.........

| Y L e
f O e .,..l""- : " il

& megieeraw

Architecture Made Simple

CAMEO CONCEPT
MODELER PLUGIN

18.0 SP9S

No Magic, Inc.
2017

All material contained herein is considered proprietary information owned by No Magic, Inc. and is not to be
shared, copied, or reproduced by any means. All information copyright 1998-2017 by No Magic, Inc. All Rights
Reserved.

Contents

1

IIEEOAUCTION ...ttt ettt et e st e et e s it e e bt e enbeebeesnteenneeenneeees 3
LI MDA ettt bttt h ettt st b et h et et naeens 3
1.2 Concept Modeling PUIPOSEveeeuiiieiiieeiieeeieeeeiie ettt esite e tte e staeesaae e s aeeeenveeennsee s 3
1.3 The Role of Ontologies and REASONETScecviiiiiiiiiiiiiiiieeie et 3
1.4 Open World Assumption vs. Closed World ASSUmMptionccccceeeieeieeneeeiieeneeeneene 4
1.5 Information Modeling PUIPOSEccccuiiiiiiiiiiieciie et 4

Concept Modeler Capabilities.cc.eoveririiriiniiieeeere ettt 5
2.1 SME Friendly Graphical NOtationccceeevieiiiierieiiienie ettt 5
2.2 Automatic Styling of Concept ModelS........c.ceeviiiiiiiiiiiiiiieeeeeeee e 5
2.3 Automatic GloSSary GENETatioNcc.ceeerueeierierieeieiiesiterie ettt ettt et s eaees 6
2.4 Concept Model AULNOTING.........cociiiiiieiieeiieie ettt eaae b eee 8
2.5 UML Model Trac@abilityccceeeiiieeiiieeiiie et eeiee s etee e eeeesaeeesaeeesaveeeenaeeenes 8
2.6 Semantic Integration of Multiple Information Modelscccccoceeveriiniiniinniinienenne. 9
2.7 Natural Language GLOSSATYcccueevuieriieeiiierieeieeeie et esteeiee e ereeseeeseeseaeeseessaesnseenens 9
2.8 Annotation Properties in the Natural Language Glossary........ccccoeevveevviveencieeenciieenieeeee, 9
2.9 Preferred Annotation PrOPErtYcc.eoiiieiieiiiiiieie et 9
2.10 Creation of Multiple Data Models from One Concept Modelccccevvevveiinnenncnne 10
2.11 Connection of Multiple Existing Data Models to One Concept Model......................... 10
2.12 Updating SymboL StYIESeeruiiiiiiiieeiieie ettt ettt 10
2.13 Diagram Preservation After Ontology IMportcccceeviieiienieniiieiieeieeeeeeeee e 11

Concept Modeling SEMANTICSccvveeeiuieeriiireriieeriieesieeesieeesteeesaeeesseeesseeessseeessseeessseesnsses 14
Bl LSS ettt et nh et s b ettt sae b 14
3.2 Property OWNETSIIP.....ccoiiiiiiiiiiiieiiecit ettt ettt et e b e estaeesbeesaeeesbeensaesnseessneans 14
TN B €1 101 o -1 I 55 () 1 5 (<t PRSP 15
3.4 SUDPIOPETLY ..ottt ettt sa ettt et et sb et ebe e b 16
3.5 Existential Quantification CONSrAINtcccveiiiiiieiieeeiiie ettt e 16
3.6 Universal Quantification CONSIIrAINT...........cccueeiiiiiiiiieeeiiiee e e e e e 17
3.7 Necessary and Sufficient Condition............cocuieruieriiiiieniiienieeie et 18
3.8 GENETAIIZALION ..ottt ettt ettt sb et ettt ettt et nne e 19

3.8.1 Overlapping and Incomplete SUbCIassescccveeviiiiiiiieiiiieeie e 20

3.8.2 DiSJOINE SUDCIASSES ..ecuvviiuiiiiiieiiiiiie ettt ettt ettt et e te et e st e saeenteesaeaens 21

3.8.3 Complete SUDCIASSES.....cccviiieiieiiiiiiieiieeie ettt ettt ere e e be e teesabeesaea e 23

3.8.4 Disjoint and Complete SUbCIASSEScccueeruiiriiiiiiiiiieieeeee e 24

3.9 Anonymous UniOn ClaSS.......ccueriieriieriiiiiieiiieiteeieeiee e eieesveeeeesteesaeeeseessaesnseenseeens 25
3.10 INVEISE PrOPEITIES ...uveieieieeeiiieeeiieeeieeeeteeeetee et e et e et e e et e e e teeesntaeesnseeeesseeennseeensseeennes 25
3.11 Property RESTIICTIONSc..eeiuiiiiiiiiieiieeiie ettt ettt st e et e e st enaeeens 26
3.12 Annotation and Annotation Propertiescceeveeeieeiieiiiieniieeieeie e eee e 26
3.13 Preferred Annotation PrOPErtycccoevieeeiieiiiieeiieeiee et 27
3.14 Property CRAIN....c.ccooiiiiiiiice ettt et 32
3.15 EqQuivalent PrOPEITIESc.ccccvieiiiiiiieiieeiieiee ettt eiee e et esbeessaesebeesaeeesseensaesnseesneens 33
3.16 EQUIVALENTE ClaSSES....cciuiiiiiieeeiieeeiieeeiee et eetee et e et e et e e e tae e st eesaeeesnaeeesnseeessseeennnes 34
4 UML to Equivalent OWL (in OWL Functional Syntax)cccecceevieriiienieniiienieeieeneeenenn 36
O N O] . 1SRRI 37
4.2 Class GeneraliZatiOn.ceuieiuiiiiieiie ettt ettt ettt ettt sbe et esaeeeaeeas 38
4.3 Generalization with Disjoint SUbCIASSESscccueeiiiiiiiiiiiiiieee e, 38
4.4 Generalization with Subclass COmMPIEteNEsS.........cccveeeiieriieeiieiiieeiieie e 39
4.5 Anonymous UnION Class.........cccueeiriieeiiieeiiieeiieeeieeeseeesieeesteeesseeeeaeeessseeessseesssseeenes 40
4.6 Class with Datatype Propertycccoocueeciiiriiiiieiieciieeee ettt 41
4.7 Class with Self-Referential Object Propertycccccveevievieeieeiieeiieriecieeeeeveesee e 42
4.8 Class With ODBjJECt PTOPETTYcccveiiiiieeiiieeie ettt ettt etee e et e e seaeeeseraeeanee e 43
4.9 Property Holder with Datatype Property.........ccooceevieriieiiiiiieiecieeee e 44
4.10 Property Holder with Self-Referential Object Property........ccccveeevveevciveenciieiniieeeieeens 45
4.11 Property Holder with Object PrOPertycccceciiieiiiieeiiecee ettt 45
4.12 Class with Object Property without Rangeccccoecuieviiiniiiniiieiieieceeeeeeee e 46
4.13 Class With SUDPIOPEILYceeiieiiiiiieciieeieeee ettt ettt s e e enaeeensees 46
4.14 Class with Universal Quantification Constraint on Property I...........ccccceeveiiinieeninnns 48
4.15 Class with Universal Quantification Constraint on Property Ilcccccoeviieiiennennnen. 49
4.16 Class with Existential Quantification Constraint on Propertyccceccvevvvevreenneennen. 50
4.17 Property Holder with Self-Referential Subproperty.........cccocveeevieeiieeecieeeiie e 51
4.18 Property Holder with SUDPIOPEertycc.eeviieiiiiiiieiieiteeee e 52
4.19 Class with Subproperty without @ Rangecceccuveeiiiiiiiieciiieeeeeeeee e 53
4.20 Class with Necessary and Sufficient Propertyccccoccveeeieeeiiieciieecie e 54
4.21 Class with Property Having Unspecified MultipliCityccoceevevienieieniinennenieniene 55
4.22 Class With INVETSE PrOPEItY......ccueiiiiieiiiieiiiieeiicetee ettt svee e e savee e 56
4.23 Annotation and Annotation Propertyccceecviieiiiiniiieciecciee et 57

4.24 Asymmetrical INVerse ProPerty........ccccooieoiiriiniiiiiiiiieiencieeeseeeee e 58

4.25 DISJOINE CIASSES ..veeuvieeiiieiieeiiieitieeieesiteeteestteeteesteeteessaeesseessseesseassseeseessseeseassseenssessens 59
4.26 Property CRaIN.........c.coiiiiiiiiieciie ettt e e tte e et e e et eeste e e s sbeeessbeeensseeesnseeennseeenns 60
4.27 EqUIVALENt PTOPEILYeiiitiiiiiiiieiie ettt ettt ettt st eeaeeas 61
4.28 EQUIVALIENE ClaSS ...cuiiiiieiieeiieiieeieeeiteeieeete ettt et esveeteeseaeesbeeesbeesaessseenseassseesssesnseas 62
L0 TSP PURRRP 63
5.1 Create a Concept Modeling ProjJectcoceviiiiiiiiiiiiiiiiniiiecceeee e 63
5.2 Create a Concept MOACL.......ccouiiiiiiiiieiiciiecie ettt ete e e sseeebeesaee e 65
5.2.1 Convert a UML Model into a Concept Model...........cccvreviiiiencieinieeeieeeiee e, 66
5.2.2 Create a Property Chaincccooiiiiiiiiiiiiiee e 76
5.2.3 Create EQUIVAleNt PrOPEITYcc.eevuiieiiieiiieiieiie ettt 84
5.2.4 Create EQUIVAIENt ClasSeS......ccccuiieiiieeiiieeiieeeiieecee et e steeeeveeesveeesveeeseveeeenee s 93
5.3 Setthe Concept Model URIccooooiiiiiiiiiiiieiee ettt 94
5.4 Create the XML Catalog Filec.ccoiiiiiiiiiiiiciiecieceece ettt 96
5.5 Import an OWL Ontology to a Concept Modelccooeeiiieiiiieiiiieieeeeeeee e, 105
5.5.1 Update the XML Catalog File.........ccccoeiiiriiiiiiiiieiiecieeeeeeeee e 105
5.5.2 Set the OWL Import Catalogcccoeierriieriiieeiiieeiieeeie et 105
5.5.3 Set a Path Variable to Share OWL Import Catalog Filescccccccovveviieenneennnee. 107
5.54 Use a Path Variable to Share OWL Import Catalog Filesccccceevvrrirennnnen. 110
5.5.5 Import an OWL Ontology fileccceeeiiieiiiiieiieeeeee e 113
5.5.6 Import annotations on an OWL Ontology to a concept model.............c.oceuvnneee. 116
5.5.7 Display and Hide IRccoooiiiiiiiiiiiieeee et 117
5.6 Export a Concept Model to an OWL Ontologyccceevveeeiieniieiiienieeiieseeereeeee e 119
5.6.1 Set the Concept Model EXport Syntax.........cccecvveeeiiieeiiieeieeeie e 119
5.6.2 Set the Concept Model Export URI Style........cccovveiieniieiiiniieieeiieeeeee e 120
5.6.3 OWL EXPOIt FOIACToouiiiiiiiieeiiceeeece et 122
5.6.4 Exporta Concept Model to OWLcccviiiiiiiiiiieceeeee e 125
5.6.5 Use Path Variables to Export a Concept Model to an OWL Ontology 126
5.7 Add a Concept Model to Teamwork Cloud and Export it as an OWL Ontology 127
5.8 Automatically Generate GlOSSAIISccviririiieiiieeiiieeiieeereeeieeeereeesreeesaeeesvee e 135
5.9 Create a Glossary TabIeccooviieiiiiiiiiiieieceee e e 136
5.10 Rebuild a Glossary Tableccocueieriiiiiiie ettt e 138

S0 VIEW @ GLOSSAIY .neviiieiiiieeiie ettt ettt e e e e et eetae e s taeesbeeessaeessseeessseeessseeenns 140

5.12 Create a Property HOIETooiiiiiiiniiiiiiieeeeeeee e 141

5.13 Universal Quantification Constraints for an Existing Propertyccceevvevvvennennen. 143
5.13.1 Add a Universal QuantifiCationccccueieeiiiiieieiiiiee e 143
5.13.2 Remove a Universal QuantifiCation...........cccceeeviieeiiiieciiiiecieeeee e 144

S.14 SUDPIOPEITIESuveeuiieeieeiieitieeieerieeeteesiteeteestteeteessteesbeessaeenseenseeesseesseeenseenseeanseesssesnses 144
N 0 B U B B 1 070)) 1S o USRS 145
5.14.2 Remove @ SUDPTOPEITYoooiiiiiiiiieiie et 145

5.15 Create an Existential Quantification (Qualified) Constraint for a Property................. 146
5.15.1 Add an Existential Quantification..............cccceecuiiiiiiiiiieieiiee e 147
5.15.2 Remove an Existential Quantificationccccceeeviieeiiiieniieeeiieeeee e 148

5.16 Go to Redefined Property.......ccccccuieciiiiiiiiiiiieeieeciie ettt 149
5.16.1 Go To Redefined Property in Containment Tree..........cccceevvveeecrieencieeeeiieeeeiee e, 149
5.16.2 Go To Redefined Property on Diagramcccccoevieniieniieniienieniieieeeee e 150

5.17 GO ToO SubSEtted PrOPertycccvieveiieiieiieeieeiie ettt ettt e e 151
5.17.1 Go To Subsetted Property in Containment Tree...........cceevvvveerciieencieeeciieeeiee e, 151
5.17.2 Go To Subsetted Property on Diagram............ceccueevieniieniieniienieeieeieeieesee e 153

5.18 Create a Necessary and Sufficient Condition.............cceevveeeiienieeiiienieeniienieeieenee e 154
5.18.1 Add a Sufficient Conditionccceeeiuiiiiiiiiiiiie e 154
5.18.2 Remove a Sufficient CONdition........c.ccecuerieriirienieniiieneceeteseeie e 155

5.19 Working With SUDCIASSEScccueiiiiiiiiiiiiiie et 156
5.19.1 Make Subclasses DISJOINTcccviiiiiieiiiieeiieeieeeee e e e 157
5.19.2 Make Subclasses COMPIELE........cccueeriiriiieiiieiieeie ettt 157
5.19.3 Make Subclasses OVErlappingcccueeeveeriieriieniieiieeieeiee e esiee e ereeereeseneennees 158
5.19.4 Make Subclasses INCOMPIELEcccveeeiiiieeiiiecieeeeeee e 160

5.20 Working With ANNOTALIONScevuiieiieriieeiieiieeiteste et eee et ette e ssaeebeesaeeebeeseaeeneeas 161
5.20.1 Import an Ontology that Defines Annotation Propertiesccceevereerueeiuennnee 161
5.20.2 Define an Annotation PrOPEItYcceeeciieeiiiieiiieciieeeee et 163
5.20.3 Apply an Annotation StErEOLYPE......ccueerueerieeiiieeieeiiieeieeieeereerieeereeteeereeseaeeneeas 164
5.20.4 Associate an Annotation Property with an Annotation...........cccceeevevveerveeenneennee. 165
5.20.5 Show Annotations on the Diagramc.ccceceeriiiiiiniiienienieee e 169
5.20.6 Show an Annotation in the Documentation Panecceceevveniiieniiciienneenen. 175

5.20.7 Select a Preferred Annotation Property for a UML Comment or «Annotation» .. 183
5.21 Generate a Natural Language GlOSSary..........ccoceerieeiiienieniiienieeeesie e 189

5.21.1 Updating symbol styles in older projects...........coceeverveereerieriieneeneniieneenieerenene 192
5.21.2 Selecting a List of Ordered Annotation Propertiesccecueevvereieenieerieennennnen. 193
5.21.3 Include Property Definitions in the Natural Language Glossary.............ccuuc....... 194
RETETEICES ...ttt et sttt 195

1 Introduction

1.1 MDA

The Model Driven Architecture (MDA) approach as defined by the Object Management Group
(OMG) “provides an approach for deriving value from models and architecture in support of the
full life cycle of physical, organizational, and L.T. systems [1].”

1.2 Concept Modeling Purpose

When building a system for a business, there are a plethora of methodologies to choose from, as
well as numerous existing models, profiles, and plug-ins across any given enterprise. What
should be the starting point of the effort, business concepts, is often lost in overwhelming
technical detail. Many profiles are at such an intricate technological level (e.g., DDL, XSD,
AndroMDA) that a development team is faced with too many technical choices which leads to
inconsistent models. Technological concerns drag down the level of abstraction to the point that
business concerns can get overlooked. Aligning models becomes too difficult and too much
work, almost invariably resulting in disconnected model silos.

A concept model (unifying business concepts across an enterprise) is the basis for a solution to
this dilemma. A concept model represents the concepts and defining relationships of the
business. A concept model is a model of the real world of the business, not the data used by
business systems. Additionally, the concept model provides the vocabulary for process models
that describe the way the business is run. The concept model is created by capturing the
knowledge of business experts, then understood and validated by business experts.

Data models, which define and structure the data used by a system, can be built or generated by
“sub-setting” a concept model. The concept model becomes the “Rosetta Stone” for enterprise
level semantic integration (i.e., automatically generating data transformations between systems
within the enterprise described by the concept model).

1.3 The Role of Ontologies and Reasoners

An ontology is a formal naming and definition of the types, properties, and interrelationship of
the entities that exist in some domain. It defines and represents consensual knowledge as a set of
concepts within a domain, using a shared vocabulary to denote the types, properties, and
relationships of those concepts. Artificial intelligence, the Semantic Web, systems engineering,
software engineering, biomedical informatics, library science, enterprise bookmarking, and
information architecture all uses ontologies to represent concepts that belong to their domain in
very specific ways. Domain ontologies (domain-specific ontologies) plays a significant role in
the definition and use of an enterprise architecture framework.

Ontologies are commonly encoded using ontology languages. OWL (Web Ontology Language),
produced by the W3C Web Ontology Working Group, is one of the formal languages to
construct ontologies. It is an international standard for encoding and sharing ontologies and is

3 Copyright © 2017, No Magic, Inc.

designed to support the Semantic Web. An OWL ontology may include classes, relations,
attributes, formal axioms, and instances. OWL can be used to build most kinds of ontologies.
The Concept Modeler maps to a subset of the OWL. The following are some examples of what
you can do with OWL ontologies using the Concept Modeler:

e Import existing OWL ontologies for concept reuse, and/or as a starting point for the
creation of a concept model.

e Export a concept model as an OWL ontology, which can be augmented by the addition of
axioms not supported by the Concept Modeler. For example, axioms can be added to
constrain model interpretations, or for advanced reasoning (e.g., transitivity) not
supported by the Concept Modeler and UML.

A semantic reasoner infers logical consequences from a set of asserted axioms in an ontology,
and typically provides automated support for reasoning tasks such as classification and querying.
The inferences made by a semantic reasoner over an ontology generated by the Concept Modeler
can be used to find logical inconsistencies in the primary concept model. Hence, a semantic
reasoner can provide information to validate and improve a concept model.

The logical consistency of a concept model is particularly important if the desired result is a
system that classifies information. As stated above, the inferences made by a semantic reasoner
can help to ensure that the concept model is logically consistent in its classification.

The Concept Modeler maps to a subset of OWL that is most useful to the business purposes of
defining a concept model. Consequently, any attempt to “round trip,” (i.e., re-import a possibly
modified ontology model that has been exported by the concept model) is very likely to be
“lossy”, particularly if the ontology generated from a concept model is augmented by additional
axioms not supported by the Concept Modeler. Therefore, as a prime tenet of MDA, the concept
model is considered to be the “primary” artifact, and the ontology is the “secondary” artifact.
Business concept development and changes must be made in the concept model.

