

</extension=

XML Schema Mapping to UML Elements

complexType UML Model example:

==M5D=chama==~
schema
ftargettl ame zpace=htp lhomagic.com
an lnsnm=hittp iinom agiccom }

==H5D com pleType=x
my_Type

{inal=e:tenszion,
hlock=exdens=zion,

y T"" “ﬂland- 2= KIS0 Eth Ut Group ==
=m el attr_agroup
=«MSDaltribute==.name : string
== HE0 anyrttribute == -unnam edi
== ¥5Dregtriction==
2= NS0 com plexType==
==H3Dcomplextontent== ==XSDeom plexType==
my_Type2 ==KS[com plext ontent==
{inal=eden zion, ==xXSDall= =
block=-axtension, my_Type3
m iz, -
COM pIe s 0 Nlenthiixed= Talse | ==MED elem ent==_orderi : aFrlng
com plext ontentid=conte ntil } - <=HSDelem ent=--order: =hing
string
== A3D attribute==-=urnam = : sting

<2 dEDrestriction==

==rSDCOMm plexTyRe ==
==¥SDh=impledonte nt==

my_Tupes

= =KSDcom plexTypes==
== X500 =imple Content==

my_Typed

==mSDatiribute == gt : 2iring

<=2d=Dm inLengti==+minLengih = 2

=7xml vergsion='1.0' encoding='Cpl2&2'?>

=xg:schema xmlns:nm = "http://nomagic.com” xmlng:xs =

"http: /fwww. w3 . org,/2001/X¥MLSchema"” targetNamespace = "http://nomagic.com” =
«xgrcomplexType name = "my Type2® block = "extension"” final =
"extension" mixed = "true" >

xS rannotation =

«¥8rdocumentation =my typed
documentation</xg:documentations>

=/¥srannotations=

XML Schema Mapping to UML Elements

=xg:complexContent id = "contentID" mixed = "false" -
<xg:extension base = "om:my Type® =
<xg:attribute name = "gurname" type = "xg:string® f»

</¥sextensions
=/x5:complexContent »
=/ug:complexTypes

=¥g:complexType name = “"my Tyvpeld' =
«¥8: complexContent =
<xg:restricticon base = "mm:my Type" =
=xg:all =
zxg:element name = "order" type = "uHs:string®
i=
zxs:element name = "orderl™ type = "xs:string"”
i=
=/xg:all=
< /¥ :restriction>
= /xs:complexContent »
=/xg:complexType=
=xg:complexType name = “"my Tvped" =
=xg@:gimpleContent =
=xg:restriction bage = "xg:string" =
=xg:minlength value = "2" /=
«/xg:restriction=
= /xs:zimpleContent »
=/xg:complexTypes
x5 complexType name = “"my Types&" =
=xg:simpleContent =
<xg:extension base = "ms:string® =
<xg:attribute name = "attri" type = "xg:gtring" /-
</¥sextensions
= /xs:simpleContent »
=/us:complexTypes
zxg:complexType name = "my Type" abstract = "true" block = "extension®
final = "extension" id = "myTypelID"” mixed = "true" =
«¥grannotation =
<xg:documentation =my type
documentations/%s:docunentations
=/xs:annotations=
=xg:attribute name = "name" type = "Hs:string® /=
=xg-attributedroup ref = '"nm-attr group® /s

=xg@:anyhttribute [
= /xe:complexTypes
=xg:attributedroup name = "attr group" /=
</xg:schemax=

attributeGroup

attributeGroup maps to simple UML Class with stereotype XSDattributeGroup.
e name — to UML Class name

e annotation — to UML Class documentation

e attribute — to inner UML Attribute or AssociationEnd with XSDattribute
e stereotype.
e attributeGroup - inner attributeGroup always must be just reference. Such reference maps to

Attribute or AssociationEnd with type of referenced attributeGroup. The opposite Association
End kind must be aggregated and it must be navigable.

e anyAttribute — to inner UML Attribute with stereotype XSDanyAttribute.

XML Schema Mapping to UML Elements

If reference is generated, name is not generated.

When an <attributeGroup> appears as a daughter of <schema> or <redefine>, it corresponds to an attribute
group definition as below. When it appears as a daughter of <complexType> or <attributeGroup>, it does not
correspond to any component as such.

attributeGroup UML Model example:

<<XSDableGroLp>> _
attr_group_name {C;{?Sjm’ﬁtegiiu:; =
<o ¥=DanvAttn butes = - . - = i
<<XEDAIT DUte==-rame Siring ==XEDattribute=>-city : sting
==zl bute==-sumame | sting

=<}*Z0schemas» <=HEDatnbureGroup==
schema xsd global_attr_group

{argetMamespace=h Lo nomagic. oo} «<¥SDealtribute>=address ; sting

=xg:gchema xmlns:nm = "heep:/ /nomagic.com” xmlng:xg =
"http://www. w3 org/2001/XMLSchema” targetMNamespace = "http://nomagic.com”
>
«¥grattributedroup name = "global attr group" =
«xg:atcribute name = "address" type = "ms:string' [s
< /xg:attributelroup:s
exgrattributedroup name = "atbtr group name"

=Xg:annctation =
«xs:rdocumentation =attribute group
documentatione /s :documentations
</xs:annotations
«xg:atrcribute name = "surname’ type = "ms:string' [s

<«¥s:attribute name = "name" type = "xXs:string" =
«¥S:annotation =
xg:documentation =name attribute
documentations/xs:documentations
«/xgrannotations
< /xg:ateributes
exgrattributeGroup ref = "nm:global attr groupz" -
«XS:annotation =
«xg:documentation sreference
documentation« /xs:documentations
«/®zrannotactions
«/xg:arcributedroups
«¥g:ranyAttribute /=
=/xg:actributeGroups
«¥grattributedroup name = "global attr group2" =
<xg:attribute name = "city" type = "xs:string" /-
</xg:arbributedroups
=/x5:gchema>

XML Schema Mapping to UML Elements

simpleType

Maps to UML Class with stereotype XSDsimpleType.

XML Representation Summary: simpleType Element Information ltem

zgimpleType

final = (#all | (list | umion | restriction))

id = 1D

name = NCHame

famy attributes with non-schema namespace . . .J}»

Content: (aunotation?, (restricticn | list | wadom))
=/egimpleType:
zrestriction

baze = QName

id = 1D

famy attributes with non-schema namespace . . .J}»

Content: lannctation?, (gimpleTyvpe?, (minExclusive | minInclusive | maxE
maxinclusive | totalDigivs | fractionDigivs | length | minLength |
whitespace | pattern)*))

«/restriction=

=ligst
id = 1D
itemType = QOHame
famy attributes with non-schema namespace . . .J»
Conrent: (gnootaticn?, (simglelvpat))

«flise=

<union
id = 10
memberTypes = List of QName
fany attributes with non-schema namespace . . .J=
Content: (annotation?, (simpleTypa+))

< /unions=

Example:

=xg:8impleType name="farenheitWaterTemp"=
«Xg:regtriction base="xg:number®>
<xg:fractionDigits walue="2"/>
exg:minExclugive value="0_00"/=>
exg :maxExclugive value="100.00" /=
<fxg:resrrictions

=/xs:gimpleType:

The XML representation of a simple type definition.

restriction

To specify restriction generalization must be used between this class and super class. This generalization has
or do not have XSDrestriction stereotype. Restriction id and annotation maps to Generalization properties.

In order to have inner simpleType element, parent of this Generalization must be inner Class of outer UML
Class.

list

UML Class must have additional stereotype XSDlIist.