1.4 Open World Assumption vs. Closed World Assumption

Concept models built by the Concept Modeler satisty the Open World Assumption. That is, no
one 1s assumed to have complete knowledge, and a fact may be unknown. The opposite is the
Closed World Assumption, where unknown facts are assumed to be false. An information model
“subsetted” from a concept model would satisty the Closed World Assumption.

1.5 Information Modeling Purpose

An information model describes what information is stored in a system, and is independent of
any particular implementation of data management structure or technology. One way to
remember the difference between a concept model and an information model is that while a
personnel record can represent a person, a personnel record does not go to jail when a person is
found guilty of wrongdoing. An information model has a different purpose than a concept model.
An information model is designed to meet a set of requirements for the information in a system.

4 Copyright © 2017, No Magic, Inc.

However, a concept model can provide an excellent starting point for an information model. The
elements of a concept model that would fulfill a system’s requirements can be cherry-picked or
subsetted to create an information model in UML. Doing so can retain the traceability from
elements in an information model to their definitions in a more precise language than plain
English.

2 Concept Modeler Capabilities

This section provides the capabilities of the Concept Modeler.

2.1 SME Friendly Graphical Notation

e Uses consultant proven “SME (subject matter expert) friendly” graphical notation.

e Facilitates real-time interactions with SMEs to model real world business concepts and
their relationships.

e Requires no camel case names.

e Sets, by default, visibility of properties to public.

e Encourages clean, hyperlinked micro-subject-area diagrams.

2.2 Automatic Styling of Concept Models

Large-scale models often contain information that is tangled in a complex web of relationships
and therefore are difficult to read and focus on. Even though MagicDraw is the best modeling
tool on the market, without the AutoStyler capability, untangling requires quite a bit of effort, so
many modelers don't bother to try.

The Concept Modeler, through the AutoStyler plugin, assists the modeler in producing diagrams
that are concise, focused, and presentable to stakeholders.

Central to AutoStyler is a style named “Defined Elsewhere” that is applied to diagrammed model
elements when they are not defined on the current diagram. Traditionally, this style collapses all
compartments and fades the normal element colors, including association ends that are not
defined on the current diagram. The modeler can fine tune this style in any way the MagicDraw
style system allows, and, if desired, even retain the default style for some or all kinds of
elements.

AutoStyler examines two factors to determine whether the current diagram is eligible to be the
defining diagram for an element being added to a diagram. The first is whether or not a non-
descendant package owns the added element. In other words, when the added element is owned
by an element that is not a child of the diagram's owner, it is defined elsewhere. An example of
this is when a package other than the diagram's owning package owns the added class. The
second is whether or not the added element has a hyperlink to a diagram, which indicates the
defining diagram for the element. When an added element's hyperlink is not the current diagram,
it is clearly defined elsewhere.

5 Copyright © 2017, No Magic, Inc.

AutoStyler has a mode to automatically assign a hyperlink that points to the current diagram
when it is eligible to be the defining diagram for an element being added to it. This automatic
mode can be turned off as well.

The "Defined Elsewhere" style can be defined differently for each project, or defined the same
across all projects. For example, one might use a UPDM architectural model and a UML
software model with one standard "Defined Elsewhere" style that works for both kinds of
models. This style is usually a clone of the "Default" style that has been adjusted to fade fill
colors, text colors, and line colors, which can usually be done at the top level using opacity
settings.

AutoStyler allows the modeler to select one or more elements on a diagram as the defining
diagram for them, as long as they meet the criteria described above for defining diagram
eligibility. AutoStyler cannot automatically change the style of an element on a diagram when its
defining diagram status changes on any but the current diagram. AutoStyler allows the modeler
to select these elements and “repair” the styles to reflect this change in status.

The “Default” and “Defined Elsewhere” styles are tuned for working with concept models. The
symbol properties within those styles are, by default, set as follows:

e Visibility and stereotypes for properties are suppressed.

e Tagged values for association ends and classes are suppressed.

e Tagged values for attributes are shown.

e Subsets, redefines, and constraints for properties are shown.

e Constraint names for properties are shown (instead of constraint expressions).

e Properties of Property Holders are always shown.

e Association-end properties for Property Holders are shown as attributes when the

“Defined Elsewhere” style is applied, and the Association Ends are not shown.

AutoStyler allows the modeler to change any of these settings element by element, or by
changing them in the “Default” and “Defined Elsewhere” styles.

AutoStyler is currently a separate plugin for MagicDraw, but is expected to become part of the
base MagicDraw product in the future.

2.3 Automatic Glossary Generation

Using a glossary saves time by ensuring consistent usage of terminology in the organization. It
also improves the communication between team members since terms are understood in the same
way and definitions become visible everywhere the terms are used.

6 Copyright © 2017, No Magic, Inc.

Depending on project options, automatic glossary generation in a concept model can create a
glossary containing the names and descriptions of classes, association ends, attributes,
enumerations, and / or enumeration literals used in the owning concept model. These glossaries
are generated on import, element creation in the containment tree, or element creation on the
diagram. When creating a new class, association end, attribute, enumeration, or enumeration
literal in the containment tree or on the diagram, the element will not be added to the glossary
until the user names the element.

For automatic glossary generation, a user is provided with five project options:

1. Add classes to a glossary. When a class is created in the Containment tree, created on a
diagram, or imported from an ontology, the class name and documentation will be added
to a glossary in the owning concept model.

2. Add association ends to a glossary. When an association end is created in the
Containment tree, created on a diagram, or imported from an ontology, the class name
and documentation will be added to a glossary in the owning concept model.

3. Add attributes to a glossary. When an attribute is created in the Containment tree, created
on a diagram, or imported from an ontology, the attribute name and documentation will
be added to a glossary in the owning concept model.

4. Add enumerations to a glossary. When an enumeration is created in the containment tree,
created on a diagram, or imported from an ontology, the enumeration name and
documentation will be added to a glossary in the owning concept model.

5. Add enumeration literals to a glossary. When an enumeration literal is created in the
Containment tree, created on a diagram, or imported from an ontology, the enumeration
literal and documentation will be added to a glossary in the owning concept model.

You may change these project options at a later time. You can build or rebuild a glossary table
containing only the kinds of entries selected in the project options. When you create a glossary
for any selected «Concept Model» stereotyped package, the Concept Modeler will add only the
elements that exist inside the selected package to the glossary. For example, you have a project
that has two packages: package A and package B. When you create a glossary for package A, the
glossary only includes data from the selected package A. It does not contain any data from
package B. See section 5.9 Create a Glossary Table for the detailed steps.

Just like creating a glossary, rebuilding it works the same way by allowing only the elements
from a selected package to be kept. For example, you have created the glossary for package A
and you later added some terms or elements (classes, association ends, attributes, enumerations,
and enumeration literals) to the glossary manually. When you rebuild that glossary, the terms or
elements that you have manually added will not be included in the glossary. The same thing will
happen when you move some of the elements from package A to package B and then rebuild the
glossary for package A. You will not find the elements that you removed from package A in the
glossary. Please see section 5.10 Rebuild a Glossary Table for the detailed steps.

7 Copyright © 2017, No Magic, Inc.

Attributes and association ends can be suppressed from a glossary when their names are too
generic. For example, when a property is called "in", every occurrence of that word in any other
description, therefore, undesirably becomes a hyperlink to the property called "in". Additionally,
automatic glossary generation can be turned off. Existing glossary entries are not removed when
automatic glossary generation is turned off.

The glossary table allows for managing the terms of a concept model in a spreadsheet-like form.
Each row in the table represents a term, which can be a word, a phrase, or any element of the
model.

With the help of this table, a user can easily:
e Create and manage all terms of the model in a single place.
e Customize the representation of the table.
e Export the data into an *.html, *.csv, or * xlsx file.

For more information, please refer to the user manual for MagicDraw 18.0 SP4 or higher.

2.4 Concept Model Authoring
The Concept Modeler can:
e (reate a concept model from scratch or by importing an OWL ontology for reuse and/or
as a starting point for the creation of a concept model.
e Graphically represent imported RDFS/OWL 2 ontologies.
e Provide graphical concept model authoring with subject matter experts.

e Integrate with any UML model or UML-based standard, such as the Unified Profile for
MoDAF and DoDAF, and NIEM-UML.

e Support the Open World Assumption (i.e., the absence of evidence is not evidence of
absence).

e Export a concept model to an OWL 2 ontology for reasoning over and adding further
precision to constrain possible interpretations.

e Support the creation of Closed World Assumption information models.

e Automatically style classes defined in other packages and diagrams.

To see all elements that the Concept Modeler can import or export, see sections 3. Concept
Modeling Semantics and 4. UML to Equivalent OWL (in OWL Functional Syntax) respectively.

2.5 UML Model Traceability

The Concept Modeler uses UML to build models. Therefore, concept models built by the
Concept Modeler can be traced to any UML model, (e.g., NIEM-UML).

8 Copyright © 2017, No Magic, Inc.

2.6 Semantic Integration of Multiple Information Models

A concept model built by the Concept Modeler provides the semantics to integrate multiple
information models “subsetted” from the concept model:

e Information at rest (e.g., relational and XML databases).
¢ Information in motion (e.g., XSD schema and NIEM-UML).

2.7 Natural Language Glossary

In addition to glossary tables, the Concept Modeler provides a separate feature for generating a
natural-language glossary. Natural language glossaries are intended for technical and non-
technical people alike. For instance, concept modelers can ensure that the model indeed says
what was intended. Subject matter experts can ensure that the model captures their business
knowledge correctly. And system builders can find definitions for the terms used in requirements
in much more detail than usual.

A natural language glossary converts the elements in a concept model into natural-language
sentences. Every class creates a hyperlinked glossary entry that describes its superclass(es),
necessary and sufficient properties, necessary properties, and optional properties. Any user-
supplied documentation is transcribed at the end of each glossary entry. That documentation can
add supplemental definitions such as examples and counter-examples.

Users will find that the better the model, the clearer the auto-generated glossary.

2.8 Annotation Properties in the Natural Language Glossary

Cameo Concept Modeler offers a project option that allows the selection of which annotation
properties will be shown or hidden in every natural language glossary entry, in addition to the
definitions generated from the semantics of a concept model. You can select any number of
annotation properties. Elements in the report such as Classes or Properties that are annotated
with a «Annotationy» stereotyped UML comment that contains one of these annotation properties
will display the UML comment body in the report. When no comment body exists the name of
the annotation property will display by itself.

In our software, the feature is labeled “Natural Language Glossary annotation property list” and
it consists of a list of pre-loaded annotation properties.

2.9 Preferred Annotation Property

Cameo Concept Modeler offers a project option that speeds up the creation of one of many
possible kinds of annotations, and specifies which kind of annotation to treat as documentation.
You can select one "preferred" annotation property to be assumed whenever the user adds a
UML Comment or an annotation. Comments and Annotations that explicitly use that annotation

9 Copyright © 2017, No Magic, Inc.

property will then be shown in the documentation panel, and in the Natural Language Glossary,
as the human-specified definition (as opposed to the model-generated definition).

If you import a concept model that contains annotations, they are placed in its owning folder and
each annotation has an annotated element and can have an annotation property tagged value.
When you select a preferred annotation property, the «Annotation»s owned by the annotated
element for the preferred annotation property will appear as documentation in MagicDraw.

Any annotations on ontology itself are imported correctly by CCM as annotations.

¢ In this new update, any annotations on ontology itself are imported by the Concept Model
as annotations.

If your project is a TWC project, Concept Modeler will attempt to lock the project’s elements. If
any of the elements cannot be locked, whether it is locked by another user, then several message
windows will appear, notifiying you of the problem and allowing you to see which elements are

not locked. Please refer to 5.20.7 for more information about these messages and further steps.

2.10 Creation of Multiple Data Models from One Concept Model

2.11 Connection of Multiple Existing Data Models to One Concept Model

2.12 Updating Symbol Styles

Cameo Concept Modeler diagrams are intended to be as non-technical as possible for subject
matter experts. As new features are added to the Concept Modeler, sometimes symbol styles may
expose technical details that are not appropriate for that kind of audience. Cameo Concept
Modeler therefore offers to tweak the styles called "Default" and "Defined Elsewhere".

However, if you have tweaked those styles yourself, you may wish to either defer this, or make
Concept Modeler stop asking you altogether.

This new feature that updates the symbol styles in older projects; more specifically, we added
versioning to symbol styles which allows you to programmatically update a project’s symbol
styles. Please note that this feature only works in 18.2+ and is not compatible in 18.0 and 18.1.
Additionally, updating symbol styles will overwrite the existing styles, so if you manually made
changes to the styles or added new features to the existing styles, those values will not be
retained. Please refer to 5.21.1 for instructions related to updating symbol styles.

10 Copyright © 2017, No Magic, Inc.

2.13 Diagram Preservation After Ontology Import

In addition to the Concept Modeler’s import capability, the software allows for diagram
preservation after an ontology import. More specifically, while importing an ontology, the
concept modeler will update the existing concept model. An ontology is imported into a CCM
project that contains one or more concept models. Each ontology is imported into a concept
model that may already be present in the project in which the ontology is imported. Ontology
elements get translated into concept model elements.

The following table describes the conditions, evaluated by Concept Modeler, of each resource
from ontology that is being imported. The condition determined by Concept Modeler will dictate
how Concept Modeler will create/merge/delete the model element.

New

An element is not present in the model project in which an ontology is being
imported. Some parts of the ontology being imported may be already present in the
model project but some of the other parts may be brand new.

Deleted

An element may be present in a concept model in the model project in which an
ontology is being imported. This element however may be missing from the
ontology being imported. This deletion need to be identified and element removed
after the import.

Modified

An element may be present in a concept model in the model project in which an
ontology is being imported. This element however may have different properties /
values in the ontology being imported. This update to its properties need to be
identified and updated after the import.

Same

An element remains unmodified after the import of an ontology.

The table below groups all the concept model elements and explains how they handle the
“preservation” for each of the four conditions explained above.

Concept Model Element Type of Update after Import | What can be modified?

New and Modified Only two relevant conditions
Concept Model Deleted and Same Irrelevant for the concept
model.
New New Concept is present only

in the imported ontology for
the given model.

Modified The concept's IRI matches but
either or both of the name and
owner are different.

Deleted Concept is present in the
model but missing from the
ontology. Mark all the new,
same and modified ones in the
original model. Delete the
unmarked ones from the
original model as these are the
ones that are deleted in the
ontology.

Concept

Same Following concept property

11

Copyright © 2017, No Magic, Inc.

match - Concept's IR, name
and its owner / model.

Concept Generalization

New

New generalization (to be
identified by general and
special concept) is present
only in the ontology

Modified

Not applicable

Same

Generalization's general and
special concept are same in
the ontology as in the model.

Deleted

Concept Modeler will mark all
the new and same
generalizations from the
original model and delete all
the unmarked ones since those
are the generalizations deleted
in the ontology.

We need to mark all the new
and same generalizations (in
the original model) and delete
all the unmarked ones (from
the original model) as these
are the generalizations that are
deleted in the ontology.

Concept Disjoint
Relationship

Explicit disjoint relation
between 2 concepts

Identical to concept
generalization

Concept Equivalence
Relationship

New New equivalence is present
only in the ontology
Modified Not applicable
Same Equivalent concepts are the
same in the ontology as in the
model.
Deleted Concept Modeler will mark all

the new and same
generalizations from the
original model and delete all
the unmarked ones since those
are the generalizations deleted
in the ontology.

We need to mark all the new
and same generalizations (in
the original model) and delete
all the unmarked ones (from
the original model) as these
are the generalizations that are
deleted in the ontology.

12

Copyright © 2017, No Magic, Inc.

Anonymous Unions

Same

Same (anonymous) union to
be identified by looking up
constituents (set of concepts in
the union) of the union against
every existing union.

Modified

Modified union is a union
which has either a) same
union constituents AND
different (uniquely
identifiable) properties or b)
different constituents AND
same (uniquely identifiable)
properties

New

New set constituents AND
new properties

Deleted

Other 3 cases should mark
anonymous unions that are
same, new or modified. Any
unmarked anonymous unions
in the original model are to be
deleted.

Properties

New

New object property is present
only in the imported ontology
(to be determined using IRI)

Same

Following properties of a
object property should match-
IRI, Domain, type,
multiplicities

Modified

Object property's IRI matches
but one or more of the
following values differ -
Domain, type, multiplicities

Deleted

Property is present only in the
original model but is missing
from the ontology being
imported. Mark all the new,
same and modified ones in the
original model. Delete the
unmarked ones from the
original model as these are the
ones that are deleted in the
ontology.

13

Copyright © 2017, No Magic, Inc.

3 Concept Modeling Semantics

In order to improve UML’s suitability for modeling real-world concepts, the Concept Modeler
interprets the UML standard to allow subproperties, existential quantification constraints, and
universal quantification constraints. In addition to those interpretations, the Concept Modeler
uses a small UML profile to add the capabilities of global properties, necessary and sufficient
properties, and other future capabilities. Simply having or applying a «Concept Model»
stereotype on a UML package causes anything within that package to have this interpretation,
and allows these added capabilities.

The following subsections describe how the Concept Modeler interprets the UML standard and
augments it to describe conceptualizations.

3.1 Class

In the concept modeling interpretation of the UML standard, a class is a set or collection of
individual things called members. The members of a class in a concept model are either things
that exist in the real world around us, or things we can imagine to exist, such as unicorns. For
example, depending on the stated scope of a concept model, the members of a Chair class would
include the one you sit upon to do your work, or the one in a warehouse ready to be shipped to a
customer.

3.2 Property Ownership

The concept modeling profile of UML interprets the owner of a property as a context in which
that property must conform to certain constraints. These constraints can include multiplicity
(which includes a minimum cardinality and a maximum cardinality), a type for the property,
existential quantification, and universal quantification, which is the default. When an instance is
a member of an owning class, all of that class’ constraints must be met.

UML allows the cardinality of a property to be left unspecified. Unlike UML, which interprets
unspecified cardinalities as a minimum of one and a maximum of one, the concept modeling
profile interprets unspecified cardinalities as being zero to many (“0..*”).

An OWL ontology may contain properties in namespaces that are different from their domains.
If you import an OWL ontology that has properties with foreign domains defined in such
manner, you will see the association ends with cross (x) marks. In the Concept Modeler, these
non-navigable association ends mean that the properties belong to foreign domains and therefore,
they are owned by the association. The following diagram shows the examples of non-navigable
association ends.

14 Copyright © 2017, No Magic, Inc.

package Company | Companyu

Employer |owner owns Vehicle
(Company) Vehicle

employeed DY €S

employees

Employed |driven by

Figure 1 Properties owned by an association

In the diagram, the Employer, Vehicle, and Employed classes belong to three different
namespaces, and the association belongs to the same namespace as that of the Employer.

Note It is recommended that duplicate property names in a concept modeling diagram be
avoided because they will result in conflicting definition of domains and ranges
when exported to OWL.

3.3 Global Properties

Global properties are property declarations that can be used by any instance. Normally, a UML
property cannot be defined outside of a classifier, so a global property declaration is represented
as a UML property owned by a class that is stereotyped as a «Anything». The concept of a
property holder was introduced in the NIEM-UML standard for a similar purpose. In the concept
modeling profile, every property holder is equivalent to one topmost class (T) of which all other
classes are subclasses. Thus, a property of a property holder is “inherited by” all subclasses and
usable in any instances. In addition, while the name of a property holder is irrelevant,
consistently naming property holders “Thing”, “Concept”, or “Entity” in all concept models
avoids any confusion with normal classes.