XML Schema Mapping to UML Elements

Binding between this class and XSD:list must be provided.

“‘itemsType” maps to UML TemplateArgument from Binding.

union

UML Class must have additional stereotype XSDunion.

“‘memberTypes” and inner simpleTypes maps to several UML Generalizations between this simple type and
members types.

In order to have inner simpleType element, parent of this Generalization must be inner Class of outer UML
Class.

XML Schema Mapping to UML Elements

Example:

Restriction example

number
Chtlp i o3 org 2001MLS chiam &)

£|'_

=z A5Dzimple Type==
farenheit¥ater Temp == HElEin pleTypes>
ANCIMyTNoUS

== XS0 e ctionD | gits == -TractlonC [gits = 1{Mxed, ld=TaionDIgitzn §
==MSDlength==-lengt - wid =1 0{id=lengthID, fived}
==HI0m aExlusives=-m a+Excluzive woid = 101 {fixed, id=m axeaxlusiveid i
== HEDmadncdusive==smadnciuzive = 100{ixed, id=maxnclusiveid}
== ME D sxlencth==on alangth woid = S0{icem adenythlD | dizecd=falzal
==mIDminExclusives=-minExduzive | waid = 39[id=id, Mxed}
==¥SDminincluzivess-m ininclsive = 1 00Gd=mininclusiveid, e} ==izhsimpleTpes==
==H3lminLength==-m inLength . woid = 24id=m inlengthlD |, fixed } dayTime
==psDpatiems==-pattern ; void = [0-9)5 K-[0-9F4 D7 {id=patern_id}
- =4S Dtots| Digite == total digite = Bid=totalD igit=ID |, fized=talze] 2= HSUENLIMN erBtion==CaY
== xsDwhiteSpace==-whiteSpace | wid = presere el ld=whits_spaceid | x<XSDenum erstiona=-night
== isDwhiteSpaces=anhiteSpacel wid{ixed, id=white_spaceid, value=prezerse

Siring
[http oo wd orgf2001 KWL Schemal

=« WEDregtiction==

== RX5DzimpleTwmes==
SBH
{inal=rzstrictiaon}

<=xIDenum eralion=>=-1emn ale
== X=Denumeralion==-in ale{id=somea_id}

«xg:schema xmlng:nm = "htep://nomagic.com" =mlns:xs =
"hetp://www . w3 org /2001 /XMLSchema” targetMamespace = "htep://nomagic.com" -
«¥g:gimplaeType name = "farenheitWaterTemp" =
«¥gS:annotation =
zxg:documentation =documentation of simple
Eypes/xs - documentations
< /wgrannotations
«¥§:regtriction base = "xs:number" =
“X§rannotation =
exgrdocumentation >documentation of
restrictions /%2 :documentarions
</xg:annotation=
=xs:pattern id = "pattern id" value = "[0-%]1{5}(-[0-
o] falren =
=Xg:annotation =
«xgrdocumentation spattern
doce /xg-documentations

XML Schema Mapping to UML Elements

«/®zrannotactions
</®xg:pacterns
«xs:whiteSpace id = "white spaceid" fixed = "true" wvalue

"preserve =
«Xs:annotation =
=xgrdocumentation =white space
doc=/xa documentations
/g rannotarions
</xg:whiteSpace:
«xs:whiteSpace id = "white spaceid" fixed = "true" wvalue

"preserva’ =
«XS:annotation =
zxg:documentation =white space
doc=/xa documentations
/g rannotarions
=/xg:whiteSpace=
exsrmaxlength id = "maxlengthID® fixed = "false® wvalue =
0T =
«XS:annotation =
zxg:documentation =max length
documentations/xs:documentations
<« /¥ rannotations
< /xg :maxLength>
exs:minbength id = "minlengthID® fixed = "trus" wvalue =
nan s
«XS:annotation =
zxgrdocumentation =min length
documentations/xs:documentations
<« /¥ rannotations
</xgz:minLengths>
«#xs8:length id = "lengthID" fixed = "true" wvalue = "10" =
«xs:annotation =
«xg:documentation =length
documentations /®xs:documentations
«/xgrannotations
< /xz:lengths
«¥s:fractionDigits id = "fractionDigitsID" fixed = "true"
value = "1" =
«xs:annotation =
exg:dooumentation =fraction digits
documentatione /s :documentations
</®grannotations
«/xg:fractionDigitss
«¥s:totalDigics id = "totalDigitsID® fixed = "false" wvalue
= "H" =
«XS:annotation =
zxgdocumentation =total digits
ide/xs:documentations
</®grannotations
«/xg:toralbDigitss

cxzsrmaxInclusive id = "maxinclusiveid" fixed = "trus"
value = "100" =
=¥g:annotation =
cxg:documentation =max inclusive
documentatione /®s:documentations
< /#Hgrannotations:
«/xg:maxInclusives
cxs:mininclusive id = "mininclusiveid" fixed = "true!

value = "100" =

109 Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

«¥g:annotation =
«xg:documentation =min inclusiwve
documentatione/xs:documentations
</¥sannotations
/g minInclugsives
=¥8:maxBExclusive id = "maxexclusiveid" fixed = "trus"
value = "101" =
«¥g:annotation =
cexg:documentation =max exclusive
documentations/xs:documentations=
«/xs:rannotations=
/g rmaxExclugives
=¥8:minExclusive id = "id" fixed = "true" wvalue = "5S93%" =
cxgrannotation =
«=xg:documentation =min exclusiwve
documentations,/xs:documentations
</xs:annotations=
z/xg rminExclusives
< fxg:restrictions
</xg:gimpleTypeas
«xg:8impleType name = "dayTime" =
«¥g:annotarion =
zx8:documentation »=day time
documentations/xs:documentations
< /xg:annotations
«¥g:regtriction =
“¥S:annotation =
«¥g:documentation =restricticon
documentatione/xs:documentations
< /2 rannotations
«X8:simpleType =

exg:restriction base = "xs:number”® [»
«/xz:2impleTypes
z¥8:enumeration value = "day" =

=xgrannotation =
exgrdocumentation =day
values/xg :documentations
< /X8 annotacions
z/®grenumerations
zxgrenumeration value = "night" =
=xgrannotation =
«¥grdocumentation =night
values/xg:documentation:
</¥sannotations
/g renumarations
< fwa:restrictions
«/xg:zimpleTypes
«xg:simpleType name = " sex” final = "restriction” =
sxs:rannotation =
zx8:documentation =documentation of simple type
restrictions/xs:documentations
< fxg:rannotation=

«¥S:restriction base = "xs:s5tring" =
=xg:enumeration id = "some id" value = "male" /=
=¥grenumeration value = "femala” =

cxgrannotation =
=xg:documentation =female
values/xz :documentation:

110 Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

< /#Hgrannotations:
«/xg:enumerations
</xg:restrictions
=/xs:gimpleTypes
< /%5 :achemax:

list example

<eAaSDechem ax »

sohama

iem] ¢ £xE0 zim pleTypes:

: L string
<emSheimpleTypes

list

T T
<bndea{j fﬂﬂﬂnHJDush

coAaDresiction:»

< «birdingp>
| {<Nrmnﬂ}>
2208 Dz imple Ty e > 22250 simplelypes» <4250 mplaTepe: »
(":}qSD"SD) <<><SDI|S[>} T amon Yo us
my_nurmnbar_list my numbar_list2 ™
izHd=li=il 0}