Thing
»--.:1' S
+has member : Thing [*]
+ es : Thing [*]
+is erred on : Thing [*]
+has respons Duty [*]
+is ed hing [*]
+is mandated by : Thing [*Ksubsets is conferred by;

Figure 2 A property holder in Concept Modeler

15 Copyright © 2017, No Magic, Inc.

3.4 Subproperty

A subproperty is a more specific kind of property than some other property, and a super property
is a more general kind of property than some other property. For example, “has father” is a more
specific property than “has parent”, and “has parent” is a more general property than either “has
mother” or “has father”. In the concept modeling interpretation of UML, subsetting a property
creates a subproperty when the subsetting property has a different name than the subsetted
property. (See section 3.5 Existential Quantification Constraint, for when the name is the same or
is omitted.) UML provides a {subsets} constraint that asserts that the values within a subsetting
property are also in the set of values within a subsetted property. To stay as close to standard
UML as possible, the concept modeling profile interprets a subsetting property having a different
name as a subproperty.

The diagram below shows that the property “is capacity of”’ (owned by the class “Legal
Capacity”) is a subset of the global property “is conferred on” (from the property holder
“Thing”).

Note In order to create a subproperty, the subsetting property must have a different name
than the property it subsets.

Autonomous Agent | is capacity of has capacity | Legal Capacity
1.* * (Legal Capacities)

{subsets is conferred on}

R

Figure 3 Property ‘is conferred on’ and subproperty ‘is capacity of” having different names

3.5 Existential Quantification Constraint

A property is not limited to a minimum and a maximum cardinality (known as multiplicity) for
just one type. A property can have a multiplicity for a superclass, while at the same time having a
more specific multiplicity for one or more subclasses of that superclass. This constraint is known
as an existential quantification (3) or qualified constraint. This type of constraint is an assertion
that, among other possible values, the number of values of one of these subclasses is between
some minimum and maximum cardinality. Adding an existential quantification constraint does
not define a new property, rather it constrains an existing property. Note that an existential
quantification constraint must have a minimum cardinality of at least one in order to meet the
definition of “existential” for the constraint. In the concept modeling interpretation of UML,
subsetting a property without giving the new property a different name (or leaving off the new
property name altogether) creates an existential quantification constraint. As {subsets} with an

16 Copyright © 2017, No Magic, Inc.

omitted name is not well defined in UML, in the concept modeling profile it is used to state that
a subset of values must meet the stated cardinality and type constraints of the subsetting
property. It does not create a new property, although it does create a context in which this
constraint holds: the owning class and its subclasses.

The next diagram shows an existential quantification constraint on the global property “is
conferred by” (from the property holder “Thing”). The multiplicity is such that at least one of the
instances of the property constraint must be one of the types in the union.

Note The property adding the constraint is unnamed. An unnamed property is equivalent, in
this case, to naming this property the same as the property being constrained (“is
conferred by” from the property holder “Thing”).

Union
Legal Construct N ¥

(Legal Capacities) 1.* (Legal Capacities)
{subsets is conferred by} 7~ - =
{complete, overlapping} - VthV\vng‘
+has membe :'hing[if-: .
Contract +provides : Thing [*]
Contracts +S on : Thing [*]
Law Constitution e — + : Duty [*]
L_e;a Core ‘ Legal Core +hasEffectiveDate +is €0 : Thing [*]
ol oe) +isAssignable : Boolean +is : Thing [*Ksubsets is conferred b
=ty
& =
Figure 4 An existential qualification constraint on property 'is conferred by’
Note ¢ In the Concept Modeler, the existential quantification constraint of a property

must have a minimum multiplicity of at least one. If the minimum multiplicity
of a property that restricts another property is, for example, 0..5 or 0..*, the
Concept Modeler will adjust it to 1..5 or 1..*.

e Multiplicity values of *, 0..*, and Unspecified all mean the same thing.

3.6 Universal Quantification Constraint

Sometimes, in the context of some class, it is necessary to constrain a// the values of a property
to a particular type. This constraint is known as a universal quantification or for-all constraint
(V). This kind of constraint is an assertion that only values of the specified type are valid, and
that the number of values must be between some minimum and maximum cardinality. In the
concept modeling interpretation of UML, introducing a new property or redefining an existing
property creates a universal quantification constraint in the context of the owning class. This
interpretation is based on {redefines} in UML, which allows adding more specific constraints to
an existing property without defining a new property.

17 Copyright © 2017, No Magic, Inc.

The diagram below shows the introduction of a new property, “consists of”’, defining a universal
quantification constraint on the property. The constraint states, in the context of Soccer Team
and any of its subclasses, that all values of this property must be of the type “Soccer Player”, and
that there must be between 5 and 11 values of this property.

consists of
5.1

Soccer Team
(Case 03)

Soccer Player
(Case 03)

Figure 5 The property 'consist of' defining a universal quantification constraint

The following diagram shows a universal quantification constraint on the property “has” (owned
by the class “Person”). It states, in the context of “Dog Owner”, that all values of the property
“has” must be of type “Dog”, and that at least one value of this property must exist.

Note A property that is redefined must have the same name as the redefined property. In this
case, leaving the redefined property unnamed is equivalent to naming the property the
same as the one being redefined (“has” from the class “Person”).

Person has Pet

(Case 06) 0.* (Case 06)
Dog Owner Dog

(Case 06) My (Case 06)

{redefines has}

Figure 6 A universal quantification constraint on the property 'has'.

3.7 Necessary and Sufficient Condition

A property's multiplicity or type is declared in the context of an owning class or a property
holder. When the minimum cardinality is at least one, these declarations are always necessary
conditions for an instance to be a member of the owning class, or, in the case of a property
holder, for an instance to be valid at all.

Another kind of condition is known as both necessary and sufficient. A class with at least one
necessary and sufficient condition is known as a defined class, which means the differentiating
characteristics of the class that make it distinguishable from its parent and sibling classes are
defined. Note that using a necessary and sufficient condition on a property with a minimum
cardinality of zero is not meaningful.

18 Copyright © 2017, No Magic, Inc.

In the concept modeling interpretation of UML, a property that has the {sufficient} constraint
applied to it indicates that when an instance satisfies the multiplicity and type constraints for the
property’s values, not only is a necessary condition for being an instance of the class

met, a sufficient condition is also met. This necessary and sufficient condition allows an
inferencing engine to classify that instance as a member of the class with that condition. Once an
instance is classified automatically, the conditions on any other properties that have the
{sufficient} constraint, including those inherited from superclasses, merely

become necessary conditions the instance must meet to be a valid member of the owning class.
In other words, satisfying any one {sufficient} constraint is enough for an inferencing engine to
classify an instance.

The diagram below shows that when an instance with the property “has contract with” satisfies
specific multiplicity (“1..*”) and type constraints (of type ‘Steering Wheel Manufacturer” or
“Windshield Manufacturer”) for the property’s values, the instance meets a necessary and
sufficient condition to be a member of the class “Car Manufacturer”. Therefore, an inferencing
engine would classify this as an instance of the class “Car Manufacturer”. As discussed above,
an instance meeting any one of these necessary and sufficient conditions is enough to classify the
instance regardless of conditions on the values of any other properties with the {sufficient}
constraint owned by the class “Car Manufacturer”. The conditions on the values of these
properties become necessary conditions on an instance for it to be a valid member of class “Car
Manufacturer.” Also, an instance meeting any one of these necessary and sufficient conditions is
enough to distinguish instances of the class “Car Manufacturer’ from its parent class
“Manufacturer.”

has contract with [0..*
Manufacturer
(Case 20)
pay
Steering Wheel Manufacturer Car Manufacturer |Windshield Manufacturer
(Case 20) 1.* (Case 20) 1.+ (Case 20)

{sufficient} {sufficient}
{subsets has contract with} {subsets has contract with}

Figure 7 An example of necessary and sufficient condition

3.8 Generalization

A generalization is a subsumption relationship between a more general class and a more specific
class. Every instance of the specific class is also an instance of the subsuming general class.

19 Copyright © 2017, No Magic, Inc.

Because of this subsumption relationship, the specific class inherits all of the necessary
conditions of the more general classifier.

For a simple example, if we define “Futsal Team” as a subclass of “Soccer Team”, then the set of
individuals in “Futsal Team” must be a subset of the set of individuals in “Soccer Team”.

Soccer Team
(Case 04)

Futsal Team
(Case 04)

Figure 8 The relation between subclass 'Futsal Team' and class 'Soccer Team' represents generalization

There are four variations on generalization described in the following subsections. The first
variation corresponds to the example above: overlapping and incomplete subclasses. That
variation is the default in both UML and concept modeling.

3.8.1 Overlapping and Incomplete Subclasses

This variation is the default in both UML and in concept modeling. In this variation, an instance
can be a member of the superclass and / or any number of subclasses. In this sense, the
classification of instances is “incomplete”—sometimes there is a specific subclass, and
sometimes there is not.

For example, the diagram below shows four instances. One is an instance of “Manufacturer”, one
is an instance of “Windshield Manufacturer”, one is an instance of “Car Manufacturer”, and one
is an instance of both “Windshield Manufacturer” and “Car Manufacturer”.

20 Copyright © 2017, No Magic, Inc.

Manufacturerf

Windshield® Carl2l
Manufacturerf Manufacturer

o ¢ o

Figure 9 An example of incomplete instances

In both standard UML and in concept modeling, incomplete and overlapping subclasses are
shown with either no notation, or with the notation {incomplete, overlapping} near the
generalization arrow.

Manufacturer
(Case 27)
incomplete, overlapping}
gs1
[|
Windshield Manufacturer Car Manufacturer
(Case 27) (Case 27)

Figure 10 Incomplete and overlapping subclasses in standard UML notation

3.8.2 Disjoint Subclasses

This variation means that an instance can only be classified by one of the disjoint classes.
Disjoint classes cannot have any overlap in their instances.

The diagram below shows three instances. One is an instance of “Cat”, one is an instance of
“Dog”, and one is an instance of “Animal”. An instance classified as both “Cat” and “Dog” is
impossible because there is no overlap between the two classes. In the most basic terms, an
instance of a “Cat” cannot be an instance of a “Dog”, and vice versa.

21 Copyright © 2017, No Magic, Inc.

Animal@

Catl

Figure 11 Disjoint instances

The following diagram shows an example of disjoint subclasses in standard UML notation. It
shows that “Dog”, “Cat”, and “Mouse” are all subclasses of “Animal”. In addition, the standard
UML {incomplete, disjoint} notation declares all of the subclasses to be incomplete and disjoint.
Intuitively, an instance of the subclass “Dog” is an instance of the superclass “Animal”, but it
cannot be an instance of the “Cat” or “Mouse” subclasses. Moreover, a lizard would be an
instance of “Animal”, but could not be an instance of any of the subclasses “Dog”, “Cat”, or
“Mouse”.

Animal
(Case 24)
{incomplete, disjoint}
gs2
I | I
Dog Cat Mouse
(Case 24) (Case 24) (Case 24)

Figure 12 Incomplete and disjoint subclasses in standard UML notation

The Concept Modeler supports importing disjoint classes. A dependency stereotyped as
«Disjoint With» will be used to specify disjoint subclasses. For example, the class Animal has
two disjoint subclasses, Cat and Dog. When you import them to the Concept Modeler, the
diagram will look similar to the example shown in the following figure.

22 Copyright © 2017, No Magic, Inc.

Animal

(Case 24)
Dog «Disjoint With» Cat
Case24) | — T T T T T 7 (Case24)

Figure 13 Imported disjoint subclasses are stereotyped with «Disjoint Withy

3.8.3 Complete Subclasses

This variation means that an instance can only be classified by one of the subclasses; it cannot be
classified by only the superclass. However, an instance of a subclass is indirectly an instance of a
superclass at the same time.

For example, the following diagram shows three instances. One is an instance of “Windshield
Manufacturer”, one is an instance of “Car Manufacturer”, and one is an instance of both “Car
Manufacturer” and “Windshield Manufacturer”. Note that there can be no instance of
“Manufacturer” that is not also an instance of one of the subclasses.

WindshieldR Carfl
Manufactureri Manufactureri

Manufacturer

Figure 14 An example of complete subclasses

The diagram below shows an example of complete subclasses in standard UML notation. The
diagram shows that “Steering Wheel Manufacturer”, “Car Manufacturer”, and “Windshield
Manufacturer” are all subclasses of “Manufacturer”. In addition, the standard UML {complete,
overlapping} notation declares that the subclasses are complete and overlapping.

23 Copyright © 2017, No Magic, Inc.

Manufacturer

(Case 23)
pay

Fcomplete, overlapping}

gs1
Steering Wheel Manufacturer Car Manufacturer Windshield Manufacturer
(Case 23) (Case 23) (Case 23)

Figure 15 Complete subclasses in standard UML notation

3.8.4 Disjoint and Complete Subclasses

This variation means that an instance can only be classified by one of the subclasses. The
instance cannot be classified as only the superclass, and it cannot be classified by two subclasses
at the same time.

For example, in the subsequent diagram, two instances are shown. One is an instance of
“Windshield Manufacturer”, and one is an instance of “Car Manufacturer”. There can be no
instance of “Manufacturer” that is not also an instance of one of the subclasses, and there can be
no instance that is classified as both a “Windshield Manufacturer” and a “Car Manufacturer” at
the same time.

Windshield® Carl2
Manufacturer? Manufacturer®

L 4 ¢

Figure 16 Disjoint and complete instances

The diagram below shows an example of disjoint and complete subclasses in standard UML
notation. The diagram shows that “Steering Wheel Manufacturer”, “Car Manufacturer”, and

24 Copyright © 2017, No Magic, Inc.

“Windshield Manufacturer” are all subclasses of “Manufacturer”. In addition, the standard UML
{complete, disjoint} notation declares that the subclasses are complete and disjoint.

Manufacturer

(Case 28)
AN

kcomplete, disjoint}

gs1
Steering Wheel Manufacturer Car Manufacturer Windshield Manufacturer
(Case 28) (Case 28) (Case 28)

Figure 17 Disjoint and complete subclasses in standard UML notation

3.9 Anonymous Union Class

An anonymous union is an unnamed class used to represent a set of classes that can be used as a
type of a property. An anonymous union class always implies a complete subclass
generalization. (See 3.8.3 Complete Subclasses.)

The following diagram states that an instance of a Person may have a value of type Cat or Dog
for the cares for property. The diagram also states that an instance of a Cat or a Dog may have a
value of type Person for the cared for by property.

Person cared for by cares for «Unions
(Case 26) |* *
(Case 26)
{complete, disjoint}
T gs3
Cat Dog
(Case 26) (Case 26)

Figure 18 An anonymous union class

In an ontology, if anonymous union, with same classes within the union, is used in multiple
places, the Concept Modeler can distinguish it when importing the ontology. In other words, if
the anonymous union has the same union members, the Concept Modeler will identify it as the
same anonymous union.

3.10 Inverse Properties

A property is a unidirectional relation between two classes, or between a class and a datatype. In
the case in which there is a relation between two classes, it is often useful to define a property
that goes in the opposite direction. For example, if a Video Game Company manufactures Video
Game Consoles, the opposite would be that a Video Game Console is manufactured by a Video

25 Copyright © 2017, No Magic, Inc.

Game Company. Rather than draw two separate unidirectional associations, properties drawn on
opposite ends of one association are inverses of one another. When an instance has a value for a
property that has an inverse defined, a reasoner can infer that an opposite value also exists, and
automatically create it.

The next diagram asserts that for every (Video Game Console, Video Game Company) related
by the manufactures property, there is a corresponding (Video Game Company, Video Game
Console) related by the manufactured by property.

Video Game Console \manufactures manufactured by |Video Game Company
(Case 25) 0.* 1 (Case 25)

Figure 19 Inverse properties shown on opposite ends of association

In most cases, when importing an OWL ontology, information in OWL is enough to assert that
two properties are inverse of each other. However, if the definition is insufficient to prove that
two are inverse of each other or which class owns the property and what the type is, the Concept
Modeler will create two unidirectional associations and use a stereotyped dependency «inverse
of» between the properties to show that they are inverse of one another.

3.11 Property Restrictions

In the Concept Modeler, a property restriction appears as one with a {subsets} or {redefines}.
The Concept Modeler will import each property restriction as a unidirectional association
between the two concepts.

3.12 Annotation and Annotation Properties

The OWL language provides a way to comment on any subject that has a URI, using
annotations. One can annotate classes, properties, and ontologies. In addition to providing a way
to comment on a subject, the OWL language provides an open-ended way to define annotation
properties. An annotation property defines a type of annotation with a relatively precise
meaning.

Every annotation is a value for an annotation property. An annotation describes some subject
URI using an annotation property URI and a (usually textual) value, forming what is called a
triple. For example, a well-known vocabulary called Dublin Core defines an annotation property
that has the URI http://purl.org/dc/terms/description. That annotation property is what the
Concept Modeler uses by default to document a class called Person. It forms the triple
http://example.com/ontology/Person http://purl.org/dc/terms/description “A human being”.

The Concept Modeler allows the user to define any number of annotation types. The user does
this by declaring that a property is an annotation property using the «Annotation Property»
stereotype on a UML property. Alternatively, a user can import annotation properties from

26 Copyright © 2017, No Magic, Inc.

http://example.com/ontology/Person
http://purl.org/dc/terms/Description
http://purl.org/dc/terms/Description

existing OWL ontologies. When the Concept Modeler imports annotation properties, it
automatically applies the «Annotation Property» stereotype.

Any UML comment can be exported as an OWL annotation. By default, the concept modeler
converts UML element documentation, notes, and comments into the Dublin Core annotation
property http://purl.org/dc/terms/description. When the user would like to use some other
annotation property, he or she can specify which one as a tagged value in a UML comment
stereotyped as an «Annotation». Applying this stereotype allows one to use any annotation
property to provide more precise meaning for the information the comment contains and to
properly export the comment into OWL.

For example, the following diagram illustrates a UML comment stereotyped with «Annotation»
to document the concept /tem. It uses a specific kind of annotation property, called explanatory
note, to provide context for that documentation. That annotation property definition is shown as
the third attribute stereotyped as an «Annotation Property» in the pink property holder. Its usage
as a tagged value is shown as “{annotationProperty = explanatory note}” in the UML Comment
stereotyped as an «Annotationy». Please see the normal MagicDraw documentation for how to
create a tagged value for a stereotype in the specification window.

You may have an imported model that contains annotation properties and documentation. A
UML Comment can have more than one «Annotation» and each of these «Annotation»s can also
have their own annotation property tagged value.

3.13 Preferred Annotation Property

The Project Options in the Concept Modeler provides a Preferred annotation property option
for the UML Comments or «Annotation»s in a model. This capability allows you to control
which annotation property becomes the “special” MagicDraw comment providing
documentation, when you enter text into the Documentation pane or create a new Annotation. It
also allows the documentation to be included in the Natural Language Glossary. If the UML
Comments and the «Annotation» Comments do not have annotation property value assigned
(annotationProperty Tag from Specifications), then they should be treated as if they have
"Preferred annotation property" assigned from Project options.

27 Copyright © 2017, No Magic, Inc.

http://purl.org/dc/terms/Description

Changing a preferred annotation property tagged value will cause the ownership of existing
UML comments and «Annotation»s to change, for example:

e Any UML comment and «Annotation» that was using the old preferred annotation will be
moved from being owned by the annotated element to being owned by the next-higher
package.

e Any UML comment and «Annotationy that is using the new preferred annotation
property will be moved to being owned by the annotated element.

Note e Changing the preferred annotation property tagged value of UML comments
and «Annotation»s will change their ownership.

e Changing in ownership causes a change in the Documentation pane (on the
lower-left) and what shows up in the Natural Language Glossary because the
first UML Comment or «Annotation» that is owned by an annotated element is
considered “documentation” in MagicDraw.

If you do not select an annotation property tagged value for any UML comment or «Annotation»
in your model, any time we export it to an OWL ontology, the Concept Modeler will use the
preferred annotation property that does not have a tagged value, which is
http://purl.org/dc/terms/description[3]. This preferred annotation property without a tagged
value (unspecified) in the Concept Modeler is active until you change it through the Project
Options dialog. Selecting <UNSPECIFIED> from the Project Options dialog will remove the
current preferred annotation property tagged value.

Annotation Property Holder

rtel {e ies. AnnotationVocabular

AN

«Annotation»
Library kstored in loans | tem] {annotationProperty = explanatory note}
(Library) [0 1 . (Library) 7 7| This represents any item physical or
—_— " electronic that can be lent out by a

library.

Multimedia | " Book
(Library) (Library)

Figure 20 A comment stereotyped with «Annotation» to provide a correct meaning of an item

28 Copyright © 2017, No Magic, Inc.

The following diagram is used as an example to show you how the Preferred annotation property
option works. In the figure, a class autonomous agent is plotted on the diagram along with five

annotations.

«Annotations
[annotationProperty = sesAlso}
http://www jamesodell.

«Annotations
{annotationProperty = definition}
An agent is an autonomous
individual that can adapt to and

«Annotation»

{annotationProperty = related
specification}
http://www.omg.

«Annotation»
[annotationProperty = direct
source}
http://www.omg.

«Annotations

{annotationProperty = sesAlso}

http://www jamesodell.
com/WhyShouldWeCareAbou

com/WhatlsAnAgent.pdf . b N org/techprocess/meetings/

: interact with its lenwronment. org/spec!SoalIJLl schedule/AMP. html tAgents.pdf |
' | [| [
|

| | | I
|

| [| I
|

| | | I
I I | |

«Resource»
autonomous agent
(Imported Ontologies.Agents)
S ISSUEd DY S USECd DYy S NEId DYy S €0 Dy
L esignates as designation uses hol.ds designates

Thing

Figure 21 A class with annotations in the diagram pane

The first tree view example shows you how they are structured in the Containment tree before
you select a preferred annotation property from the Project Options dialog. Notice that the
Documentation pane shows no annotation when the class is clicked. Using the above
instructions, we select the definition as the preferred annotation property for the «Annotation»
with the (annotationProperty = definition).

29

Copyright © 2017, No Magic, Inc.

" talontainment | 29 Diagrams |

Containment » 2 X
s v Q 0 -
E-[&) Data -~

B}- 7 Documentation Test
£} [Imported Ontologies
: D <>
[22+df-syntax-ns
7 AccountingEquity
B[] Addresses
B[] Agents
B}/ Relations L
Agents
=
----- O s constrained by : Imported Ontologies::LegalCol
----- O +holds : Imported Ontologies::Relations::Thing
----- O +uses : Imported Ontologies::Relations::Thing
i O +has capadty : Imported Ontologies::LegalCapacit
B Thing

-4 An agentis an autonomous individual that can adap...
- [http:/fwww.jamesodell.com/WhatIsAnAgent.pdf
- [http:/fwww.jamesodell.com/WhyShouldWeCareAbout#
- [http://www.oma.org/spec/SoaML/
- [http://www.oma.org/techprocess/meetings/schedule/#
- [is the relationship between an individual or organ...
- [is the relationship between something and that whi...
- [provides a unique identifier for something
- [relates an autonomous agent to something thatith...
- [that by which some thing is known; may apply to an... ~
< | (1] J »

-~

s Zooq)/v B Documentation [Properﬁes]

Documentation 8 X
Documentation of Diagram Agents
HTML
| -
-

Figure 22 Annotations in the Containment tree before the Preferred annotation property is selected

30

Copyright © 2017, No Magic, Inc.

In the second tree view example below, see how the annotation ownership changed after you
selected definition as the preferred annotation property. If you open the Specification dialog of
the «Annotation» with the (annotationProperty = definition), you will see that the new owner is

autonomous agent (previously, it was the package Agents’). The Documentation pane will also
show the annotation if you click the class autonomous agent.

" B Containment | £ Diagrams]
Containment (LI S ¢
B v Q o 204
B3 Data
E3- [Documentation Test F
B[Imported Ontologies
: D <>
-] 22-rdf-syntax-ns
-] AccountingEquity
-] Addresses
-7 Agents
B}/ Relations
Agents e
=

----- O s constrained by : Imported Ontologies::LegalCo

----- O +holds : Imported Ontologies::Relations::Thing

----- O +uses : Imported Ontologies::Relations::Thing

- O +has capacity : Imported Ontologies::LegalCapacit

& Thing

- [http:/fwww.jamesodell.com/WhatIsAnAgent.pdf

- [http:/fwww.jamesodell.com/WhyShouldWeCareAbout#

- [http://www.oma.org/spec/SoaML/

- [http://www.oma.org/techprocess/meetings/schedule/#

+]--[] Agreements

-] Analytics

-] AnnotationVocabulary

3|

3|

m

1-C7] Arrangements

1--[7] BusinessDates

-] BusinessFacingTypes -
< | m | »

L

&3, Zoom S [Documentation [Properties]
Documentation 28 X
Documentation of Class autonomous agent
[T HTML

An agent is an autonomous individual that can adapt to and interact with »
its environment.

-

Figure 23 The annotation appears in the Documentation pane after the preferred annotation property is selected

31 Copyright © 2017, No Magic, Inc.

3.14 Property Chain

The Concept Modeler can import property chains. A property chain is useful for composing a
property from two or more other properties that are put together in a chain. It defines the
property with reference to the other properties. The property chain allows you to navigate from a
starting class (the one with the stereotype «Subproperty Chainy») through a chain of properties
that take a path through multiple classes.

A property chain is an ordered list of composed properties, therefore, it should have two or more
properties in the chain. The same property can appear more than once in a chain. For example,
“has parent ¢ has parent” is a subproperty of “has grandparent”.

Note e An existential or universal quantification restriction cannot have or be a part of
a subproperty chain, although the property it restricts can.
e A sub-property can have or be part of a subproperty chain for another property.

The following example describes a Person class that has two instances “Female Person” and
“Male Person”, and four properties “has parent”, “has father”, “has uncle”, and “has brother”.
The stereotype of the property “has uncle” will be «Subproperty Chain» of Element type and
the tagged value is chain = has father, has brother.

32 Copyright © 2017, No Magic, Inc.

package Property Chain[Property Chain U

Person
(Property Chain)

has parent
2

incomplete, disjoint}

gs1
Female Person Male Person
(Property Chain) (Property Chain)

has brother

*

has uncle

*

{chain = has father, has brother}

has father
1

Figure 24 Property Chain in the Concept Modeler

For more information on how to create a property chain, see section 5.2.2 Create a Property
Chain.

3.15 Equivalent Properties

The Concept Modeler allows you to represent, import, and export equivalent properties in a
model. You can make two or more properties equivalent to each other by applying the stereotype
«Equivalent Property» to the target property and the tagged value “equivalent to” the
equivalent property.

Note e An existential or universal quantification restriction cannot have or be an
equivalent property, although the property it restricts can.
e A sub-property can have or be an equivalent property.

33 Copyright © 2017, No Magic, Inc.

The following figure shows the equivalent properties in a diagram.

package Example[Exampleu

Person
(Example)
has kid has child

* * {equivalent to = has kid}

{incomplete, disjoint}
os1
I I
Female Person Male Person has dad
has mem (Example) (Example) 7
1
has mother
3 has father

{equivalent to = has mom} 1

has papa
1

Figure 25 Equivalent properties in the Concept Modeler

In the example, the property “has mother” is equivalent to the property “has mom”. For more
information on how to create equivalent properties, see section 5.2.3 Create Equivalent Property.

3.16 Equivalent Classes

The Concept Modeler can specify equivalence between two classes, import equivalent classes
from OWL, and export equivalent classes to OWL. Class equivalence expresses a generalization
relationship stereotyped as «Equivalent Class». The Concept Modeler will draw this with a
double-headed arrow.

The following figure shows two equivalent classes in a diagram.

34 Copyright © 2017, No Magic, Inc.

package Example[Exampleu

US President «Equivalent Class» N Principal Resident of White House
(Example) i VI (Example)

Figure 26 Two Equivalent Classes in the Concept Modeler

In the example, the equivalence class arrow defines that the two classes are semantically
equivalent to each other. For more information on how to create equivalent classes, see section
5.2.4 Create Equivalent Classes.

If you would like to look at equivalent class relations which are identified by «Equivalent Class»
stereotype, there are several possibilities of results depending on the types of classes. Consider
the two related classes called Class 1 and Class 2. After perusing through all of these cases,
please refer to the figure below the text to see a brief summary of some of these cases.

e Ifboth classes are Class but they do not share the same name, then one class will show
“Equivalent to” and the rest will show “See.”

e [fboth classes are Class and they do share the same name, then it will appear as one class
with all the properties from both classes.

e [fClass is equivalent to a Union, then the Class will be shown with its properties and the
subclasses of Union will be shown under Class.

e Ifboth classes are Unions then both unions will be merged and follow the same pattern as
the Class/Union combinations explained above.

Remark: Unions should not have names. If a Union has a name, then it’s a Class.

The following information explains more explicitly how to determine which Class will show
“Equivalent to” and which will show “See.”
e Ifonly one class has documentation:
o This class will show ‘Equivalent to” and list the rest of the classes it is equivalent
to.
o The rest of the classes will show ‘See’ with the link going back to the class that
shows ‘Equivalent to’
e More than one class has documentation:
o First class with documentation in alphabetical order will show ‘Equivalent to” and
list rest of the classes it is equivalent to
o The rest of the classes will show ‘See’ with the link going back to the class that
shows ‘Equivalent to’
e None of the classes have documentation
o First class in alphabetical order will show ‘Equivalent to’ and list rest of the
classes it is equivalent to

35 Copyright © 2017, No Magic, Inc.

o The rest of the classes will show ‘See’ with the link going back to the class that
shows ‘Equivalent to’

Remarks:

1. The class that shows ‘Equivalent to’, will list all properties and annotations from all the
classes it is equivalent to.

2. The class that shows ‘See’, will not show any of the properties or annotations.

3. All same named classes will show ‘(from package {qualified class name})’ to
differentiate each same named class.

A
A
Model-Generated Definition:
Equivalent to B.
Definition:
B
B
See A.

Figure 27 Segmented shots of a report showing the merging of all the equivalent classes in the project.

4 UML to Equivalent OWL (in OWL Functional Syntax)

There are various syntaxes available for encoding OWL ontologies. The Concept Modeler can
export UML to an OWL ontology using the following syntaxes:

e RDF/XML. It is the originally standard syntax for writing RDF (Resource Description
Framework), which is a general-purpose language for representing information in the
Web. Though verbose and difficult to read, it is the only syntax that is mandatory to be
supported by OWL 2 tools. It provides an XML representation of an RDF graph. This
syntax is the default syntax used in the Concept Modeler.

e JSON-LD or JavaScript Object Notation for Linked Data is a method of encoding linked
data using JSON, which is a concrete RDF syntax. JSON-LD is used to map JSON terms
(keys and values) to IRIs, giving them a global context. A JSON-LD document is both an
RDF document and a JSON document.

e OWL Functional. It is a simple text-based syntax designed to be easier for specification
purposes and to provide a foundation for the implementation of OWL 2 tools such as
APIs and reasoners. It is used in most of the OWL 2 specification documents as the
primary presentation syntax that translates the structural specification into other concrete

36 Copyright © 2017, No Magic, Inc.

syntaxes. A functional-style syntax ontology document consists of sequences of Unicode
characters and is encoded in UTF-8.

Turtle. A concrete syntax for RDF, Turtle (Terse RDF Triple Language) is a plain-text
RDF representation. It is more concise and easier to read and edit manually than
RDF/XML. A Turtle document is a collection of RDF-triples. Each triple has the format:
<subject> <predicate> <object>. Each statement ends with a period and each
element in the triple is an URI, except the <object>, which can be a bit of text or a
number.

Manchester. It provides a compact textual-based representation of OWL ontologies that
is easy to read and write. It uses IRIs as term identifiers. The syntax for annotations and
descriptions in the Manchester OWL syntax closely corresponds to the syntax in the
OWL Functional syntax. A Manchester OWL document consists of sequences of
Unicode characters and is encoded in UTF-8.

Below, examples are given that show the transformation of UML modeled in the Concept
Modeler to an exported OWL ontology. The OWL ontologies are presented in OWL Functional

Syntax.

For a simple UML class, the diagram below shows that the ontology is transformed as the
package containing the UML class. Subsequent diagrams do not show the package in the
diagram for the sake of brevity.

Note

¢ A model may contain elements, for example, classes, properties, datatypes, or
generalizations, that belong to other models. When exporting the model, the
Concept Modeler will show the OWL declaration of the elements that exist in
the current model only, not those of the other models.

e However, if the entity that belongs to another model is an object property with
an inverse property defined, you will see the OWL declaration of the inverse
property in the current OWL ontology upon export.

4.1 Class

{uri=http://nomagic.com/ontology/example-case/case-(

Case 01

Person
(Case 01)

Figure 28 A class diagram in Concept Modeler

37

Copyright © 2017, No Magic, Inc.

Ontology(<http://nomagic.com/ontology/example-case/case-01>
Declaration(
Class(:Person)

)

AnnotationAssertion(rdfs:label :Person "Person"@en)

4.2 Class Generalization

Soccer Team
(Case 04)

Futsal Team
(Case 04)

Figure 29 Generalization in Concept Modeler

Ontology(<http://nomagic.com/ontology/example-case/case-04>
Declaration(
Class(:FutsalTeam)
)
Declaration(
Class(:SoccerTeam)
)
AnnotationAssertion(rdfs:label :FutsalTeam "Futsal Team"@en)
SubClassOf (:FutsalTeam :SoccerTeam)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"(@en)

4.3 Generalization with Disjoint Subclasses

Animal
(Case 24)

{incomplete, disjoint}
gs2

I

Dog
(Case 24)

Cat
(Case 24)

Mouse
(Case 24)

Figure 30 Generalization with disjoint subclasses

38

Copyright © 2017, No Magic, Inc.

Ontology(<http://nomagic.com/ontology/example-case/case-24>

Declaration(

Class(:Animal)
)
Declaration(

Class(:Cat)
)
Declaration(

Class(:Dog)
)
Declaration(

Class(:Mouse)
)
SubClassOf(:Cat : Animal)
SubClassOf(:Dog :Animal)
SubClassOf(:Mouse :Animal)
DisjointClasses(:Cat :Dog)
DisjointClasses(:Cat :Mouse)
DisjointClasses(:Dog :Mouse)

AnnotationAssertion(rdfs:label :Animal "Animal"@en)
AnnotationAssertion(rdfs:label :Cat "Cat"@en)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
AnnotationAssertion(rdfs:label :Mouse "Mouse"@en)

4.4 Generalization with Subclass Completeness

(Case 23) (Case 23)

Manufacturer
(Case 23)
FAY
complete, overlapping}
gs1
Steering Wheel Manufacturer Car Manufacturer Windshield Manufacturer

(Case 23)

Figure 31 Generalization with complete subclasses

Ontology(<http://nomagic.com/ontology/example-case/case-23>

39

Declaration(
Class(:CarManufacturer)

Copyright © 2017, No Magic, Inc.

)

Declaration(
Class(:Manufacturer)

)

Declaration(

)

Class(:SteeringWheelManufacturer

Declaration(
Class(:WindshieldManufacturer)

)

SubClassOf(:CarManufacturer :Manufacturer)
SubClassOf(:SteeringWheelManufacturer :Manufacturer)
SubClassOf(:WindshieldManufacturer :Manufacturer)

EquivalentClasses(:Manufacturer ObjectUnionOf(:CarManufacturer
:SteeringWheelManufacturer :WindshieldManufacturer))

AnnotationAssertion(rdfs:label :CarManufacturer "Car Manufacturer"@en)
AnnotationAssertion(rdfs:label :Manufacturer "Manufacturer"@en)
AnnotationAssertion(rdfs:label :SteeringWheelManufacturer "Steering Wheel

Manufacturer"@en)

AnnotationAssertion(rdfs:label :WindshieldManufacturer "Windshield

Manufacturer"@en)

4.5 Anonymous Union Class
Person cared for by cares for «Union»
(Case 26) |* *
(Case 26)
{complete, disjoint}
z[\. gs3
Cat Dog
(Case 26) (Case 26)

Figure 32 Anonymous union class

Ontology(<http://nomagic.com/ontology/example-case/case-26>

Declaration(

)

Class(:Cat)

Declaration(

40

Class(:Dog)

Copyright © 2017, No Magic, Inc.

Declaration(

Class(:Person)
)
Declaration(

ObjectProperty(:caredForBy)
)
Declaration(

ObjectProperty(:caresFor)
)
AnnotationAssertion(rdfs:label :Cat "Cat"@en)
DisjointClasses(:Cat :Dog)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
AnnotationAssertion(rdfs:label :Person "Person"@en)
AnnotationAssertion(rdfs:label :caredForBy "cared for by"@en)
InverseObjectProperties(:caredForBy :caresFor)
ObjectPropertyDomain(:caredForBy ObjectUnionOf(:Dog :Cat))
ObjectPropertyRange(:caredForBy :Person)
AnnotationAssertion(rdfs:label :caresFor "cares for"@en)
ObjectPropertyDomain(:caresFor :Person)
ObjectPropertyRange(:caresFor ObjectUnionOf(:Dog :Cat))

4.6 Class with Datatype Property

Person
(Case 02)

+has name : String

Figure 33 A class with datatype property

Ontology(<http://nomagic.com/ontology/example-case/case-02>
Import(<http://www.omg.org/spec/Primitive Types/20100901>)
Declaration(
Class(:Person)

)

Declaration(
DataProperty(:hasName)

)

Declaration(
AnnotationProperty(<http://purl.org/dc/terms/description>)

41 Copyright © 2017, No Magic, Inc.

)

Declaration(
Datatype(xsd:string)
)
AnnotationAssertion(rdfs:label :Person "Person"@en)
SubClassOf(
:Person
ObjectIntersectionOf(
DataMaxCardinality(1 :hasName xsd:string)
DataMinCardinality(1 :hasName xsd:string)

)

AnnotationAssertion(rdfs:label :hasName "has name"@en)
DataPropertyDomain(:hasName :Person)

DataPropertyRange(:hasName xsd:string)
AnnotationAssertion(http://purl.org/dc/terms/description
<http://www.omg.org/spec/PrimitiveTypes/2010090 1#String> "An instance of String
defines a piece of text. The semantics of the string itself depends on its purpose, it can be
a comment, computational language expression, OCL expression, etc. It is used for String
attributes and String expressions in the metamodel."@en)

4.7 Class with Self-Referential Object Property

Person
(Case 02a)

is related to
1.%

Figure 34 A class with self-referential object property

Ontology(<http://nomagic.com/ontology/example-case/case-02a>
Declaration(
Class(:Person)
)
Declaration(
ObjectProperty(:isRelatedTo)
)
AnnotationAssertion(rdfs:label :Person "Person"@en)
SubClassOf(
:Person

42 Copyright © 2017, No Magic, Inc.

http://purl.org/dc/terms/description

ObjectMinCardinality(1 :isRelatedTo :Person)
)

AnnotationAssertion(rdfs:label :isRelatedTo "is related to"@en)
ObjectPropertyDomain(:isRelatedTo :Person)
ObjectPropertyRange(:isRelatedTo :Person)

4.8 Class with Object Property

Soccer Team consists of | Soccer Player
(Case 03) 511 (Case 03)

Figure 35 A class with object property

Ontology(<http://nomagic.com/ontology/example-case/case-03>
Declaration(
Class(:SoccerPlayer)
)
Declaration(
Class(:SoccerTeam)
)
Declaration(
ObjectProperty(:consistsOf)
)
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)
SubClassOf(
:SoccerTeam
ObjectIntersectionOf{