=7xml wversion='1l.0' encoding="UTF-8'7=

zxg:gchema xmlns:xe="http: //www. w3 . org/2001,/¥MLSchema" =
exg:simpleType name="my number 1iscz" =
=¥g:1ist =
«xs:aimpleType =
=xg:regtriction bage="xg:string" /=
=/xg:simpleTypes
z/xg:ligt=
= /xg:zimpleTypes
exg:simpleType name="my number listc" =
«xg:annctation =
exs:documentation =my list
documentations/xs:documentations
</xg:annotations
«xg:list itemType="xs:boolean" /-
< /xg:zimpleTypes
< /%8 sachemax

XML Schema Mapping to UML Elements

union example

== ¥=0zin pleTypes=
A Z=NEDEm plET ye==

=ring
(¥ML Schema P rofle it W n orm 2000 Sl Schem &) .l
_ C=ML Schema P rofle bitp: s nd o rg Q007 WL Schema)
TIed==rng
< <aDvhiteS pace=: - = pres ervelid=string prezere) =
=eRs0restriction==

- <=HS0=impeTye==
F=HSDsimpleTyo- -

=zASbynionz==

my_sanple_union
funionld=uniori D}

==mE0 = mple Tye==
== ¥SDschem o= == =0union:=
echemnased my_simple_unionz
. A . T
[targeiiam espace =kt Snom agic.com | fumicmlal =urionl 0 i
«xg:schema xmlng:nm = "http://nomagic.com" =mlns:xs =
"hetp: //www . w3 _org/2001/XMLSchema” targetMamespace = "http://nomagic.com" -
«¥E:8impleType name = "my simple union" =
«xs:unicn id = "unionID' memberTypes = "xs:string xs:number® /s
«/xg:2impleTypes
«¥8:8impleType name = "my simple union2" =

«¥Srannotacion =
zxg:documentation »=very important
documentatione /xs:documentations
< /wg:annotations

«¥s:union id = "unionlID" memberTypes = "xs:number" =
zxs:simpleType =
exg:restriction base = "xs:number" f=

= /=g simpleTypes
«/xg:unions=
«/xg:2impleTypes
=/x5:schema>

minExclusive

Maps to UML Attribute with stereotype XSDminExclusive. Name and type of such attribute does not make
sence.

e value — to Attribute initial value.

XML Representation Summary: minExclusive Element Information ltem

zminExclusive
fixed = Loglean : falsge
id = 1D
value = anySimpleTyvpe
fany arrribures with non-schema namespace . . . [=
Content: (aoootatiop?)

</minEBxclusives

{valuel ‘must be in the -value space of {base type definition}.

XML Schema Mapping to UML Elements

Example:

The following is the definition of a -user-derived- datatype which limits values to integers
greater than or equal to 100, using *minExclusive-.
zgimpleType name='more-than-ninety-nine' s

<regtriction bage='integer':

eminBxclusive value='99"/>

</restrictions
=/simpleType=
MNote that the -value space- of this datatype is identical to the previous one (named ‘one-
hundred-or-more).

maxExclusive

Maps to UML Attribute with stereotype XSDmaxExclusive. Name and type of such attribute does not make
sence.

e value — to Attribute initial value.

XML Representation Summary: maxExclusive Element Information ltem

<maxExclusive
fixed = pooleapng : false
id = ID
value = goySimpleTvpe
{any attributes with non-schema namespace . . .J»
Content: l{gogopotation?)
</maxExclusive=
{valuel -must be in the -value space- of {base type definition}.

Example:

The following is the definition of a -user-derived- datatype which limits values to integers less
than or equal to 100, using ‘maxExclusive-.
=2impleType name='legs-than-one-hundred-and-one's=

<ragtriction bage='integer'=

«maxExclusive value='101'/>

<fregrrictions
</simpleType>
Mote that the -value space: of this datatype is identical to the previous one [named 'one-
hundred-or-less’).

mininclusive

Maps to UML Attribute with stereotype XSDmininclusive. Name and type of such attribute does not make
sence.

XML Schema Mapping to UML Elements

e value — to Attribute initial value.

XML Representation Summary: minInclusive Element Information ltem

«minInclusive
fixed = boolean : false
id =
value = anvsimpleType
fany attributes with non-schema namespace . . . [=
Content: {(annctation?)
= /minInclusives

{valye} -must- be in the -value space- of (base tvpe definition}.

Example:

The following is the definition of a -user-derived- datatype which limits values to integers
greater than or equal to 100, using -mininclusive-.
<gimpleType name='one-hundred-or-more' =
<restriction base='integer'=
<minInclusive walue='1047/>
=/restrictions>
</simpleTypes

maxlinclusive

Maps to UML Attribute with stereotype XSDmaxInclusive. Name and type of such attribute does not make
sence.

e value — to Attribute initial value.

XML Representation Summary: maxInclusive Element Information ltem

zmaxInclusive
fixed = boolean : false
id = 1D
value = anvoimpleTyps
fany attributes with non-schema namespace . . . /=
Content: (annotation?)
< /maxInclusives

-must- be in the -value space- of [base tvpe definition}.

Example:

The following is the definition of a -user-derived- datatype which limits values to integers less
than or equal to 100, using -maxlnclusive-.
«SimpleType name='one-hundred-or-less's
crestriction base='integer'=
«maxInclusive value=1100"'/>
e/regtriction>

</simpleTypes

totalDigits

Maps to UML Attribute with stereotype XSDftotalDigits. Name and type of such attribute does not make sence.

XML Schema Mapping to UML Elements

e value — to Attribute initial value.

XML Representation Summary: totalDigits Element Information tem
<totalDigits

fixed = beoclean : false

id = ID

value =

{any attributes with non-schema namespace . . .J}=»

Content: (anpotation?)
</toctalbigits=

Example

The tollowing is the detinition ot a -user-derived- datatype which could be used to represent
menetary amounts, such as in a financial management application which does not have figures
of $1M or more and only allows whole cents. This definition would appear in a schema
authored by an "end-user” and shows how to define a datatype by specifying facet values which
constrain the range of the ‘base type: in a manner specific to the +base type (different than
specifying max/min values as before).
<=gimpleType name='"amount !>
=restriction base='decimal'=z
=totalDigits value='8"'/>
<fractionDigits value='2' fixed-'true'/>
< /regerictions
</eimpleTypes

fractionDigits

Maps to UML Attribute with stereotype XSDfractionDigits. Name and type of such attribute does not make
sence.

e value — to Attribute initial value.

XML Representation Summary: fractionDigits Element Information ltem

zfractionDigits
fixed = boolean : false
id = LI
value = nonNegativelnteger
fany attributes with non-schema namespace . . . /=
Conrent s (gnnotation?)
=/fracticonDigicss

115 Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

Example

The following is the definition of a -user-derived- datatype which could be used to represent
the magnitude of a person's body temperature on the Celsius scale. This definition would appe
in a schema authored by an "end-user’ and shows how to define o datatype by specifying facet
values which constrain the range of the -base type-.
<gimpleType name='celgiugBodyTemp' =
=zregtriction base='decimal’=
<totalDigits value="4'/=
<fracticnbDigits value='1"'/=
cminInclusive value='36.4'/>
cmaxInclusive value='40_5'/>
efregtriction=
=fgimplaTypes-

lenght

Maps to UML Attribute with stereotype XSDlength. Name and type of such attribute does not make sence.
e value — to Attribute initial value.

XML Representation Summary: length Element Information Item

zlength
fixed = bogolean : false
id = 1D
value = pontegatiwvelnteger
fany ateributes with non-schema namespace . . .J=
Content: (gannotation?}

=/length=

Example

The following is the definition of a -user-derived- datatype to represent product codes which
must be exactly 8 characters in length. By fixing the value of the length facet we ensure that type
derived from productCode can change or set the values of other facets, such as pattern, but
cannat change the length.
<simpleType name='productCode’=

«restriction base='string's=

=length value='8' fixed='true'/>

</regtriction>

< /sinpleType=

minLength

Maps to UML Attribute with stereotype XSDminLength. Name and type of such attribute does not make sence.

e value — to Attribute initial value.

116

Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

XML Representation Summary: minLength Element Information ltem
zminLength

fixed = hboolean : false
id = 1D

value =
fany arrribures wirh nopn-schema pamespace . . . [
Conrent: [(annotation?)

</minLengths

Example

The following is the definition of a -user-derived- datatype which requires strings to have at
least one character (i.e., the empty string is not in the -value space- of this datatype).
«gimplaeType name='non-empty-string's
zregtriction bage='string'=
<minLength wvalue=1'1"/=
< /regstrictions
</gimpleType>

maxLength

Maps to UML Attribute with stereotype XSDmaxLength. Name and type of such attribute does not make sence.
e value — to Attribute initial value.

XML Representation Summary: maxLength Element Information ltem

=maxLendgth
fixed = poglean : false
id = ID
value = popiNegativelptoger
fany attributes with non-schema namespace . . .J}=
Content: {gnnotation?)

< /maxLengths>

Example

The following is the definition of a -user-derived- datatype which might be used to accept form
input with an upper limit to the number of characters that are acceptable.
=gimplaType name-='form-input's
«restriction base='string'=>
zmaxlength value='80"/>
</restriction=

=/gimplaType:

whiteSpace

Maps to UML Attribute with stereotype XSDwhiteSpace. Name and type of such attribute does not make sence.
e value — to Attribute initial value.

117 Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

XML Representation Summary; whiteSpace Element Information Item

zwhiteSpace
fixed = boolean : false
id = ID
value = {(collapse | preserve | replace)
fany attributes with non-schema namespace . . .J=
Content: (annotation?)
</whiteSpaces

Example

The following example is the datatype definition for the token -built-in- -derived- datatype.
<gimplaType name='token':
=regtriction base="normalizedString'=
<whiteSpace wvalue='collapse'/>
efregtriction=

=/simpleType=

pattern

Maps to UML Attribute with stereotype XSDpattern. Name and type of such attribute does not make sence.
e value — to Attribute initial value or TaggedValue with name ‘value’.

XML Representation Summary: pattern Element Information Item

zpattern
id = 1D
value = anyiimpleType
fany arcribures with non-gchema namespace . . .=
Content: (gnnotation?)
=/patterns=
{value} -must- be a valid -regular expression-.

Example

The following is the definition of a -user-derived- datatype which is a better representation of
postal codes in the United States, by limiting strings to those which are matched by a specific
-regular expression-.
=gimpleType name='berter-us-zipcode's

crastriction base='string'=s

<pattern value='[0-9]{5}(-[0-9]){4}1?"/>

cfrestrictions

=/simpleType=

enumeration

Maps to UML Attribute with stereotype XSDenumeration.

e value — to Attribute name.

118 Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

XML Representation Summary: enumeration Element Information ltem

cenumeration
id = 1D
value =
{any attributes with non-schema namespace . . .J»
Content: {(annolation?)
< fenumerations

Example

The following example is a datatype definition for a -user-derived- datatype which limits the
values of dates to the three US holidays enumerated. This datatype definition would appear in a
schema authored by an "end-user” and shows how to define o datatype by enumerating the
values in its *value space-. The enumerated values must be type-valid literals for the -base
type-.
zgimpleType name='holidays'=
zannotation:
=zdocumentations=some US holidayss</documentation=
«</annotations
«rastriction base='gMonthDay'=
zenumeration value='--01-01'=
zannotations
=documentation>New Year's day=/documentation=
= fannotations
< /enumerations
zenumeration value='--07-04'=
cannotations
«=documentaticn=4th of July=/documentations
=fannotations
</enumerations
cenumeration value='--12-25"=
cannotations
zdocumentaticn=Christmas</documentations
=fannotations
</enumerations
</restriction=
=/simpleType=

unique

Maps to UML Attribute added into some UML Class.

«unigque
id = ID
name = NCMame
fany attributes with non-schema namespace . . .J=
content: {gonolation®, (gelector, [eld-))
=/ unigquex

uniqgue UML Model example

For an example, see “keyref UML Model example” on page 121

119 Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

key

Maps to UML Attribute added into some UML Class.
e name — to Attribute name.

e id — to TaggedValue.

=key
id = ID
name = NCMName
fany arrribures with non-schema namespace . . . =
Contenc: (gonotation?, {(selector, field+))
=/ kays

key UML Model example

For an example, see “keyref UML Model example” on page 121

keyref

Maps to UML Attribute added into some UML Class.
e refer — to value of “refer” or “referString” TaggedValue.
e name — to Attribute name.

e id — to TaggedValue.

[y

<keyref
id = 1D
name = HNCHame
refer = QName

fany artribures with pnon-schema namespace . . e
Content: (gnnotation?, (selector, field+))
= /kayraf>

120

Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

keyref UML Model example

=3 bechemn ==
a«¢ hema

[tzrgetMam ezpace=http: inomagic.com
wnlnsnm =kltp:dnomagiceom)

Pt e
== KzDElem ert==-parson ; perzonT e
==¥=Delen ent==-roat : raofTywe key_unique_keyRef=state, whicle State, regkey, cak ef}
==HSDelem ert==-3tate : stateType{hey_unigue_keyR ef-reg}
== kEDelem ent==-vechizle sechicleTywe
RS E
== MEbikeys=_ragkeWeelectar=Shehide , icld=E=state | @ plsteblumber}
== ksl key=-state{1eld=cod e seleclar= fstate |
S T T T
==M=likiyR e f- = carRe{zelactor= fcar, field=@regstste, @regP late relr=regkie v}t
== HID ke e fr mashicleState{e fer=state, seleclor=Jihehide | field=@=lals |
i i

%‘_Awe)
==kE=Déhiques=-reglicdd=@plateM umber, selectar= Mehicle}

il

=2 XS Deom plerType == == ¥=Dcom plexTypess =<HE0 com plexTypes=
=< M3D sequence==- =enID=equence== s=M3D=egusncs==
rootType personlype etateType

==HSDehkem ent-=-stateR e f[*|{ref=stote } | =<HED clem enb==-car : carTyps = =H50elem ent==-code : tvol_ettzrC ode

==islelement==-perzonfef [*liret=perzont
= =M% 0elem ent==-whicleRef [*]{ref=vechicle }

=iring
P ==rsbcamplexTypes»
==z¥=Dall==
T 2ziSDerquencess .
-|5 B vechicle Type
=S D zim plaTye == : = s=RE0attrbute-=-pateMumber Jinteger
== mSDatiribute= = ey P late | integer : _ .
twol etterCode == MEDatribudte- = regState twolstierCode *=HSDattrbute - -state : brol ctierC ode
<xg:gchema xmlns:nm = "hotp://nomagic.com” xmlng:xs =
"http://www. w3 . org/2001 /XMLEchema” targetMamespace = "http://nomagic.com" =
z¥g:element name = "vechicle" =

«Xg:complexType =
zxg:all /=
«xg:attribute name = "plateNumber" type = "xs:integer" /[-
cxg:attribute name = "gtate" type = "nm:twoletterlode" />
</ xg:complexTypes
</xs:elements
«xg:relement name = "state" =
«xg:complexType =
<XS:seguence
z¥g:element name = "code! type = '"nm:twoletterlode" /s