ObjectMaxCardinality(11 :consistsOf :SoccerPlayer)
ObjectMinCardinality(5 :consistsOf :SoccerPlayer)

)

AnnotationAssertion(rdfs:label :consistsOf "consists of"'@en)
ObjectPropertyDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

43 Copyright © 2017, No Magic, Inc.

4.9 Property Holder with Datatype Property

«PropertyHolders
Thing
(Case 03a)

+has name : String [2..3]

Figure 36 A property holder with datatype property

Ontology(<http://nomagic.com/ontology/example-case/case-03a>
Import(<http://www.omg.org/spec/Primitive Types/20100901>)

Declaration(
DataProperty(:hasName)
)
Declaration(
AnnotationProperty(<http://purl.org/dc/terms/description>)
)
Declaration(
Datatype(xsd:string)
)
SubClassOf(
owl:Thing
ObjectlntersectionOf(
DataMaxCardinality(3 :hasName xsd:string)
DataMinCardinality(2 :hasName xsd:string)
)
)

AnnotationAssertion(rdfs:label :hasName "has name"@en)
DataPropertyRange(:hasName xsd:string)
AnnotationAssertion(http://purl.org/dc/terms/description

<http://www.omg.org/spec/Primitive Types/2010090 1#String> "An instance of String
defines a piece of text. The semantics of the string itself depends on its purpose, it can be
a comment, computational language expression, OCL expression, etc. It is used for String
attributes and String expressions in the metamodel."@en)

44 Copyright © 2017, No Magic, Inc.

http://purl.org/dc/terms/description

4.10 Property Holder with Self-Referential Object Property

«PropertyHolders |is related to
Thing
(Case 03b)

Figure 37 A property holder with self-referential object property

Ontology(<http://nomagic.com/ontology/example-case/case-03b>
Declaration(
ObjectProperty(:isRelatedTo)
)
SubClassOf(
owl:Thing
ObjectMinCardinality(1 :isRelatedTo)

)
AnnotationAssertion(rdfs:label :isRelatedTo "is related to"@en)

4.11 Property Holder with Object Property

«PropertyHolders is dissolved by
Thing
(Case 03c)

Liquid
1.* (Case 03c)

Figure 38 A property holder with object property

Ontology(<http://nomagic.com/ontology/example-case/case-03c>

Declaration(

Class(:Liquid)
)
Declaration(

ObjectProperty(:isDissolvedBy)
)
AnnotationAssertion(rdfs:label :Liquid "Liquid"@en)
SubClassOf(

owl:Thing

ObjectMinCardinality(1 :isDissolvedBy :Liquid)

)
AnnotationAssertion(rdfs:label :isDissolvedBy "is dissolved by"@en)
ObjectPropertyRange(:isDissolvedBy :Liquid)

45 Copyright © 2017, No Magic, Inc.

4.12 Class with Object Property without Range

Receptacle holds «PropertyHolder»
(Case 03d) 0" i
- (Case 03d)

Figure 39 A class with object property without range

Ontology(<http://nomagic.com/ontology/example-case/case-03d>

Declaration(

)

Class(:Receptacle)

Declaration(
ObjectProperty(:holds)

)

AnnotationAssertion(rdfs:label :Receptacle "Receptacle"@en)

AnnotationAssertion(rdfs:label :holds "holds"@en)
ObjectPropertyDomain(:holds :Receptacle)

4.13 Class with Subproperty

Soccer Team
(Case 05)

consists of

|

Futsal Team
(Case 05)

5.1

Soccer Player
(Case 05)

composed of

|

Futsal Player

c

s}

{subsets consists of}

Figure 40 A class with subproperty

(Case 05)

Ontology(<http://nomagic.com/ontology/example-case/case-05>

Declaration(

)

Class(:FutsalPlayer)

Declaration(

46

Class(:FutsalTeam)

Copyright © 2017, No Magic, Inc.

47

Declaration(
Class(:SoccerPlayer)

)

Declaration(
Class(:SoccerTeam)

)

Declaration(
ObjectProperty(:composedOf)

)

Declaration(
ObjectProperty(:consistsOf)

)

AnnotationAssertion(rdfs:label :FutsalPlayer "Futsal Player"@en)
SubClassOf(:FutsalPlayer :SoccerPlayer)
AnnotationAssertion(rdfs:label :FutsalTeam "Futsal Team"@en)
SubClassOf(:FutsalTeam :SoccerTeam)
SubClassOf(

:FutsalTeam

ObjectlntersectionOf(

ObjectMaxCardinality(5 :composedOf :FutsalPlayer)
ObjectMinCardinality(5 :composedOf :FutsalPlayer)

)
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)

AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"(@en)
SubClassOf(

:SoccerTeam

ObjectIntersectionOf(

ObjectMaxCardinality(11 :consistsOf :SoccerPlayer)
ObjectMinCardinality(5 :consistsOf :SoccerPlayer)

)
AnnotationAssertion(rdfs:label :composedOf "composed of"@en)

SubObjectPropertyOf(:composedOf :consistsOf)
ObjectPropertyDomain(:composedOf :FutsalTeam)
ObjectPropertyRange(:composedOf :FutsalPlayer)
AnnotationAssertion(rdfs:label :consistsOf "consists of"'@en)
ObjectPropertyDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

Copyright © 2017, No Magic, Inc.

4.14 Class with Universal Quantification Constraint on Property |

Person has Pet

(Case 06) 0.* (Case 06)
Dog Owner has Dog

(Case 06) 1.* (Case 06)

{redefines has}

Figure 41 A class with universal quantification constraint on property 1

Ontology(<http://nomagic.com/ontology/example-case/case-06>
Declaration(
Class(:Dog)
)
Declaration(
Class(:DogOwner)
)
Declaration(
Class(:Person)
)
Declaration(
Class(:Pet)
)
Declaration(
ObjectProperty(:has)
)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog :Pet)
AnnotationAssertion(rdfs:label :DogOwner "Dog Owner"@en)
SubClassOf(:DogOwner :Person)
SubClassOf(
:DogOwner
ObjectIntersectionOf(
ObjectMinCardinality(1 :has :Dog)
ObjectAllValuesFrom(:has :Dog)

)

AnnotationAssertion(rdfs:label :Person "Person"(@en)

48 Copyright © 2017, No Magic, Inc.

AnnotationAssertion(rdfs:label :Pet "Pet"@en)
AnnotationAssertion(rdfs:label :has "has"@en)
ObjectPropertyDomain(:has :Person)
ObjectPropertyRange(:has :Pet)

4.15 Class with Universal Quantification Constraint on Property |l

This example differs from the previous example primarily because the superclasses “Person” and
“Pet” are from a different package than their subclasses “Dog Lover” and “Dog,” respectively.
This difference is reflected in the OWL ontology by the import of this namespace.

As shown below in the next diagram, the superclasses “Person” and “Pet”, defined in the
package “Case 06”, are a different color and a lighter shade than the classes defined in the
package “Case 07”. This color differentiation is to distinguish them from the classes defined on
this diagram. MagicDraw’s AutoStyler plugin can automatically set the display properties for
classes and other UML elements using the “defined elsewhere” style; that is, when they are
shown on a non-defining diagram for the UML element (see section 2.2 Automatic Styling of
Concept Models).

Person has Pet
ase 06 0.+ Case 06
e
Dog Lover has Dog
(Case 07) 0.* (Case 07)

{redefines has}

Figure 42 A class with universal quantification constraint on property I1

Ontology(<http://nomagic.com/ontology/example-case/case-07>
Import(<http://nomagic.com/ontology/example-case/case-06>)
Declaration(

Class(<http://nomagic.com/ontology/example-case/case-06#Person>)
)
Declaration(
Class(<http://nomagic.com/ontology/example-case/case-06#Pet>)
)
Declaration(
Class(:Dog)
)
Declaration(
Class(:DoglLover)

49 Copyright © 2017, No Magic, Inc.

)

Declaration(
ObjectProperty(<http://nomagic.com/ontology/example-case/case-06#has>)
)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog <http://nomagic.com/ontology/example-case/case-06#Pet>)
AnnotationAssertion(rdfs:label :DogLover "Dog Lover"@en)
SubClassOf(:DogLover <http://nomagic.com/ontology/example-case/case-06#Person>)
SubClassOf(
:DogLover

ObjectAllValuesFrom(<http://nomagic.com/ontology/example-case/case-
06#has> :Dog)

4.16 Class with Existential Quantification Constraint on Property

Person has Pet

Case 06 0.* Case 06
Dog Lover Ddg
(Case 08) 1+ (Case 08)

{subsets has}

Figure 43 A class with existential quantification constraint on property

Ontology(<http://nomagic.com/ontology/example-case/case-08>

50

Import(<http://nomagic.com/ontology/example-case/case-06>)
Declaration(
Class(<http://nomagic.com/ontology/example-case/case-06#Person>)
)
Declaration(
Class(<http://nomagic.com/ontology/example-case/case-06#Pet>)
)
Declaration(
Class(:Dog)
)
Declaration(
Class(:DoglLover)

Copyright © 2017, No Magic, Inc.

Declaration(
ObjectProperty(<http://nomagic.com/ontology/example-case/case-06#has>)
)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog <http://nomagic.com/ontology/example-case/case-06#Pet>)
AnnotationAssertion(rdfs:label :DogLover "Dog Lover"@en)
SubClassOf(:DogLover <http://nomagic.com/ontology/example-case/case-06#Person>)
SubClassOf(
:DogLover
ObjectlntersectionOf(

ObjectMinCardinality(1 <http://nomagic.com/ontology/example-
case/case-06#has> :Dog)
ObjectSomeValuesFrom(<http://nomagic.com/ontology/example-
case/case-06#has> :Dog)

4.17 Property Holder with Self-Referential Subproperty

«PropertyHolders [Anythings
Thin
(Case ?1) Thing holds
holds (Media) <«
0.*
contains contains
0“y

{subsets holds}

Figure 44 A property holder with self-referential subproperty

Ontology(<http://nomagic.com/ontology/example-case/case-11>
Declaration(
ObjectProperty(:contains)
)
Declaration(
ObjectProperty(:holds)
)
AnnotationAssertion(rdfs:label :contains "contains"@en)
SubObjectPropertyOf(:contains :holds)

51 Copyright © 2017, No Magic, Inc.

AnnotationAssertion(rdfs:label :holds "holds"@en)

4.18 Property Holder with Subproperty

«PropertyHolders is dissolved by
Thing
(Case 18)

Liquid
1.% (Case 18)

(

is corroded by Acid

1.7 (Case 18)
{subsets is dissolved by}

Figure 45 A property with subproperty

Ontology(<http://nomagic.com/ontology/example-case/case-18>

Declaration(

Class(:Acid)
)
Declaration(

Class(:Liquid)
)
Declaration(

ObjectProperty(:isCorrodedBy)
)
Declaration(

ObjectProperty(:isDissolvedBy)
)
AnnotationAssertion(rdfs:label :Acid "Acid"@en)
SubClassOf(:Acid :Liquid)
AnnotationAssertion(rdfs:label :Liquid "Liquid"@en)
SubClassOf(

owl: Thing

ObjectIntersectionOf{

ObjectMinCardinality(1 :isCorrodedBy :Acid)

)

)

SubClassOf(
owl:Thing

ObjectlntersectionOf(
ObjectMinCardinality(1 :isDissolvedBy :Liquid)

52 Copyright © 2017, No Magic, Inc.

)
AnnotationAssertion(rdfs:label :isCorrodedBy "is corroded by"@en)

SubObjectPropertyOf{(:isCorrodedBy :isDissolvedBy)
ObjectPropertyRange(:isCorrodedBy :Acid)
AnnotationAssertion(rdfs:label :isDissolvedBy "is dissolved by"@en)
ObjectPropertyRange(:isDissolvedBy :Liquid)

4.19 Class with Subproperty without a Range

Game is played between | wpropertyHolder»
(Case 16) 2.7 Thing
“, (Case 16)
Soccer Match is a competition between
(Case 16) <

{subsets is played between}

Figure 46 A class with subproperty that has no range

Ontology(<http://nomagic.com/ontology/example-case/case-16>
Declaration(
Class(:Game)
)
Declaration(
Class(:SoccerMatch)
)
Declaration(
ObjectProperty(:isACompetitionBetween)
)
Declaration(
ObjectProperty(:isPlayedBetween)
)
AnnotationAssertion(rdfs:label :Game "Game"(@en)
SubClassOf(
:Game
ObjectlntersectionOf(
ObjectMinCardinality(2 :isPlayedBetween)

53 Copyright © 2017, No Magic, Inc.

AnnotationAssertion(rdfs:label :SoccerMatch "Soccer Match"@en)
SubClassOf(:SoccerMatch :Game)
SubClassOf(

:SoccerMatch

ObjectIntersectionOf(

ObjectMaxCardinality(2 :isACompetitionBetween)
ObjectMinCardinality(2 :isACompetitionBetween)

)

AnnotationAssertion(rdfs:label :isACompetitionBetween "is a competition
between"(@en)

SubObjectPropertyOf(:isACompetitionBetween :isPlayedBetween)
ObjectPropertyDomain(:isACompetitionBetween :SoccerMatch)
AnnotationAssertion(rdfs:label :isPlayedBetween "is played between"@en)
ObjectPropertyDomain(:isPlayedBetween :Game)

4.20 Class with Necessary and Sufficient Property

has contract with [0..*
Manufacturer
(Case 20)
FAY
Steering Wheel Manufacturer Car Manufacturer |Windshield Manufacturer
(Case 20) 1.* (Case 20) 1.+ (Case 20)

{sufficient} {sufficient}
{subsets has contract with} {subsets has contract with}

Figure 47 A class with necessary and sufficient property

Ontology(<http://nomagic.com/ontology/example-case/case-20>
Declaration(
Class(:CarManufacturer)
)
Declaration(
Class(:Manufacturer)
)
Declaration(
Class(:SteeringWheelManufacturer)

54 Copyright © 2017, No Magic, Inc.

)

Declaration(
Class(:WindshieldManufacturer)

)

Declaration(
ObjectProperty(:hasContractWith)

)

AnnotationAssertion(rdfs:label :CarManufacturer "Car Manufacturer"@en)
EquivalentClasses(

:CarManufacturer

ObjectIntersectionOf(

ObjectMinCardinality(1 :hasContractWith :SteeringWheelManufacturer)
ObjectSomeValuesFrom(:hasContractWith :SteeringWheelManufacturer)

)
)
EquivalentClasses(
:CarManufacturer
ObjectintersectionOf(
ObjectMinCardinality(1 :hasContractWith :WindshieldManufacturer)
ObjectSomeValuesFrom(:hasContractWith :WindshieldManufacturer)
)
)

SubClassOf(:CarManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :Manufacturer "Manufacturer"@en)

AnnotationAssertion(rdfs:label :SteeringWheelManufacturer "Steering Wheel
Manufacturer"@en)

SubClassOf(:SteeringWheelManufacturer :Manufacturer)

AnnotationAssertion(rdfs:label :WindshieldManufacturer "Windshield
Manufacturer"@en)

SubClassOf(: WindshieldManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :hasContractWith "has contract with"@en)
ObjectPropertyDomain(:hasContractWith :Manufacturer)
ObjectPropertyRange(:hasContractWith :Manufacturer)

4.21 Class with Property Having Unspecified Multiplicity

UML allows the cardinality of a property to be left unspecified. The concept modeling profile
interprets unspecified cardinalities as being zero to many (“0..*”).

55

Copyright © 2017, No Magic, Inc.

Soccer Team consists of | Soccer Player
(Case 21) | (Ccase21)

Figure 48 A class with property whose multiplicity is unspecified

Ontology(<http://nomagic.com/ontology/example-case/case-21>

Declaration(

Class(:SoccerPlayer)
)
Declaration(

Class(:SoccerTeam)
)
Declaration(ObjectProperty(:consistsOf))
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"(@en)
AnnotationAssertion(rdfs:label :consistsOf "consists of"@en)
ObjectPropertyDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

4.22 Class with Inverse Property

Video Game Console 'manufactures manufactured by |Video Game Company
(Case 25) 0.* 1 (Case 25)

Figure 49 A class with inverse property

Ontology(<http://nomagic.com/ontology/example-case/case-24>

Declaration(

ObjectProperty(:manufacturedBy)
)
ObjectPropertyDomain(:manufacturedBy :VideoGameConsole)
ObjectPropertyRange(:manufacturedBy :VideoGameCompany)
Declaration(

ObjectProperty(:manufactures)
)
InverseObjectProperties(:manufacturedBy :manufactures)
ObjectPropertyDomain(:manufactures :VideoGameCompany)
ObjectPropertyRange(:manufactures :VideoGameConsole)
Declaration(

56 Copyright © 2017, No Magic, Inc.

4.23 Annotation and Annotation Property

Figure 50 A class with annotation and annotation property

57

Class(:VideoGameCompany)

ObjectMaxCardinality(1 :manufacturedBy :VideoGameCompany)

ObjectMinCardinality(1 :manufacturedBy :VideoGameCompany)

)
Declaration(
Class(:VideoGameConsole)
)
SubClassOf(
:VideoGameConsole
ObjectintersectionOf(
)
)

AnnotationAssertion(rdfs:label :VideoGameCompany "Video Game Company"(@en)
AnnotationAssertion(rdfs:label :VideoGameConsole "Video Game Console"@en)
AnnotationAssertion(rdfs:label :manufacturedBy "manufactured by"@en)

AnnotationAssertion(rdfs:label :manufactures "manufactures"@en)

(Im

«Anything»

Annotation Property Holder

ported Ontologies.AnnotationVocabulary)

«ANnn
(‘l.\[114

otation Propertyadef

notation Property»ex

otation Property»abbrev

nion ongin

ation

planatory note

Library
(Library)

stored in loans
0..1 .

Item
(Library)

I

Multimedia
(Library)

“| This represents any item physical or

«Annotation»
{annotationProperty = explanatory note}

electronic that can be lent out by a
library.

Book
(Library)

Copyright © 2017, No Magic, Inc.

Ontology(<http://nomagic.com/ontology/example-case/case-25>

Declaration(Class(:Book))
Declaration(Class(:Item))
Declaration(Class(:Multimedia))
Declaration(

AnnotationProperty(<http://spec.edmcouncil.org/fibo/FND/Utilities/AnnotationV
ocabulary/explanatoryNote>))
AnnotationAssertion(rdfs:label :Book "Book"@en)
SubClassOf(:Book :Item)
AnnotationAssertion(rdfs:label :Item "Item"@en)
AnnotationAssertion(<http://spec.edmcouncil.org/fibo/FND/Utilities/AnnotationV ocabul
ary/explanatoryNote> :Item "This represents any item physical or electronic that can be
lent out by a library."@en)
AnnotationAssertion(rdfs:label :Multimedia "Multimedia"@en)
SubClassOf(:Multimedia :Item)

4.24 Asymmetrical Inverse Property

«PropertyHolder» |
Thing
(Example) '
has mother
«Inverse of» - 1
< W
; s ,
Son Pl Mother
(Example) thas son (Example)

P

| L

Figure 51 Asymmetrical Inverse Property

Ontology(<http://example.com/ontology/AsymmetricallnverseProperty>

58

Declaration(Class(:Mother))
Declaration(Class(:Son))
Declaration(ObjectProperty(:hasMother))
Declaration(ObjectProperty(:hasSon))

Copyright © 2017, No Magic, Inc.

AnnotationAssertion(rdfs:label :Mother "Mother"@en)
SubClassOf(:Mother ObjectIntersectionOf(ObjectMinCardinality(1 :hasSon :Son)))
AnnotationAssertion(rdfs:label :Son "Son"@en)

SubClassOf(owl: Thing ObjectIntersectionOf(ObjectMaxCardinality(1 :hasMother
:Mother) ObjectMinCardinality(1 :hasMother :Mother)))

AnnotationAssertion(rdfs:label :hasMother "has mother"@en)
ObjectPropertyRange(:hasMother :Mother)
AnnotationAssertion(rdfs:label :hasSon "has son"@en)
ObjectPropertyDomain(:hasSon :Mother)
ObjectPropertyRange(:hasSon :Son)

4.25 Disjoint Classes

Parent cared for by cares for | «Union»
(Example)

(Example)

fcomplete, disjoint}
set1

Son Daughter
(Example) (Example)

Figure 52 Disjoint Dependency

Ontology(<http://www.example.com/ontology/Disjoint>

Declaration(Class(:Daughter))

Declaration(Class(:Parent))

Declaration(Class(:Son))
Declaration(ObjectProperty(:caredForBy))
Declaration(ObjectProperty(:caresFor))
AnnotationAssertion(rdfs:label :Daughter "Daughter"@en)
DisjointClasses(:Daughter :Son)

AnnotationAssertion(rdfs:label :Parent "Parent"@en)
AnnotationAssertion(rdfs:label :Son "Son"@en)
AnnotationAssertion(rdfs:label :caredForBy "cared for by"@en)
InverseObjectProperties(:caredForBy :caresFor)
ObjectPropertyDomain(:caredForBy ObjectUnionOf(:Son :Daughter))
ObjectPropertyRange(:caredForBy :Parent)
AnnotationAssertion(rdfs:label :caresFor "cares for"@en)

59 Copyright © 2017, No Magic, Inc.

ObjectPropertyDomain(:caresFor :Parent)
ObjectPropertyRange(:caresFor ObjectUnionOf(:Son :Daughter))

4.26 Property Chain

Person
(Equivalent To)

incomplete, disjoint}
gs1

Female Person Male Person
(Equivalent To) (Equivalent To)

has brother

has uncle

{chain = has father, has brother}

has father
1

Figure 53 Properties in a property chain

Ontology(<http://example.com/ontology/Unnamed>

Declaration(Class(:FemalePerson))

Declaration(Class(:MalePerson))

Declaration(Class(:Person))
Declaration(ObjectProperty(:hasBrother))
Declaration(ObjectProperty(:hasFather))
Declaration(ObjectProperty(:hasUncle))
AnnotationAssertion(rdfs:label :FemalePerson "Female Person"@en)

60 Copyright © 2017, No Magic, Inc.

SubClassOf(:FemalePerson :Person)
DisjointClasses(:FemalePerson :MalePerson)
AnnotationAssertion(rdfs:label :MalePerson "Male Person"@en)
SubClassOf(:MalePerson :Person)
AnnotationAssertion(rdfs:label :Person "Person"@en)

SubClassOf(:Person ObjectIntersectionOf(ObjectMaxCardinality(1 :hasFather
:MalePerson) ObjectMinCardinality(1 :hasFather :MalePerson)))

AnnotationAssertion(rdfs:label :hasBrother "has brother"@en)
ObjectPropertyDomain(:hasBrother :Person)
ObjectPropertyRange(:hasBrother :MalePerson)
AnnotationAssertion(rdfs:label :hasFather "has father"@en)
ObjectPropertyDomain(:hasFather :Person)

ObjectPropertyRange(:hasFather :MalePerson)

AnnotationAssertion(rdfs:label :hasUncle "has uncle"@en)
ObjectPropertyDomain(:hasUncle :Person)

ObjectPropertyRange(:hasUncle :MalePerson)
SubObjectPropertyOf(ObjectPropertyChain(:hasFather :hasBrother) :hasUncle)

4.27 Equivalent Property

Person
(Equivalent To)

————

incomplete, disjoint}
gs1

' Female Person Male Person |
(Equivalent To) (Equivalent To)

has mom
=
1

has mother

1
{equivalent to = has mom}

Figure 54 Equivalent properties

61 Copyright © 2017, No Magic, Inc.

Ontology(<http://example.com/ontology/Unnamed>

Declaration(Class(:FemalePerson))
Declaration(Class(:MalePerson))

Declaration(Class(:Person))
Declaration(ObjectProperty(:hasMom))
Declaration(ObjectProperty(:hasMother))
AnnotationAssertion(rdfs:label :FemalePerson "Female Person"@en)
SubClassOf(:FemalePerson :Person)
DisjointClasses(:FemalePerson :MalePerson)
AnnotationAssertion(rdfs:label :MalePerson "Male Person"@en)
SubClassOf(:MalePerson :Person)
AnnotationAssertion(rdfs:label :Person "Person"@en)

SubClassOf(:Person ObjectIntersectionOf(ObjectMaxCardinality(1 :hasMom
:FemalePerson) ObjectMinCardinality(1 :hasMom :FemalePerson)))

SubClassOf(:Person ObjectIntersectionOf{ ObjectMaxCardinality(1 :hasMother
:FemalePerson) ObjectMinCardinality(1 :hasMother :FemalePerson)))

AnnotationAssertion(rdfs:label :hasMom "has mom"(@en)
EquivalentObjectProperties(:hasMom :hasMother)
ObjectPropertyDomain(:hasMom :Person)
ObjectPropertyRange(:hasMom :FemalePerson)
AnnotationAssertion(rdfs:label :hasMother "has mother"@en)
ObjectPropertyDomain(:hasMother :Person)
ObjectPropertyRange(:hasMother :FemalePerson)

4.28 Equivalent Class

US President ' «Equivalent Class» -Princlple Resident of White House
& >
(Example) (Example)

Figure 55 Equivalent classes

Ontology(<http://example.com/ontology/Unnamed>

Declaration(Class(:PrincipleResidentOfWhiteHouse))
Declaration(Class(:US-President))

AnnotationAssertion(rdfs:label :PrincipleResidentOfWhiteHouse "Principle Resident of
White House"@en)

62 Copyright © 2017, No Magic, Inc.

EquivalentClasses(:PrincipleResidentOfWhiteHouse :US-President)
AnnotationAssertion(rdfs:label :US-President "US President"@en)

5 Usage
5.1 Create a Concept Modeling Project

To create a concept modeling project:
1. Click File > New Project. The New Project dialog will open.
2. Select Concept Modeling Project.
3. Name your project and select your Project location.

[~
[B) New Project

Concept Modeling Project
Creates a new project with the Concept Modeling profile.

Requirements Name: 'CCM Project
Project ‘

B [«

Use Case Guide to
Project UML Diagrams
Project

Project location: vC:\UsersWoMagic\Dquments

[Create directory for project and related data

Systems Engineering
Enterprise Modeling
Software Engineering

SCRUH

Scrum
Project

Business Process Modeling
Service-Oriented Modeling
Concept Modeling

Concept Modeling
Project

Figure 56 Selecting the Concept Modeling profile

4. Click OK. A new Concept Modeling diagram will open, complete with the Concept
Modeling diagram palette. This diagram and its palette will also open whenever you
create a new Concept Modeling diagram.

63 Copyright © 2017, No Magic, Inc.

: File Edit View Layout Diagrams Options Tools Analyze Collaborate Window Help X
DEeE-D4 - - N : By + :Perspective: Ful Featured v | i [3 Create Diagram :
ﬂg Containment | éo Diagrams] ‘ 4r8a
Containment LA RS 2 B 7 id- - i@ @ G (100% v
ﬁ Q 8- Tools ~
- Data m.___ B package Example[Exampleu
E1-£] Example Rl L s X
-"EB UL Standard P 9 wﬂ— ot «PropertyHolder»
M || [Annotation Thing
B3 Note(HTML Text) (Example) Welcome to the Cameo Concept
Modeler (CCM)!
B Anchor
H dlass To read about what CCM does and
h it, pl h
& Property Holder ow to use it, please open the

& Anonymous U

[E] Enumeration

>

% Zoom | [B) Docume.. l Propert..] 7 Unidirectional

Zoom

L

S <" Subdass
/" Equivalent Class

" Disjoint With
" Dependency

/ Inverse Object Properties

v

nion

documentation under the Help menu,
or simply click here.

Object Property

Figure 57 The Concept Modeling diagram and its palette

The following table shows the buttons in the Concept Modeling diagram palette, which represent
the elements you use to create a Concept Modeling diagram. Y ou can drag the button to a
diagram to create that kind of element. The shortcut key may also make it easier for you to create

a specific element.

Buttons Shortcut Keys
| Annotation A

|5 Note(HTML Text) Shift + N

| .2 Anchor H

& class C

|5 Property Holder P

|2 Anonymous Union Shift + U

| (] Enumeration K

| / Inverse Object Properties S

64

Copyright © 2017, No Magic, Inc.

/" Unidirectional Object Property | | U
4" Subdass G
/" Equivalent Class Shift + G
" Disjoint With D
" Dependency Shift + D

If you use either Inverse Object Properties or Unidirectional Object Property, the following

things will be created:

(i) When a property’s type does not have a name, “unnamed property” will be used as the

property’s name.

(i) When a property’s type has a name, the name will be written in lower-case letters and
prepended with “has “ (with a space after). For example, if the property’s type name is

“Boss Deck”, it will be converted to “has boss deck”.

5.2 Create a Concept Model

To create a concept model:

1. Right-click a package in the Containment tree.

2. Select Concept Modeling.
3. Select Create Concept Model.

65

Copyright © 2017, No Magic, Inc.

o I
]
Create Element »
Create Diagram »
Create Relation »
- £ Co Specification Enter
GoTo »
Related Elements »
Refactor »
Tools »
Stereotype
Rename F2
B Cop Ctrl+C
Copy URL
R | Paste Ctrl+V
¥ Ctrl+X
¥ | Delete Delete
Find...
Generate Report... »
Concept Modeling ’ Create Concept Model Alt+Shift+N
[MOF] Collect parameters Export Concept Model to OWL Alt+Shift+0

Figure 58 The Create Concept Model shortcut menu

Note e Ifan Unnamed package already existed in the Containment tree, a number in
the package name will be added or incremented.

5.2.1 Convert a UML Model into a Concept Model

To change a UML model to a concept model:

1. Open an existing UML project.
2. On the main menu, click File > Use Project > Use Local Project. The Use Project
dialog will open.

66 Copyright © 2017, No Magic, Inc.

;| File l Edit View Layout Diagrams Options Tools Analyze Collaborate Window Help
{| @ New Project... Ctrl+Shift+N Perspective: @
B3 Open Project... Ctrl+0 |
| B SaveProject Ctrl+S - . .
{ B SaveProject As... - >
| B Close Project ﬁ.“.’
& Close All Projects WL e X
Common
Open Element from URL =4 Note -
Model Execution & Integration... abc Text Box v
Use Project | Use Local Project... N~
Import From . Use Server Project... v
Export To 4 .~ Dependency
Share Packages... [4a] Image Shape
Save as Image... & Diagram Overview
0 Print... Ctrl+P Diagram Legend
& Print Preview --- Horizontal Separator v
B Print Options...
Project Properties Bl Content Shape
B3 Switch Projects » [Package
By)) [@ Create Diagram
= 1C\Us..grams\class diagram.mdzip -
B3 2 C\Us..ms\activity diagram.mdzip
i 3 D:\do...CM_|_OBJECTPROP_166.mdzip I
| B 4D:\do...8.0 SP3\CCM_NLG_007.mdzip L
i Exit i

Figure 59 The Use Local Project Menu

3. Select Profile and Concept Modeling Profile.

67 Copyright © 2017, No Magic, Inc.

68

Select a project to use

Select a project from the file system or predefined location (paths to used projects) and click 'Next' to proceed.
Predefined locations help finding default application profiles and libraries.

@ 1. Select project

(") 2. Specify usage options

Select a project to use
(©) From file system
@ From predefined location

Paths to used projects:
<project.dir>
<install.root>\profiles
<install.root>\modelLibraries
\<install.root>\profiles

[-BE[C++_MS_CLI_Profile
E C++_MS_Managed_Profile
48] C++_MS_Profile

- 48] C++_Profile

4] C_profile

- 48] C1L_Profile

E oncept Modeling Profile

.48 CORBA_IDL_Profile
L} Wil ca Deadla

Project description:

<oncr | (net>] (e) ((coneal] (b

Figure 60 Selecting the Concept Modeling Profile

4. Click Next.

Copyright © 2017, No Magic, Inc.

(B3 Use Project)

Specify project usage options

Specify usage options for the selected project and then dick 'Finish' to start using it.

Accessibility
) 1. Select project]
(7) Read-only
@ 2. Specify usage options

~ Load Mode

@ Always load

() Autoload

Use Index

Packages:

() Autoload with prompt

() Manual load

Shared Package

&, ConceptiodeingP. [~ — — |~~~ |

Preferred Path Mounted On

Figure 61 Using the selected Concept Modeling Profile

5. Select usage options and click Finish. You will see the Concept Modeling Profile is

added to your project in the Containment tree.

6. Create a package in your project.
Right-click it and select Stereotype.

~

8. Select the stereotype « » Concept Model [Package] and click Apply.

69

Copyright © 2017, No Magic, Inc.

70

=} {Toégk auto-hide o -

<] Data
&[] Case™=
2
</ F Stereotype: Search
4

E « [o EPRRETRT T |
=7 Concept Model [Package]

=T «= activeValidationSuite [Package)
=] «» autoGeneratedName [NamedEleme
- Eg CCM - :
g Cont <~ auxiliaryResource [Package]
— £ Code Er “» CustomlmageHolder [Element]

«» deprecated [Element]

«= derivedPropertiesSuite [Package]
il elementsLibrary [Package]

il elementsLibraryBranch [Package]

ww Eila Evimart Dath (Dol annl

= (press ™, to select)

1[5

|

,—]' Apply Clear All Order

Figure 62 Applying the « » Concept Model [Package] to the model

9. Open a new concept modeling project (File > Open Project).
10. Click Options > Project to open the Project Options dialog.
11. Click Symbol styles from the tree view, select, and export the Default and Defined

Elsewhere styles to the UML project.

Copyright © 2017, No Magic, Inc.

B3 Prject Optons

Manage styles and individual element display settings

Specify the shape, path, diagram, and stereotype symbol properties. Create, edit, done,
import/export, or remove element display styles. Also set default styles or apply new styles to
existing diagrams.

’Q Type here to filter options ‘ Symbol styles
[General Default (Default)

E Diagram Info Defined Elsewhere

BB

E} [0 Default (Default)

- Shapes
-,/ Paths

i [«» Stereotypes

B} [[) Defined Elsewhere
- % Shapes
-/ Paths

52 Diagram

(- «» Stereotypes
+]- E5] Default model properties

Figure 63 Exporting a project's symbol styles to another project

12. Switch to the previous UML project and click Options > Project to open the Project
Options dialog and import the styles to the project.

Copyright © 2017, No Magic, Inc.

72

Manage styles and individual element display settings

Specify the shape, path, diagram, and stereotype symbol properties. Create, edit, cdone,
import/export, or remove element display styles. Also set default styles or apply new styles to
existing diagrams.

IQ Type here to filter options l Symbol styles

[General Default (Default)

E Diagram Info

L'—] mfSymbol styles

& [0 Default (Default)

- % Shapes

[«* Stereotypes

& [[) Defined Elsewhere
Bl % Shapes
[,/ Paths

[«* Stereotypes

+- E5] Default model properties

Figure 64 Importing another project’s symbol styles into the current project

13. Select Symbol styles and click Import.

14. Select the exported Default and Define Elsewhere styles and click OK. You will see the
imported styles added to the Symbol styles under the Default (Default) style.

15. Select the imported Default style and click Make Default. The imported Default is now
the default style.

Copyright © 2017, No Magic, Inc.

73

Manage styles and individual element display settings

Specify the shape, path, diagram, and stereotype symbol properties. Create, edit, cdone,
import/export, or remove element display styles. Also set default styles or apply new styles to
existing diagrams.

IQ Type here to filter options | Symbol styles

[General Default (Default)
i = Diagram Info

- [T Symbol styles Defined Elsewhere
- E5 Default model properties

Figure 65 Making the imported symbol style as the default one

16. Select the old Default style and click Delete.

Copyright © 2017, No Magic, Inc.

74

Manage styles and individual element display settings

Specify the shape, path, diagram, and stereotype symbol properties. Create, edit, cdone,
import/export, or remove element display styles. Also set default styles or apply new styles to
existing diagrams.

IQ Type here to filter options] Symbol styles

- (4 General Default

E Diagram Info Default (Default)
(- [0 Symbol styles Defined Elsewhere
B E3 Default model properties

Figure 66 Deleting the old symbol style

17. Click OK.

18. Click Options > Project. The Project Options dialog will open.
19. Expand the Default model properties and select Association.
20. Change the Association visibility to public.

Copyright © 2017, No Magic, Inc.

5 pro: : -
B2 Project Options

Change default values for element properties

In the Default model properties tab, select an element and change the default elements
properties values (element will have these values after its creation). To change the default value
only for the specific diagram, go to Diagrams main menu / Customize and edit the selected
element properties.

’Q Type here to filter options ‘ Assodciation

-+ () Add Variable Value Actic » | |84} E‘
o AnY Receive Event B General
" e e (1
-/ E

-3 Assodiation Class e

- & Behavior Execution Spe Is Final Spedialization

() Broadcast Signal Action Is Derived

-+ () Call Behavior Action i | IsAbstract

- & Call Event Documentation

- (@) Call Operation Action B EndA

- [Central Buffer Node Visibility

- & Change Event

-] Class Visibility
- @ Classifier Template Parz A PackageableElement must have a visibility specified if it is owned by a
- [] Clause Namespace. The default visibility is public.

- () Clear Association Actior

- () Clear Structural Feature

— | Reset toDefaults |
Ll 13

-

public

(o) (e) [)

Figure 67 Making the Association’s default visibility public

21. Change the Property visibility to public.

Copyright © 2017, No Magic, Inc.

Change default values for element properties

In the Default model properties tab, select an element and change the default elements
properties values (element will have these values after its creation). To change the default value
only for the specific diagram, go to Diagrams main menu / Customize and edit the selected
element properties.

IQ Type here to filter options ’ Property

- O Operation o || B 24 E‘ 33

- (O Operation Template Par 2 General

- 38 OuteutPn '
q Package Is Unique

- - Package Import e

- 7 Package Merge s >tatic

- & Parameter Is Read Only

- [] Parameter Set i|| IsOrdered

-] Part Decomposition || IsLeaf

-] Port 1| D

- LA Primitive Type L Is Derived Union
-] Profile ‘ ﬂ
- 7 Profile Application Visibility
s

- /7 Protocol Conformance
- &5 Protocol State Machine
-/ Protocol Transition

< n

| Reset toDefaults |

(o) (e) [)

Figure 68 Making the property's default visibility public

22. Click OK.

5.2.2 Create a Property Chain

The Concept Modeler allows you to create a property chain by dragging properties, one after
another, to a target property. The drag-and-drop action provides two menu options:

(1) Create subproperty chain
(i) Add property to subproperty chain

To create a property chain:

1. Drag a property to be composed in the chain, for example, “has father”, to a target
property, for example, “has uncle”, on the diagram pane. A shortcut menu will open.

76 Copyright © 2017, No Magic, Inc.

package Property Chain[Property Chain U

Person
(Property Chain)

has parent
2

incomplete, disjoint}
gs1
Female Person Male Person
(Property Chain) (Property Chain) ["as brother

W [Create subproperty (drop to see available commands...) |
|
—0

has father
1

Figure 69 Dragging a property to a target property to create a property chain

Tip

Alternatively, you can create a property chain by right-clicking a target property and
select Create subproperty chain from the shortcut menu, and select the properties to
be composed in the chain from the tree in the Select Property dialog.