XML Schema Mapping to UML Elements

cxg:element ref = "mm:vechicle" maxCcoccurs =
Tunbounded® /=
«xg:element ref

"nm:person” maxdcours =
funbounded” /=
= /%2 2equences
=/xg: complexTypas>
<x¥s:unique name = "reg” =
«xs:annotation =
exgdocumentation »unigue
documentations,/xs:documentations
</®grannotations
«xg:gelector xpath = "/ /vehicle” /=
zxg:field xpath = "gplateNumber" /=
= /xg:unigues>
</xg:element=
=xg:element name = "person" =
«xs:complexType =
<MS:Eseguence =
=xg:element name = "car" =
exg: complexType =
<XE:sequence /=
«xgrattribute name = "regPlate” cype

nxg:integer” [s

«¥g:atbtribute name = "regsState" type

"nm: twoLketterCode® [=
< /x5 complexTypes
< /%8 elemant =
/%8 sequence>
</ xg:complexTypes
</xg:element=
«xg:element name = "rookb" =
«¥s:complexType =
<XS:gequence -
zxg:element ref = "nm:state" maxOccurs = "unbounded"”
f=
= /%8 seguences
< /xg:complexTypes

«¥8:key name = "stata”
=xs:gelector xpath = " //state" />
«xg:field xpath = "code" /=
= /xz keys
«¥s:keyref name = "vehicleState" refer = "nm:state” =
=xg:gelector xpath = "/ /vehicle” /=
«xg:field xpath = "gstate" /=
< /xz keyrefs
«¥S8:key name = "regley" =

=¥S:annotation =

zxg:documentation =key
documentation«/xs:documentations
/g rannotacions

«xg:gelector xpath = ".//vehicle" /=
«xg:field xpath = "g@state" /[
zxg:field xpath = "gplateNumber" /=

= xg:keys

zxs:keyref name = "carRef" refer = "nm:regkey" =

=¥S:annotatrion =
exs:documentation »key ref
documentations/xs:documentations=

122 Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

< /xgrannotations
cxs:gelector xpath = ".//car” /=
<xg:field xpath = "@regState" /=
«xs:field xparth = "@regPlate" /=
=/xg:keyrefs
</x5:elements
<xg:simpleType name = "twolLetterCode® =
«#g:regtriction base = "xsz:string" /-
</xs:gimpleTypes
</xg:schemax>

selector and field

Maps to UML TaggedValues named “selector” and “field” of UML Attribute representing key,keyRef or unique.
“selector” tag has value representing “xpath” and “field” - list of valuesrepresenting field “xpath”. ID values shall
be skipped and annotation documentation will beapplied to tagged value according to annotation rule
(see:annotation). For field valuesannotation documentation shall be merged in one.

zgaelector
id = 1D
th = a subser of XParh expression, see below
?E;y arrribures with non-schema namespace . . . J=
Content: laogootaticn?)
</selectors=

zfield
id = 1D
th = a subsetr of XPath expression, see below
?E;y attributes with non-schema npamespace . . . J»
Content: (annotation?)
=/field=
Example

«xg:key name="fullName"
=xg:selector xpath=".//person"/=
«xg:field xpath="forename" /-
zxs:field xpath-"surname" />

=/x8:key=

zxg:keyref name="perscnRef” refer="fullName"=
<xg:gelector xpath=".//perzonPointer® /=
=xg:field xpath="@first"/=
<xg:field xpath="@last"/>

=/xg:keyraf>

exg:unique name="nearlyID"=
<xg:gelector xpath=".//*" /=
<xg:field xpath="gid"/=
=/xg:unigue=

123 Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

XML representations for the three kinds of identity-constraint definitions

Example

«Xg:element name="gstate":

=& : complexType =
<XE:seguencas
=xg:element name="code" rtype="twoLecterCode” />
exg:alement ref=""vehicle" maxOccurs="unbounded®/=
=xg:element ref-"person® maxOccurs="unbounded" /=
</ x2:sequences

=/xg:complexTypex

=xg:key name="reg"> <!-- wvehicles are keyed by their plate within states
-
<xg:gelector xpath=". //vehicle" /=
=xs:field xpath="gplateNumber" /=
=/ % key-
=/xs:element

exs:alement name="root"=:
=X8: complexTypes
<S8 gagquences

éxé:élement ref-"state" maxOccurs="unbcounded" /-

=/xg: sequences
=/xg:complexTypex

«xg:kay name="statef> «l-- states are keyed by their code --=»
=xs:gelector xpath=".//state"/=
<xg:field xpath="code"/=

=/xs:kay>

=xg:keyref name="vehicleState® refer="gtate':
=!-- every vehicle refers to its state --=
<xg:gaelector xpath=".//vehicla" /=
=xs:field xpath="mstate"/>

=/xs :keyref:

=xg:key name="regkKey"= <!-- wvehicles are keyed by a pair of state and pl:
-——

<xg:gelector xpath=".//vehicle" /=

<xg:field xpath="@state" />

=xs:field xpath="gplateNumber" /=
=/xs key=

=x8:keyref name="carRef" refer="reg¥ey’> =z1-- peoplefs cars are a
refarence --=
<xg:gelector xpath=".//fcar"/=
<x5:field xpath="gregState'/>
<xg:field xpath-"g@regPlate' />
=/xs :keyref:

e/xg:element =

XML Schema Mapping to UML Elements

<xs:element name="person®:
<38 : complexTypes
<XE: sequence:

«¥s:element name="car®=
<xg: complexTypex=
<xg:atrtribute name="regState" type="twoletterCoda’"/-
=xg:attribute name="regPlate" type="xs:integer"/=
= /x5 complexTypes
</xg:alemant s
</xg8:sequences
= /%xg: complexTypes:
</xg:element >

A state element is defined, which contains a code child and some vehicle and person children. A vehicle in turn
has a plateNumber attribute, which is an integer, and a state attribute. State's code s are a key for them within
the document. Vehicle's plateNumber s are a key for them within states, and state and plateNumber is asserted
to be a key for vehicle within the document as a whole. Furthermore, a person element has an empty car child,
with regState and regPlate attributes, which are then asserted together to refer to vehicles via the carRef
constraint. The requirement that a vehicle's state match its containing state's code is not expressed here.

selector and field UML Model example

For an example, see “keyref UML Model example” on page 121

annotation

Maps to UML Comment with or without stereotype XSDannotation.
Documentation’s content maps to UML Comment body(name).