77

2. Select Create subproperty chain from the shortcut menu.

Copyright © 2017, No Magic, Inc.

package Property Chain[Property Chain U

Person
(Property Chain)

has parent
-
2

incomplete, disjoint}
gs1
Female Person | Male Person
(Property Chain) (Property Chain) |as brother
has unclg
3 Create subproperty
Create existential quantification
Create universal quantification
has fathg| Create subproperty chain h
1 Create equivalent property

Figure 70 The Create subproperty chain shortcut menu

Drag the next property to be composed in the chain, for example, “has brother’, to the
target property and select Add property to subproperty chain. The property chain will
be created (Figure 72).

Copyright © 2017, No Magic, Inc.

package Example| Property Chain U

Person
(Example) has parent

2

incomplete, disjoint}

gs1
Female Person Male Person
(Example) (Example)

Ihas brother

'

has uncle

chain = has father}

Create subproperty

f = : o
I{:asﬂ Create existential quantification

Create universal quantification
l Add property to subproperty chain
Create equivalent property

Figure 71 Adding a property to a property chain

Copyright © 2017, No Magic, Inc.

package Property Chain [Property Chain U

Person

(Property Chain)

has parent

2

incomplete, disjoint}

gs1

Female Person
(Property Chain)

Male Person
(Property Chain)

has brother

*

has uncle

*

{chain = has father, has brother}

has father

1

Figure 72 A property chain has been created

You can double-click the property “has uncle” to open its Specification window and see the
tagged value of the property.

You can delete or edit a property chain using the shortcut menus Remove subproperty chain or
Edit subproperty chain.

To delete a property chain:

80

1.

Right-click a target property or a property chain in the diagram pane.

Copyright © 2017, No Magic, Inc.

package Property Chain [Property Chain U

Person

(Property Chain) has parent

2

incomplete, disjoint}
gs1

Female Person Male Person
(Property Chain) (Property Chain) |1as brother

225 U Eit Name

{chsin =1 Specification Enter
Symbol Properties Alt+Enter

has fathg GoTo »

1 LBB Select in Containment Tree Alt+B
Related Elements »
Refactor »
Tools »

¥ | Show Role
Edit Compartments
Stereotype
Owned By »
v | Navigable
v | None
Shared
Composite
(Unspecified)
0
0.1
0.%
1

1.* Make property sufficient to classify an instance
vl * Edit subproperty chain

AutoStyler » Remove subproperty chain %
Concept Modeling » Create equivalent property

Figure 73 The Remove subproperty chain shortcut menu

2. Select Concept Modeling > Remove subproperty chain for the shortcut menu. The
Concept Modeler will delete all of the properties in the selected property chain.

Tip Alternatively, you can select Concept Modeling > Edit subproperty chain and delete

Remove Value

the property chain by clicking its tagged value > in the Specification

window of the property.

81 Copyright © 2017, No Magic, Inc.

When editing a property chain, you can add, remove, or reorder properties in a chain by using the

Specification window.

To edit a property chain:

1. Right-click a property chain in the diagram pane.

package Property Chain[Property Chain]/‘

Person

2

(Property Chain) has parent

incomplete, disjoint}
gs1

Female Person Male Person
(Property Chain) (Property Chain)

has brother,
3

has unci

*

(chain=

has fath

L 3

Edit Name
Specification
Symbol Properties
GoTe

Select in Containment Tree
Related Elements
Refactor

Tools

Show Role

Edit Compartments
Stereotype

Owned By
Navigable

None

Shared

Composite
(Unspecified)

0

0.1

0.*

1

1.*

AutoStyler
Concept Modeling

Figure 74 The Edit subproperty chain shortcut menu

Enter
Alt+Enter
»

Alt+B

Make property sufficient to classify an instance
Edit subproperty chain
Remove subproperty chain

Create equivalent property

2. Select Concept Modeling > Edit subproperty chain. The Specification dialog of the

property will open showing the property chain in the Tags section.

82

Copyright © 2017, No Magic, Inc.

Specification of Property has uncle “

Element tagged value specification
Select a tag and dick the Create Value button to create new value for it.

& & e Tags

O +has unde : Property Chain::Male Person [*] | profiles [<ALL> -
: Pri -
[}.. Documentation/Hyperlinks I I operty
-[&] Usage in Diagrams 2 e BB =v B8 = | O chain : Property[2..7] | [... |
- (B Qualifiers :
Inner Elements E-<» edeprecated» Value

i O deprecatedReason
El-«» «Equivalent Property»
.| i O equivalent to
E-«» <hasGroupName»

: L O groupName

El-«» «NumberOwner»

i L. O customNumberingData
@...«‘» «Resource»
=

Relations
Connectors

-|E)| Constraints
-[B] Traceability

: |-« «Subproperty Chain»

}Remove Value | IEdit Value| T E
Back Forward

Figure 75 The Specification window of the property "has uncle”

3. Click the tagged value, for example, chain = has father, has brother.
4. Click . The Specification of Slot <> window will open.

83 Copyright © 2017, No Magic, Inc.

Specification of Slot <> Ex

Specification of Slot properties

Specify properties of the selected Slot in the properties specification table. Choose the Expert or All options from the
Properties drop-down list to see more properties.

& @ 2 <>
[©)chain = has father, has brother =] a: B oy abc Pr : .
J r = ’ g operties: Al v
B3-[B] Documentation/Hyperiinks # o = v e e
Inner Elements has father [Property Chain::Person::{S2 el
has brother [Property Chain::Person
Constraints
Traceabili
ity =
< > v

Value
The value or values held by the Slot.

’Q Type here to filter properties |

[oo | [ok | | Forward

Figure 76 Editing the property chain in the Specification of Slot < > window

5. Click Value and click the properties box next to it.
6. You can click:
(1) to add a property to the chain.
(i) = to delete a selected property from the chain.
(i) ™ to order the properties in the chain.

5.2.3 Create Equivalent Property

Properties can be equivalent to each other. You can make two or more properties equivalent by
dragging a property to the target property. The Concept Modeler provides you with the following
shortcut menus:

(1) Create equivalent property

(i) Add property to equivalent property

A property is semantically equivalent to another property if'it is stereotyped with «Equivalent
Property» and its tagged value is equivalent to.

84 Copyright © 2017, No Magic, Inc.

To create two or more equivalent properties:

85

1. Drag a property, for example, “has dad” to a target property, for example, “has father” in
the diagram pane. The shortcut menu will open.

package Example[Exampleu

has kid

*

has mom

Person
(Example)

has child

* {equivalent to = has kid}

{incomplete, disjoint}

gst

[

1
has mother

1
{equivalent to = has mom}

Female Person
(Example)

|

Male Person
(Example)

has dad

1

has faf

1

has pa

Create subproperty

Create existential quantification
Create universal quantification
Create subproperty chain

Create equivalent property

Figure 77 The Create equivalent property shortcut menu

2. Select Create equivalent property. The property “has father” is now equivalent to the

property “has dad”.

Copyright © 2017, No Magic, Inc.

86

package Example [_ Exampleu

has kid

has mom

Person
(Example)

has child

b
* [equivalent to = has kid}

{incomplete, disjoint}
gs1

l

|

1
has mother

1
{equivalent to = has mom}

Female Person
(Example)

Male Person
(Example)

Lhas dad
1

has father
1
{equivalent to = has dad}

has papa

1

Figure 78 Two equivalent properties "has father" and "has dad"

You may add more properties to the existing equivalent properties by dragging the next
property, for example, “has papa” to the equivalent property “has father” in the diagram

pane.

Copyright © 2017, No Magic, Inc.

package Example [v Exampleu

Person
(Example)
has kid has child

* * [{equivalent to = has kid)

{incomplete, disjoint}
gst

I |

Female Person Male Person has dad
has mom (Example) (Example) 1
1
has mother
1
{equivalent to = has mom}

has father
1
{=quivalent to = has dad)

Create subproperty
has papa

Create existential quantification
1

Create universal quantification

Create subproperty chain

Add equivalent property

Figure 79 The Add equivalent property shortcut menu

4. Select Add property to equivalent property. The property “has papa” is now equivalent
to the properties “has father” and “has dad”.

Copyright © 2017, No Magic, Inc.

package Example[Equivalent Exampleu

has kid

has mom

Person
(Example)

has child
-—

*

{equivalent to = has kid}

{incomplete, disjoint}

gs1

I

1
has mother

1
{equivalent to = has mom}

Female Person
(Example)

Male Person
(Example)

has dad

has father

*

{equivalent to = has dad, hgs paps}

has papa
1

Figure 80 Equivalent properties in the Concept Modeler

Tip Alternatively, you can make a property equivalent to one or more properties by right-
clicking it and select Concept Modeling > Create equivalent property from the
shortcut menu, and select one or more properties from the tree in the Select Property
dialog.

88 Copyright © 2017, No Magic, Inc.

Select Property

Select, search for, or create elements

Search for an element by using list or tree views. To find an element type text or
wildcard (*,?) into the "Search by Name” input field. Search elements by their
qualified names or use camel case when searching if the appropriate mode is
enabled.

|Qrbearch by Name ‘ Selected elements: 0

%g Tree E;E List

B 8 & BE 14matches found with fiter applied

B-E m (14 matches)
- £ Example (14 matches)
EI E Person (7 matches)

+has dad : Example::Male Person [1]
+has child : Example::Person [¥]
+has father : Example::Male Person [*]
+has mom : Example::Female Person [1
+has mother : Example::Female Person
+has kid : Example::Person [*]
+has papa : Example::Male Person [1]

/' Assodation[Example::Person -> has child:E

-. /" Assodation[Example::Person -> has dad:E
- /" Association[Example::Person -> has father
- /" Association[Example::Person -> has kid:Exz
- /" Association[Example::Person -> has mom:E
- /" Association[Example::Person -> has mother
- /" Association[Example::Person -> has papa:E
< >

<'><'><'><'><'><'><'>

Apply Filter (Ctrl+Space)
Single Selection

oK | | Cancel | | Hebp

Figure 81 The Select Property dialog

To delete an equivalent property:

1. Right-click the target property, for example, “has father {equivalent to = has dad, has
papa}”, in the diagram pane. The shortcut menu will open.

89 Copyright © 2017, No Magic, Inc.

|
Male Person |has dad

(Example)

has father

1
{equivalent to = has dad, has psa

Edit Name
:\as it Specification Enter
Symbol Properties Alt+Enter
GoTo »
Be Select in Containment Tree Alt+B
Related Elements >
Refactor >
Tools »

¥ | Show Role
Edit Compartments
Stereotype
Owned By »
v | Navigable
¥ | None
Shared
Composite
(Unspecified)
0
0.1
0.”
vi1
1t

*

AutoStyler »

Concept Modeling U Make property sufficient to classify an instance

Create subproperty chain

Edit equivalent properties

Remove equivalent properties

Figure 82 The Remove equivalent property shortcut menu

2. Select Concept Modeling > Remove equivalent properties. The Concept Modeler will
remove all of the equivalent properties.

To edit an equivalent property:

1. Right-click an equivalent property, for example, “has father”, in the diagram pane.

90 Copyright © 2017, No Magic, Inc.

1
Male Person |has dad
(Example)

has father
1
{equivalent to = has dad, has pap:

Edit Name

has papa

1 Specification Enter
Symbol Properties Alt+Enter
GoTo »

E Select in Containment Tree Alt+B

Related Elements »
Refactor »
Tools »

v | Show Role
Edit Compartments
Stereotype
Owned By »
v | Navigable
¥ | None
Shared
Composite
(Unspecified)
0
0.1
0.*
ol 1
1%

*

AutoStyler »

Concept Modeling 4 Make property sufficient to classify an instance

Create subproperty chain

Edit equivalent properties

Remove equivalent properties

Figure 83 The Edit equivalent properties shortcut menu

2. Select Concept Modeling > Edit equivalent properties. The Specification of Property
has father window will open showing the equivalent properties under the section Tags.

Copyright © 2017, No Magic, Inc.

Specification of Property has father Bl

Element tagged value specification
Select a tag and dlick the Create Value button to create new value for it.

& (B 2 Tags
O +has father : Example::Male Person [¥] Profile: | <ALL> = ‘ o
E}-[E] Documentation/Hyperlinks :
Usage in Diagrams B B% tg; [E =y 29 =3 IO equivalentho:Property[l...I []
Qualifiers -
Inner Elements E' «;» «deprecated» Value
} i e O deprecatedReason
Relations : A @ -+has dad : Example::Male Person [1]...
E-«» «Equivalent Property»
Connectors WY equivalent to = has dad, has O +has papa : Example::Male Person [..
: .
Constraints & 232?;3:2’::":”
Bl Traceabiity i E-«» «NumberOwner>»
O customNumberingData
B> «Resource»
O IRI
E-«» «Subproperty Chain»
e O chain
< >
}Remove Value' IEcitValue\ T E]

i [v | | oo

Figure 84 The Specification window of Property has father

3. Click the tagged value, for example, equivalent to = has dad, has papa.
4. Click . The Specification of Slot <> window will open.

Copyright © 2017, No Magic, Inc.

Specification of Slot <>

Specification of Slot properties

Specify properties of the selected Slot in the properties specification table. Choose the Expert or All options from the
Properties drop-down list to see more properties.

& @ 2 <>

[9)equivalent to = has dad, has papa =] a: B oy abc Properti .
J r = ’ g operties: Al v
B3-[B] Documentation/Hyperiinks =l = ox

Inner Elements

has dad [Example::Person::has fathd: A

has papa [Example::Person::has fatt
Constraints

Traceability

Value
The value or values held by the Slot.

’Q Type here to filter properties |

Close l [Back Forward

Figure 85 The Specification window of Slot < >

5. Click Value and click the properties box next to it.
6. You can click:

(1) to add another equivalent property.
(ii) = to delete a selected equivalent property.
(111) ™ to order the equivalent properties in the Order Value dialog.

5.2.4 Create Equivalent Classes

To create equivalent classes:
1. Click |1 EauivalentClass

on the Concept Modeling diagram palette.

2. Inthe diagram pane, click a class and drag the line to another class to make them
equivalent to each other. A double-headed arrow will be created between the two classes
and the stereotype «Equivalent Class» will be visible.

93 Copyright © 2017, No Magic, Inc.

[&] Example X ‘

4 b B

2R O e P2 (@ L ® Q(100% v

Tools

ki L$X
Concept Modeling
[Annotation

package Example[Example]

~

=4 Note(HTML Text) US President lLPrincipal Resident of White House
B anchor (Example) |L (Example)

E] dlass

] Property Holder

& Anonymous Union

[E] Enumeration

/ Inverse Object Properties

/" Unidirectional Object Property
< Subdass
'/ Equivalent Class I
" Disjoint With

" Dependency

N

<

Figure 86 Creating class equivalence between two classes

package Example| ExampleU

US President «Equivalent Class» Principal Resident of White House
(Example) (Example)

Figure 87 The classes are equivalent to each other

5.3 Set the Concept Model URI

URI stands for Uniform Resource Identifier. A URI can provide identification about a location to
a resource (a document, a person, an abstract thing) and a name or both, depending on the
context. The URI is used as a single global identification system in the Web.

On the semantic Web, not only can you use URIs for Web documents (to link to and access them
in a Web browser), but also for real world objects (such as people, cars, and even abstract ideas).

A concept model must have a valid URI before it can be exported to an OWL ontology. If you
forget to change the default URI, the notification window will open and remind you to change it

94 Copyright © 2017, No Magic, Inc.

when you export that concept model to an OWL ontology. The last part of this URI is used as the
filename, and the extension for this file will be derived from the export format. (See section 5.6.2
Set the Concept Model Export URI Style for export format options.)

To set the concept model URI:

1. Right-click on the desired ontology package in the Containment tree.
2. Select Specification.

e Containment | %€ Diagrams |

Containment

B w Q

E]@] Data

H E’ = e «ConceptMode!

' B}-Eg Concept Modeling Create Element »

... 1 Code engineering sets Create Diagram >
Create Relation »
Specification Enter
GoTo »

Open in New Tree

Related Elements »
Refactor »
Tools »
Stereotype
Rename F2
M Copy Ctrl+C
Copy URL
& Ctrl+V
% Cut Ctrl+X
i Delete Delete
Find...
Generate Report... »
Concept Modeling »

[MOF] Collect parameters
v

Figure 88 Opening the Specification dialog of a selected package

3. Scroll down to URIL, or type “URI” in the search field at the bottom of page.

Note A default URI will be set for new concept modeling projects and newly created concept
models. Updating the URI to match your ontology is recommended. For situations in
which a URI has not been set, or the default has not been changed, a warning message

95 Copyright © 2017, No Magic, Inc.

will appear in the notification window on OWL export.

4. Click on the field next to URL.
5. Update the URI and click OK.

5.4 Create the XML Catalog File

The XML catalog file can be created using the application Protégé!. The version of Protégé
used in these instructions is version 4.3.0.

To create an XML catalog file for a locally cached set of external ontologies:
1. Open Protégé.
2. Select File > New.

! Protégé is a free, open-source ontology editor and a framework for building knowledge management systems.

96 Copyright © 2017, No Magic, Inc.

File Edit View Reasoner Tools Refactor Window Help

New... Ctr-N =

Ctr-0
UI Create a new empty ontolow -
Open from URL... Ctri+Shift-0 M Differences r SPARGL Query |

ct Properties r Data Properties r Annotation Properties |
Open recent »
Save Ctd-S
Bttlontologies/2015/4 /untitled-ontology-28 |

Save as... Ctrl+5hift-5
Gather ontologies... Ctri+Shift-G |

Export inferred axioms as ontology ...

Edit active ontology library... Ctri-L
Edit ontology libraries...

Loaded ontology sources...

Check for plugins...

Close Ctr-W

Preferences...

Exit xioms

Imported ontologies:

Direct Imports

Indirect Imports

No Reasoner set. Select a reasoner from the Reasoner menu Show Inferences

Figure 89 Creating an OWL ontology in Protege application

3. Select Save as...

97 Copyright © 2017, No Magic, Inc.

untitled-ontology-29 (http:/ /www.semanticweb.org/jplattlontobg's = |I:I |l|
File Edit View Reasoner Tools Refactor Window Help

New... Ctr-N :I'

Open... Ctr-0
Open from URL... cusshino Jody Differences | SPARQL Query |
t Properties r Data Properties r Annotation Properties |

Open recent »

Save Ctr-S
Save as... Ctrl+Shift-S

h :
Gatero

Export inferred axioms as ontology ...

Lttlontologieslzm S/4juntitled-ontology-29 |

Ctri+Shift-G |

Edit active ontology library... Ctr-L
Edit ontology libraries...

Loaded ontology sources...

Check for plugins...

Close Ctr-W

Preferences...

Exit Xioms
S IEEE

Direct Imports

Indirect Imports

No Reasoner set. Select a reasoner from the Reasoner menu Show Inferences

Figure 90 Saving the OWL ontology in Protégé

4. Click OK.

Select an ontology format x|

Choose a format to use when saving the untitled-ontology-29 ontology

IRDF XML =

I OK I | Cancel

Figure 91 Selecting an ontology file format option

5. Navigate to a folder location.
6. Name the empty ontology.

98 Copyright © 2017, No Magic, Inc.

7. Click Save.

x
Saveln |C3 XML Catalog - [

File Name: |empty| |

Files of Type: | OWL File v

| Save | | Cancel I

Figure 92 Saving the OWL ontology file to a selected location

99 Copyright © 2017, No Magic, Inc.

8. Click File > Open.

File Edit View Reasoner Tools Refactor Window Help

New... Ctr-N :’v

Open... Ctd-0
Open from URL.... Ctri+Shift-0 bgy lefererm r SPARGL QHV I : :
Open recent »
Save Ctd-S

Btt/ontologies/2015/4 untitled-ontology-29 |
Save as... Ctri+5hift-S |
Gather ontologies... Ctri+Shift-G

Export inferred axioms as ontology...