“‘documentation” maps as UML comment:
e “content” value shall be comment name
e “xml:lang” value — tag “xml:lang” value

e source value — tag "source” value

“appinfo” maps as tag value with name “applnfoSource”:
e “source” value will be tag value

e “content” will be documentation for tagged value

Appearing several annotation nodes on one element node, mapping shall be done in following way:

e “documentation” text shall be merged into one UML comment with merged content, but
“content” and “xml:lang” tag values shall represent only first matched values

XML Schema Mapping to UML Elements

e “applnfo” shall have: “content” merged into one tag “appInfoSource” comment, but tag value
shall represent first matched “appinfo”

XML Representation Summary: annctation Element Information Item
cannotation

id = 1D
{any atetributes with non-schema namespace . . .J=
Content: lappinfc | documentation)*

< /annorations

cappinfao
source = =
Content: | fanyf)+*
=fappinfo>
<documentation
source = anyliRl
xml:lang = =
Content: | fanyf)+*

< fdocumentations

Example

«x5:8impleType fn:note="special®s
<X§:annotations

«xg:documentarion=4 type for experts onlye</xs:documentations
=xg:appinfo>

<fn:speciallandling-checkForPrimes=</fn:specialdandling=
<fxg:appinfo=
</xs:annctation=

XML representations of three kinds of annotation.

annotation UML Model example

oS Dannotaions»
the docurmentation forthis schema

{fapplrfaContent=infoCantent,
applnfoSource=infoSource,
wrililEn g=E M,
source=documentalion source}

< <=30schemarr
schema
{targeitames pace- httpdn omaci o com,
sl ns:nm=httpefi omagicoom -

=xg:schema xmlng:nm = "http://nomagic.com" xmlns:xs =

"hetp: //www. w3 . org /2001 /XMLSchema® targetMNamespace = "http://nomagic.com" =
«xgrannotation =

<xs:appinfo source = "infoSource" -infolontent=/xs:appinfos

XML Schema Mapping to UML Elements

«xgrdocumentation source = "documentation source' xml:lang

"EN® »the documentation for this schemas/xs:documentations
< /% :annotation=
< /%2 achemax

compositors

Complex type maps to UML Class with stereotype XSDcomplexType. In order to have some group in complex

type, the same UML Class also must have XSDall, XSDchoice or XSDsequence stereotype.

UML model can have ModelClass just with single stereotype XSDall, XSDchoice or XSDsequence. In this case

such class maps to inner part of other group.

Elements order in sequence group is very important. Such elements are ordered according values of

TaggedValue sequenceOrder.

ottt

zall
id = ID
maxQOccours = I @ 1
minfcours = (& | 2} : 1
{fany arrributes with non-gchema namespace . . . J=
Content: (aogpotation?, glement*)
=/all=
<choice
id = 1D
maxOcours = (gopNegatjwvelntedger | unbournded) H
minGccurs = popNegatjvelnteger :
{fany arrributes with non-schema namfgpace R

Content: laonotatdon?, (alement | group | choice | seguence | aoy)*)
=z/choica=

=seguence
id = 1D
maxOcours = [(nonNegativeInteger | uwnbounded) : 1
minGccurs = popNegatjvelntegeyr : 1
{fany artributes with non-gchema namespace . . . J=

Content: laonotatdon?, (alement | group | choice | seguence | aoy)*)
=/ sequence:s

Example

cxs:all=
cxg:alement ref="cars"/:
«xg:element ref-="dogs"/-
</xg:all>

XS :geguences
<xg:choices
<xg:element ref="left" />
<xg:element ref="righe"/s
</xg:choices
exg:element ref="landmark"/>
= /xg: sequences

XML representations for the three kinds of model group, the third nested inside the second.

compositors UML Model example

XML Schema Mapping to UML Elements

s=<:G0oroups=
==WB0saquencas==>
myGroup
[id=group id,
mihQccure=2
mazoccurs=1,
choiceld=choicaid]

<=xS0arn==-amy [0 1{namespace=yalue, id=anylD, Sequencetumber=7}

==¥5DgroupRef->-gmup3Ret: hitpihomagic.comemyiGroup 2 [0 1isegquence Mumbar=2}
==x30element==-name : htlpiwwe wd orgf20015-MLSchem a: string{sequence 0 er, sequenceMumber—=4}
z=¥EDelament==-nameal : hitp: Mt Jorg 20 07 BWLS chem 3 etringf sequa ncaMumbai=51
==rSDelement==-name? . itp e w 3.0 20 00 HWLS chema sringfseque nceMumbe=3a;

{".

0. lgagquencerlumber= 3}

==ad0group==
=<1 B0a ==

myGroup2
==x5Delame nt==-surmarme : hitp: e wd arg F2001 =W LS chema:siring

==M50choice-=
compositor

{sequenceMumbe=1]
==MSD0elerment==-number: htipfaseswes 3.orgl20 01HMLE che mia:string

==REDgraup==
==islcholce==

myGroup3
=<n502 lement= =-address ;| http: e wd org 2007 M LS chiemasting

<?xml version="1.0"' encoding='Cpl252'7Yx>

=xg:schema xmlns:nm = "http://nomagic.com" xmlns:xs =
"hetp://www. w3 _ org/2001/XMLSchema” targetMamespace = "http://nomagic.com" =
<HE:group name = "myGroup” =

«¥s:annctatcion =
¥ rdocumentation =my group
documentation=/xgs:documentations
< /Hgrannotations

«¥g:gequence mindocurs = "2" maxOcours = P17 =
z¥8:choice =
=xg:element name = "number” type = "xsg:string” /-
</xg:choicex
exg:group ref = "nm:myGroupd” mindccurs = "0" maxOocurs =

n 1 1 ::
«Xgannotation =

XML Schema Mapping to UML Elements

«xg documentation >ref
documentations/xs:documentations
/%2 rannotations
= /®g1group>
«xs:group ref = "nmrmyGroup2’ mindccurs = "0" maxfcours
"unbounded” =
zxSrannotation =
«xg documentation =another ref
documentations/xs:documentations
/%2 rannotations
< /xg:group>

<xg:element name = "name" Cype = "xg:string" -

«xs:element name = "namel" type = "xsg:string” [fs

=xg:element name = "namel" type = "xg:string” /=

«¥s:any id = "anyID" namespace = "value" minQOccurs = "0
maxQccurg = "1F fa

=/ %2 sequences
=/xg:group>
<HE:group name = "myGroupi”
«xs:cholce =
«¥graelement name
«/xg8:choices
=/ x5 :groups>
<HS:QroUp name = "myGroup”
zxgrall =
«xg:element name
=/xg:all=
=/ %8 groups
< f%sachemas»

W

Taddress" type tkg:gtring" [f-

W

"gurname" type

"xg:string' [f=

group
Maps to UML Class with stereotype XSDgroup.

This class also may have stereotype XSDall, XSDsequence or XSDchoice.

If group has ref attribute, such group definition maps to UML Attribute or UML Association End. UML Attribute

must have XSDgroupRef stereotype. This stereotype may be omitted for AssociationEnd.

XML Representation Summary: group Element Information ltem

<GrOUp
name = NCName:=
Content: (annotatign?, (all | gheoice | sesguencel)
= fgroups
cgroup
ref = Qiame
maxOcours = (nonNegarivelnreger | wnbounded) 1

mindcours 1=

Conrent: (anootation?)
= /group:>

129 Copyright © 2009-20

17 No Magic, Inc.

XML Schema Mapping to UML Elements

Example

<X§:group name="myModelGroup" s
<XE:sequeances
<xg:element ref="someThing" /=

= /®g:sequences
</xe group=
«x8:complexType name="trivial"=
<Xg:group ref-"myModelGroup" />
<xs:attribute .../=
=z /xg:complexTypes>
«¥8:complexType name="moreso"s
«xs:choice=
«xg:element ref="ancotherThing® /=
«xg:group ref="myModelGroup”/=
= /xg:choicex=
<xg:attribute ... />
< /xg8:complexTypes=

group UML Model example

For an example, see “compositors UML Model example” on page 127

any and anyAttribute

Maps to UML Attribute with stereotype XSDany or XSDanyAttribute.

maxOccurs - to multiplicity upper range. Value unbounded maps to asterisk in UML.
minOccurs — to multiplicity lower range.

annotation maps to Attribute documentation

Other properties to TaggedValues.

XML Representation Summary: any Element Information ltem

cany
id = ID
maxdcours = (gooMegativelpteoer | unboundad) : 1
minOccurs = ponNegativelpteger : 1
namespace = | {##any | ##other) | List of (anvURI | (##targetNamespace |
##localll)} @ H##any
processContents = (lax | skip | strice) : strict
{fany arcribures wirh non-gschema namegspace . . . J=
Content: \gopotacion?)
<fany=>
canyaAttribute
id = 1D
namespace = | (##any | ##orher) | List of (agyURI | (##rargerNamespace |
##locall)l } : H#Hany
procecsContents = (Jlax | skip | stricr) @ strice
{any attributes with non-schema namespace . . .J»
Content: (annotation?)
< fanyartributes

130 Copyright © 2009-2017 No Magic, Inc.

XML Schema Mapping to UML Elements

Example

<xg:any processContents="skip"/>

<Xg:any namespace="##octher" processContents="lax"/-
=X8:any namespace="http://www. w3l _ org/1593/X5L/Transform" />
<X§:any namespace="##targetNamespace"/>

«xg:anyhttribute namegpace="http:/ www. w3 org/iML/19%8 mamespace” />

XML representations of the four basic types of wildcard, plus one attribute wildcard.

any and anyAttribute UML Model example

=eREDachema=»
=chema

taraetham espace=htip fnom agiccom
An lnsnm =hthadnom agic.com }

=85 DattributeGroups=
atir_group

2=2dBlanytnbute: =-anyl{processContentz=zkip, namespace=httpbla bla bla, id=andD }

== HS D group ==
==450choices=

my_type
==ME0any==-any[l.1}§d=andl, procezsContents=strict, nam espace=http:ila}

<7xml version='"1.0' encoding="'Cpl2&52'?s>

=xg:gchema xmlns:nm = "heep:/ /nomagic. com” xmlng:xs =
"hetp: /S www . w3 L org/2001 /XMLESchema” targetNamespace = "http://nomagic. com”
=
=¥E:Qroup name = "my_type' =
«xg:choice =
<xg:any id = "anyID" namespace = "htep://bla"
processfontents = "strict” mindcours = "0" maxOcours = "1" =

«¥S:annotation =
exg:documentation =any
documentations/xs:documentations
< /®g:rannotaction=
< /xg:anys
</xg:choicas
= /X8 :group>

c¥grattributedroup name = "attr group" =
«xg:anyhttribute id = "anyID" namespace = "http:ibla.bla.bhla"
processfontents = "skip" =

cxsrannotation =

XML Schema Mapping to UML Elements

=xg:documentation =any attribute
documentatione/xs:documentations

</%grannotations
</xg:anyArcribute:
«/xg:actributedroups
< /%8 :2chemas

schema

Maps to UML Class with stereotype XSDschema.
All schema global attributes and elements are mapped to UML Attributes of this class.
Name of this class should match file name or must be assigned to the component, which represents file.

“xmins” xml tags maps to an permission link with stereotype «xmins» and name, representing given prefix.
Permission client is schema class and supplier package with name equal to the “xmiIns” value.

XML Representation Summary: schema Element Information ltem

<zgchema
attributeFormbefault = {(gualified | ungualified) : ungualified
blockDefault = (#all | List of {(extension | restriction | substirurion))
LI}
elementFormbefault = (gualified | wungualified) : unqualified
finalDefaultr = (#all | Ligt of {extension | restriction)) o
id = ID

targetMamespace = aoviUe]
version = Loken

xml:lang =
fany arcrribures with non-schema namespace R
Cortent: {(include | import | redefine | annotation)*, ({{gimpleTyvpe |

WJI\WIWJ | elemepr | attribute | notation),
annotatlon*) *}
=z /achemas=

Example

=¥g:schema
xmlng:xs="http: //www.w3.org/2001 /XMLEchema"
targetNamespace="hetp: //www. example.com/example” s

</xg8:schemas

The XML representation of the skeleton of a schema.

XML Schema Mapping to UML Elements

schema UML Model example

“=RmUschema ==
schema.xsd

IatnbuteForCefault=qualified,
blockDeraull=gAersion |

&l ernentFonnDefault=ungualified,
finzlCefault=extension,

version=12,

Anllang=EN,

targethame space=htg.momagic.cam}

| |
<zwrr|nsss |

= | ==TINs== | ==amins ==
| |r'|rr'|

| ‘ |
| | !
=<rslnamespaces= ==ySlnamespace=>

hitp: fwwrw.w3.org/2001 X MLS chema htitp: fnomagic.com

«xg:achema xmlns:nm = "heep://nemagic. com®
xmlng:xs = "http://www.wl.org/2001/XMLSchema
#mlns = "http://nomagic.com"”
attributeFormDefault = "qualified"
blockDefault = "extension"

elementFormbDefanlt = "ungualified”
finalDefault = "extenzion"

targetMNamespace = "http://nomagic.com"
version = "1.2"

®xml:lang = "EN" /=

notation

Maps to UML Attribute with stereotype XSDnotation. This attribute must be added into UML class with
stereotype XSDschema.

e name maps to UML Attribute name
e annotation maps to UML Attribute documentation.

XML Representation Summary: notation Element Information Item

«notation
id = 1D
name = NCMams
public = anyURI
system = anyURL
fiﬂy attributes with non-schema namespace . . .=
Coprent: {(gopotation?)
< /notation=

XML Schema Mapping to UML Elements

Example

=xg:notation name="jpeg” public="image/jpeg" system="viewer.exe':s

The XML representation of a notation declaration.

notation UML Model example

=<x5S0schamar=
schema

1largeiame space=httpnomagic.com,
¥mins hm=httpfnomagic com?

==x3 Dnotation==- jpeg{system=viewerexe, public=ima geljpey}

<#g:schema xmlng:nm = "htep://nomagic. com!
xmlng:xs = "hbtp: //www.wi. org/2001/XMLSchema
targetNamespace = "http://nomagic.com” =
«xg:notation name = "jpeg" public = "image/jpeg" system = "viewer. exe"
/=

< /¥5:2chemas

redefine

Maps to UML Class with stereotype XSDredefine. This class has inner UML Classes as redefined elements.
Every redefined element must be derived from other UML class with stereotype XSDsimpleType,
XSDcomplexType, XSDgroup, XSDattributeGroup. The name of this class shall match “schemalocation”
value.

If two “redefine” with the same schema location appears, they shall be merged to the one and the same class
with a name “schemal.ocation”.

Redefine Class must be inner class of XSDschema Class.
e annotation - to XSDredefine UML Class documentation

e schemalocation — to XSDredefine UML Class name.

XML Representation Summary: redefine Element Information ltem

zeredefine

id = 1D

schemalocation = 3

{fany artributes with non-schema namespace . . .J}=

Content: {(appotation | (simpleTvpe | gomplexTvpe | group |
attributeSroup} | *
«/redefinexs

XML Schema Mapping to UML Elements

Example

vl xed:

=x8:complexType name="personiame":
<Xg:Sequences

cxg:a2lement name="title” minQOccurs="0",/=

«xg:element name="forename® minOccurs="0" maxOccurs="unbounded® /=
= fxg: sequencex
</xg8: complexType=

zx8:element name="addressees" type="personMame"/=

va2 . xed:
«x8:redefine schemal.ocation="vl.xsd"=>
<¥s5: complexType name="personName’
<8 : complexContents
=Xg8:extension base="perzoniama" =
<XE: Seguences
«xg:aelement name="generation' minCeccurs="0"/=
< fxg:sequencex
c/¥xgrextensions
< /%xg8: complexContant:
< /x5 :complexTypes
/%5 :redefine=

«xs:element name="author" type="persontame"/=

The schema corresponding to v2.xsd has everything specified by v1.xsd , with the personName type redefined,
as well as everything it specifies itself. According to this schema, elements constrained by the personName

type may end with a generation element. This includes not only the author element, but also the addressee
element.

redefine UML Model example

cG0schema==
schamaxsd

[targetfamespace=htn: fnomagic.com}

=< E0redef ne== ced=leimple Type ==
hitprinomagic. com (- string

== sDegriction==

==XEDsimpleType ==
string
(=ML Schema Profile hitpodhessas wd argl200 1 EMLSchema)
Jid=strng}

=HE0whieSpace == = preservefid=stnng. presene}

XML Schema Mapping to UML Elements

«7fxml version='1.0' encoding="'UTF-8'?>

<xg:schema xmlng:nm="hetp://nomagic.com®
xmlns-xs="htep: //www. w3 org/2001,/MLEchema"
targetNamespace="http:/ /nomnagic.com" >
«xg:redefine schemalocation="http://nomagic.com” =
zxs:simpleType name="string" =
«¥grannotation =
exg:documentation »my
documentations/xs:documentations
< /%2 rannotations
zxg:restriction base="xg:string" /=
=/xg:simpleTypes
</xg:redefine=
</%x8:2chemas

import
Maps to UML Permission with stereotype XSDimport. Permission client must be schema class stereotypes
«XSDschema» Component, supplier namespace Package XSDnamespace.

e namespace maps to supplier name.

e annotation maps to UML Attribute documentation.

e schemalocation maps to TaggedValue.

XML Representation Summary; import Element Information ltem

cimport
id = 1D
namespace = AQVIEL
gschemalocation =
fany areribures with non-schema namespace . . . J=
Content: (gnootatlon?)
=/import=>

Example

The same namespace may be used both for real work, and in the course of defining schema components in
terms of foreign components:

XML Schema Mapping to UML Elements

<schema xmlng="http://www.w3. org/2001,/¥MLSchema"
xmlng:html="htepg: / /www.wl.org/199% /xhtml"
targetHamespace="uri :mywork" xmlns:my="uri::mywork":

zimport namespace="hteg:/ /www._ wl_ org//1999/xhtml" /=

zannotations

zdocumentation:=

<html :p> [Some documentaticon for my schema]</html:p=
< /documentations
</fannotacions

zoomplexType name="myType =
<Sequences
zelement ref-"html:p" mindccurs="0"/>
</sequences

=/complexTypes

zelement name="myElt" type="my:myType"/>
= /schemas>

The treatment of references as -QNames- implies that since (with the exception of the schema for schemas)
the target namespace and the XML Schema namespace differ, without massive redeclaration of the default
namespace either internal references to the names being defined in a schema document or the schema
declaration and definition elements themselves must be explicitly qualified. This example takes the first option -
- most other examples in this specification have taken the second.

import UML Model example
]

==HEDnEmespace ==
______ _ | g S vwwe w3 o rg /1 959 xhtml

2=WS0im part==
i=chem aLlocationshlp dteeseend orgH 393000m1 }

== ¥zh zchemar= |
schema s sd =<HSDnamezpacs==
fargethl am espace=htt: irom agic com } hitp LA v o rg 200 17X ML S chema
=M InE=>
=#g:schema xmlng:nm = "htop://nomagic. com" xmlns:xs =
"hetp: //www. w3 . org/2001/XMLSchema” targetNamespace = "http://nomagic.com" =
<¥8:import namespace = "http://www.w3.org/1%%3/xhtml” schemalocation

theep: /fwww. w3 org /1994 /xhemlt (-
=/%5:schemas

XML Schema Mapping to UML Elements

include

Maps to UML Component with stereotype XSDinclude. Component must be added into xsd file component.
e annotation maps to UML Component documentation

e schemalocation maps to UML Component name.

XML Representation Summary: include Element Information ltem

zinclude
id = IIv
gchemalocation = anyURL
fany ateributes with non-schema namespace . . ./=

Content: (gonotation?)

</include=

include UML Model example

schema.xsd

co=lincludess
httpdinom agic.comlischema.xsd

=xg:schema xmlns:nm = "http://nomagic.com” xmlng:xs =
"http: //www. w3 .org /2001 /XMLSchema” targetNamespace = "http://nomagic.com”
=
=xg:include gchemalocation = "hetp:/ /nemagic. com/schema . xed” /=
< /%2 sachemax

XML schema namespaces

Maps to UML Package with stereotype XSDnamespace. In order to define “xmins” attribute in the schema file,
Permission between XSDnamespace package and XSDschema class must be added into the model.

e The Permission name maps to namespace shortcut.

Example:

X8 gchema

xmlng:xs="http://www.w3 _org/2001/4MLSchema"
xmlns="http:/ / www.wl_ org/2001/XMLSchema”
targetNamespace="http: /fwww.exanple . com/example” »

< /%2 : schemax

The XML representation of the skeleton of a schema.

In order to generate such namespaces:

e UML model must have Package with name “http://www.w3.0rg/2001/XMLSchema”

e UML model must have Package with name “http.//www.example.com/example”

XML Schema Mapping to UML Elements

e Permission with name “xs” must be added into model between XMLSchema Class and
Package “http.//www.w3.0rg/2001/XMLSchema’.

e Permission without name must be added into model between XMLSchema Class and Package
“http.//www.w3.0rg/2001/XMLSchema”.

XML schema namespaces UML Model example

For an example, see “schema UML Model example” on page 133.

	Contents
	Getting started
	Introduction
	Installing Cameo Data Modeler Plugin

	Entity-Relationship (ER) Modeling and Diagrams
	Introduction
	Basic Concepts
	Business Entity-Relationship Diagrams
	Identifying Relationships and Dependent Entities
	Constraints between Relationships
	Generalization and Specialization
	Key Modeling
	Virtual Entities
	Importing CA ERwin® Data Modeler Projects
	Importing Data Models
	Imported Elements

	Database support
	Introduction
	SQL Diagrams
	Crow’s Foot Notation in SQL Diagrams

	Database Modeling
	Common SQL Element Properties
	Top Level Elements
	Tables, Columns, and Views
	Modeling Types
	Sequences and Autoincrement Columns
	Constraints
	Routines
	Access Control
	Oracle Database Modeling Extensions

	Database Code Engineering
	Code Engineering Set
	Supported SQL Statements
	DDL Dialects

	Transformations
	Introduction
	UML to SQL Transformation
	Transformation Procedure
	Type Mapping
	Transformation Properties

	ER to SQL (Generic / Oracle) Transformations
	Identifying Relationships
	Key Transformation
	Virtual Entity Transformation
	Tracing between Data Model Layers

	SQL to UML Transformation
	Type Mapping
	Transformation Results

	UML to XML Schema Transformation
	Type Mapping
	Transformation Results

	XML Schema to UML Transformation
	Type Mapping
	Transformation Results

	Entity-Relationship and SQL Report
	XML schemas
	Introduction
	XML Schema Mapping to UML Elements
	Defined stereotypes
	attribute
	element
	complexType
	attributeGroup
	simpleType
	restriction
	list
	union
	minExclusive
	maxExclusive
	minInclusive
	maxInclusive
	totalDigits
	fractionDigits
	lenght
	minLength
	maxLength
	whiteSpace
	pattern
	enumeration
	unique
	key
	keyref
	selector and field
	annotation
	compositors
	group
	any and anyAttribute
	schema
	notation
	redefine
	import
	include
	XML schema namespaces