Edit active ontology library... Ctri-L
Edit ontology libraries...

Loaded ontology sources...

Check for plugins...

Close Cti-w

Preferences...

Exit Xioms
R e DEEH

Direct Imports

Indirect Imports

No Reasoner set. Select a reasoner from the Reasoner menu Show Inferences

Figure 93 Opening an OWL ontology menu in Protégé

9. Click Yes.

Open in current window l'

Do you want to open the ontology in the current window?

I Yes I | No I | Cancel

Figure 94 Opening ontology in the current window option

100 Copyright © 2017, No Magic, Inc.

10. Select the newly created ontology.
11. Click Open.

5
LookIn: |3 XML Catalog ~| [&] @

@ empty.owl

File Name: |empty.owl |

Files of Type: |0WL File vl

| Open | | Cancel |

Figure 95 Selecting an OWL ontology to open

101 Copyright © 2017, No Magic, Inc.

To create an XML catalog file for the desired locally cached set of external ontologies:
1. Click File > Edit active ontology library.

untitled-ontology-29 (http://www.semanticweb.org/jplatt/ontolog

es/2015... [[=[5

File Edit View Reasoner Tools Refactor Window Help

New... cti-N I | |

Open... Ctd-0
Open from URL... Ctri+Shift-0 'K‘" Query r Ontology Differences |
ct Properties r Data Properties r Annotation Properties |

Open recent »
Save Ctd-S

Lttlontologies/201 5/4juntitled-ontology-29 |
Save as... Ctr+5hift-S
Gather ontologies... Ctri+Shift-G I

Export inferred axioms as ontology...

Edit active ontology library... Ctri-L

Sk eEolaoy "braml View, add and edit the active ontology library |
Loaded ontology sources...

Check for plugins...

Close Cti-w

Preferences...

Exit xioms

Imported ontologies:

Direct Imports

Indirect Imports

No Reasoner set. Select a reasoner from the Reasoner menu Show Inferences

Figure 96 Creating an XML catalog file in Protégé

102 Copyright © 2017, No Magic, Inc.

2. Click on the Folder Repository for the empty ontology.
3. Click Delete (-)

Ontology libraries x|
5| | t=
= Ontology Repository from catalog file C:Wsers\Jplatt\Desktop\XML Catalog\catalog-v001 .xml
>ﬁ }older Repository for C:\Wsers\Jplatt\Desktop\XML Catalog (Fecursive)

I oK [| cance |

Figure 97 Deleting a folder repository

4. Click Add (+).

Ontology libraries 7 x|
CAEIRARS

D Ontology Repository from catalog file C:Wsers\Wplatt\Desktop\XML Catalog\catalog-v001 .xml

I[OK I | Cancel

Figure 98 Adding a folder repository

5. Click on Folder Repository.
6. Select Recursively search subdirectories.

x|
|/ Single Ontology Redirect r Folder Repository |

Directory: |C:V.JsersUpIatt\Desktop\FlBO-red | | Browse |

Recursively search subdirectories

] Import By Name (requires manual updates)

Figure 99 Locating for a folder repository

103 Copyright © 2017, No Magic, Inc.

7. Select the desired folder.
8. Click Open.

Folder for Ontology Repository x|
Look In: |[3 Desktop v| @l (]
CCM Alpha 2 (3 Dennis' Installation C3 New folder
CCM doc 5-4-2015 (3 Documentation from SVN (3 New folder (
CCM_20150409 J FIBO-red 3 New folder (
Concept_Modeler_Plugin_files 3 git 3 New folder (
Concept_Modeler_XML_Catalog_File (3 Jenkins 3 New folder (
ConceptModelingPlugin java - Shortcut 3 Mike Bennet's Error 3 New folder (
David's Installation 5-4-15 (3 Mike's Installation 4-21-15 3 New folder (
Dean's Installation 5-4-15 ca My Skype Received Files - Shortcut 3 New Folder
< I | |

File Name: |C: Wsers\Wplatt\Desktop FIBO-red |
Files of Type: | Al Files v
| Open | | Cancel |

Figure 100 Selecting a folder repository

9. Click OK.

Ontology libraries B x|

o] ¥ |t

= Ontology Repository from catalog file C:Wsers\Wplatt\Desktop\ XML Catalog\catalog-v001 .xml
>3 Folder Repository for C:Wsers\Jplatt\Desktop'FIBO-red (Recursive)

[OK) | Cancel

Figure 101 A new folder repository is added

104 Copyright © 2017, No Magic, Inc.

5.5 Import an OWL Ontology to a Concept Model
5.5.1 Update the XML Catalog File

The Concept Modeler can import a local ontology model into the concept model. Occasionally,
an ontology file may contain references to external ontologies (for example, ontologies not
stored locally and not available to import directly into the concept model). An XML catalog
(OASIS Standard V1.1) may be used to locate these external ontologies as a locally cached
equivalent. An XML catalog describes the mapping between external entity references and
locally cached equivalents for an XML external resource. In this case, the external entity
references are URIs to external ontologies, and the locally cached equivalent is a pointer to a
local copy of the root folder containing the external ontologies. For instance, the following entry
from an XML catalog for the Red branch FIBO ontologies tells the Concept Modeler to look for
the ontology named “http://spec.edmcouncil.org/fibo/red/be/” in the folder “be/be.rdf.”

<uri id="Automatically generated entry, Timestamp=1425183124824"
name="http://spec.edmcouncil.org/fibo/red/be/" uri="be/be.rdf"/>

The local copy of this ontology is located relative to the root folder of the locally cached
equivalent. This root folder must be set in the XML catalog file by modifying the “id” attribute
of the element “group” in the XML catalog file:

<group id="Folder Repository, directory=file:///C:/Users/Jplatt/Desktop/FIBO-red/,
recursive=true, Auto-Update=true, version=2" prefer="public"
xml:base="file:///C:/Users/Jplatt/Desktop/FIBO-red/">

The identical, bolded file URIs above point to the folder “FIBO-red” on the Windows desktop of
user “Jplatt.” These file URIs must be set to the location of the local folder containing the locally
cached equivalent of the external ontologies. Windows users should note the use of forward
slashes, as well as the triple forward slash before the Windows file location.

5.5.2 Set the OWL Import Catalog

The OWL import catalog must be set for a MagicDraw project if an XML catalog is used to
import an ontology model.

To set the OWL import catalog to the XML catalog file for the desired external ontologies:
1. Click Options > Project.

105 Copyright © 2017, No Magic, Inc.

http://spec.edmcouncil.org/fibo/red/be/

[X MagicDraw 18.0 - Example.mdzip [C:\git\git-svn-clone

: Fie Edit View Layout Diagrams | Options | Tools Analyz
DEE-DB &8-%-¢ -9 Project
Containment Perspectives

~ v

B W _

Figure 102 The Concept Modeler’s Project Options menu

2. Select General Project Options.
3. Click in the field next to OWL Import Catalog.
4. Click the “...” button.

[Project Options

Specify general project properties

Specify the validation, project dependency checker options and other general project-specific options. O i
[wiregncane.
Ml-\anm-
o crmenemene.
i General project options
i~-E Diagram Info 1ol [—] = o
201 Symbol styles 8 =] BLBX
i B0 Default (Default) E Numbering o
%’ ShaLpes Use Element Auto-numbering [~ false
é Eia;gfam Display Element Number [~ false
E-«» Stereotypes Check Element Number Uniqueness Including ... false
E-[F] Defined Elsewhere Check Element Number Uniqueness in: [Data
&-E Default model properties || piagrame
B¢ Code Engineering ; o ;
&° Code Generation Use i18n property for text rendering in the di... W true
- Reverse Display All Pins in Diagrams V' true
--g1 Java Language Options ‘| | El Concept Modeling
g C++ Language Options /| QWL Export Syntax RDF/XML
AZ] gg;gx%ig:fuort'o"s 4 owL Import Catalog pdeler XML_Catalog_File\FIBO-Red-catalog.xm| |8
.0 langua -
: 9439 11 URI Construction Strategy Hash URT
B Corba IDL |
CORBA Interfaces implemented as UML Interface v
OWL Import Catalog

An Oasis-standard catalog file to map IRIs to local files or other IRIs. See
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html for more information.

IO« Type here to filter properties

Reset to Defaults |

oK | Cancel | Help |

Figure 103 Selecting an XML catalog file as the OWL import catalog

106

5. Select the XML catalog file.

6. Click Open.

Copyright © 2017, No Magic, Inc.

7. Click OK.

5.5.3 Set a Path Variable to Share OWL Import Catalog Files

By permitting a user to set a path variable to a local directory containing OWL import catalog
files, the Concept Modeler allows users to easily share OWL import catalogs and the MagicDraw
projects that use them. Without such a variable, each user may have a different path to the file,
which causes the users to change the path back and forth. To resolve this issue, a user needs to
define a path variable to this local directory on his or her computer that corresponds to the
directory containing the same OWL import catalog files on another user’s computer.

To define a path variable:

1. Click Options > Environment.

[X MagicDraw 18.0 - Example.mdzip [C:\git\git-svn-clone-
‘ Fle Edit View Layout Diagrams | Options | Tools Analyze

DBEE-08 8 -5-& -4 Project re
B Containment | ¥ Diagrams | Environment M
Containment 2 ‘j PerSpevctlves > b
E ﬁ Q o I I e

Figure 104 The Concept Modeler's Environment Options menu

Select Path Variables.

Click Add.

Name the path in the Name field.

Click the “...” button next to the Value text box.

Al i

107 Copyright © 2017, No Magic, Inc.

(X Environment Options

Path variables configuration

Path variables can be used in code engineering process, module usage, hyperlinks, etc. Specify predefined
variables or create and configure custom variables for referencing file system objects.

~~~~~ [ General

- Composition Inspection
----- &% Collaboration

----- @ Update

----- 2 Network

----- £ Keyboard

----- =& Plugins

----- &) Resources

~~~~~ PV
-85 Spelling

----- [Launchers

----- E Experience

~~~~~ [®] External Tools
"""" Notifications
----- £ Code Engineerina

----- = Eclipse UML2 (1

Path Variables

Defined Path Variables:

| Name |

Value | Description |

|insta||.root
D

----- CAEAUAY ) path Variable

C:\Program Files\MagicDr... MagicDraw installation dir...

Active project directory.

C:\git\git-svn-clone-conce...

Remove |

x|

edit | add |

----- = Eclipse UML2 (1
----- = Eclipse UML2 (1
----- £+ Enterprise Arct
"¢ Macros

----- Report Wizard

Name:

Value:

CCM Catalog Files

Description:

|

OK | Cancel |

Figure 105 Locating the OWL import catalog

6. Select desired root directory containing OWL import catalog files.

7. Click Open.

108

Copyright © 2017, No Magic, Inc.



(¥ Select Location x|

Look in: | | CCM XML Catalog Files

=i e e

b

Recent Ite...

My Docum...

A

Computer

rE] Folder name: |C:\CCM XML Catalog Files

LEUGS  Files of type: [all Files

Figure 106 Selecting the OWL import catalog

8. Click OK. You will see the created directory appear on the Path Variables list (see the

following figure).

109

Copyright © 2017, No Magic, Inc.



(X Environment Options

Path variables configuration

Path variables can be used in code engineering process, module usage, hyperlinks, etc. Specify predefined
variables or create and configure custom variables for referencing file system objects.

----- 5 General Path Variables

..... Fa Browser Defined Path Variables:

- Compositiqn Inspection Name l Value | Description I
i@% gglé}aboratnon install.root C:\Program Files\MagicDr... MagicDraw installation dir...

& Und project.dir C:\git\git-svn-clone-conce... Active project directory.
. é’ :Zw?vgik CCM Catalog Files C:\CCM XML Catalog Files

----- =& Plugins

----- & Resources

----- 2 dPath Variables
-3 Spelling

----- [ Launchers

---- E Experience

----- [B] External Tools
----- Notifications Edit | Add | Remove
~~~~~ £3 Code Engineering

---- = Eclipse UML2 (v1.x) XMI
----- = Eclipse UML2 (v2.x) XMI
----- = Eclipse UML2 (v3.x) XMI

[V Show suggestion to use path variables

,,,,, 2 Eclipse UML2 (v4.x) XMI Path variables are the defined paths that can be used in code engineering process,
----- & Enterprise Architect Import | Modules usage, hyperlinks, etc.

¢ Macros It helps to avoid using absolute local paths and alows to exchange projects among
----- Report Wizard L

Example: <install.root>/profiles

Reset to Defaults |

OK Cancel | Help |

Figure 107 The OWL import catalog is defined as the path variables

8. Click OK.

5.5.4 Use a Path Variable to Share OWL Import Catalog Files

To use a path variable to share OWL import catalog files:
1. Click Options > Project.

110 Copyright © 2017, No Magic, Inc.

(¥ MagicDraw 18.0 - Example.mdzip [C' git\git-svn—clone

File Edit View Layout Diagrams
DEE-DB&J-9-e -1

PrOJect

B Containment | £ Diagrams
_/

Environment

Containment

Q’Q

Perspectives

v

Figure 108 Opening the Project Options Dialog

2. Select General project options.
3. Click in the field next to OWL Import Catalog.

4,

[X Project Options

Specify general project properties
Specify the validation, project dependency checker options and other general project-specific options.

Click the “

..” button.

QSeguadii] General project options
--E Diagram Info —— .
=) | Symbol styles sl (= =2 e
=S |E] Default (Default) Ignore Standard/System Profiles v true a
| | B3 Shapes E Numbering
ug/a E?atgfam Use Element Auto-numbering [~ false
Bls» Stereotypes Display Element Number [~ false
=0 Defined Elsewhere Check Element Number Uniqueness Including ... [false
E-EJ Default model properties Check Element Number Uniqueness in: = Data
B¢ Code Engineering S
" Diagrams
g Code Generation ; — -
-z Reverse Use i18n property for text rendering in the di... ™ true
-¢3] Java Language Options : Display All Pins in Diagrams v true
-] C++ Language Options ‘|| Bl concept Modeling
-g3 C# Language Options || gL Export Syntax RDF/XML
-1 CORBATDL 3.0 languag ||,]
URI Construction Strategy Hash URI L—
Bl Corba IDL v
OWL Import Catalog
An Oasis-standard catalog file to map IRIs to local files or other IRIs. See
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html for more information.
|Q* Type here to filter properties
Reset to Defaults
« B |
oK | Cancel | Help |

Figure 109 Selecting the path variables to use in the Project Options dialog

111

Copyright © 2017, No Magic, Inc.

5. Select the XML catalog file.
6. Click Open.

]
Look in: | | CCM XML Catalog Files =i 2 s

i conceptmodeler.zip :

g, ‘¢ FIBO-Red-catalog.xml
e o M2 Readme.docx

i

Desktop

My Docum...

i!s

Computer

'E] File name: |

Open
-
Network

Cancel

Files of type: [all Files |

Figure 110 Selecting the XML catalog file

7. Select the path to the OWL import catalog that includes the defined path variable.
8. Click Use Selected.

(X Use Path Variables x|

Would you like to use path variables for OWL Import
Catalog?

Original path is "C:\CCM XML Catalog
Files\conceptmodeler.zip".

Available forms:

<CCM Catalog Files>\conceptmodeler.zip

[v Show suggestion to use path variables

Use Selected Use Original Help

Figure 111 Using the selected path variables

112 Copyright © 2017, No Magic, Inc.

555

Import an OWL Ontology file

You can import an OWL ontology file (after setting the OWL import catalog, if necessary) and
reuse or augment it in the Concept Modeler.

When you import an OWL ontology file, the Concept Modeler preserves the URI/IRI for every
OWL class and property and imported it as a tagged value of the corresponding UML class or
property. The tagged value, called IRI, is part of a «Resource» stereotype applied to each UML
element. This tagged value is generally used only for an imported OWL ontology. It allows you
to refer to an OWL ontology from a concept model that has been exported to OWL. The
exported concept model directly imports the original OWL ontology file(s) and can use the
classes and properties defined there with all the correct URIs/IRIs.

Note

The Concept Modeler enables you to import an OWL ontology, change the package’s
«Model» stereotype to «Concept Model» and edit the classes or properties within that
package, then export it back to OWL. This round-trip OWL ontology editing (OWL
ontology to a concept model to OWL ontology) gives priority to an IRI tagged value
and therefore, it preserves URIs/IRIs from the original OWL ontology on export. If you
need to use the concept model from this point forward as the source model for an OWL
ontology, you should probably remove the tagged values so that changing class and
property names will keep the URIs/IRIs in sync.

To import an OWL ontology file into a concept model:

1.

On the main menu, click File > Import From.

2. Select OWL Ontology File.

113

Copyright © 2017, No Magic, Inc.

MagicDraw 18.0 - ExaAmpIe.mdz:E [E:\Example\]

sy B

| File | Edit View Layout Diagrams Options Tools Analyze Collaborate Window Help
/| @ New Project... Ctrl+Shift+N h v :Perspective: [Soﬁ.ware Architect v} : [7g Create Diagram
1 F5 Open Project... Ctrl+0 Incept Modeling Example X I Agents*] Organizations®]
18| e “ RiBOE A b rie BN
165 | Close Project T package Concept Modeling Example 1 Concept Modeling
& Close All Projects " =
Open Element from URL
[
Model Execution & Integration... v
Use Medule... ¢ v
Import From » | Import CSV Ctrl+Shift+C
Save asImage... UML 2.1/2.5 XMI File
0 Print... Ctrl+P MagicDraw Native XML File
B Print Preview MOF XMI File
B Switch Projects » | OWL Ontology File Alt+Shift+I |
B 1E\Example\Example.mdzip Eclipse UML2 (v1.x) XMIFile
B3 2E\De... Export POC\Example.mdzip Echipse UML2 {v2.0) XM File
3 E\Mo...Comparison Examples.mdzip Eclipse UML2 (v3.x) XMI File
B 4 E\o..sage\gameCollecting.mdzip Eclipse UML2 (v4.x) XMI File
Enterprise Architect UML 2.1 XMI 2.1 File
Clear List [DEVELOPER] Requirements Interchange Format (ReglF) File
v CA ERwin Data Modeler v7.x
S| u) J P s Rational Software Architect/Modeler Project
m| /l Cerer Rational Rose *.mdl Project File
' Documentation = % x| / Assoda M

Figure 112 The Concept Modeler's import ontology menu

3. Select an ontology file.
4. Click Open (see the following figure).

114

Copyright © 2017, No Magic, Inc.

Choose an Ontology File to Import] i[
Look in: I | Corporations EI © 2 v

)

Recent Places

-

Desktop

Libraries

. Corporations.rdf 3/4/2015 1:41 PM

A

Computer

i
File name: ICorporations.rdf ﬂ | Open I
v

Files oftype: | Al Files (%) ~| Cancel

Figure 113 Selecting the ontology file to import

If the OWL import catalog is set using a path variable (as described in section 5.5.4 Use a Path
Variable to Share OWL Import Catalog Files), and this path variable is not defined (as described
in section 5.5.3 Set a Path Variable to Share OWL Import Catalog Files), the Concept Modeler
will not be able to locate it. Consequently, the following dialog box will be displayed:

F

Path Variable "CCM Catalog Files" used by OWL Import Catalog is not set!
@ Would you like to specify it?

No

Figure 114 A dialog prompting you to specify a path variable

Clicking Yes will allow the user to set the path variable to a root directory containing OWL
import catalog files, and the import of the OWL ontology to proceed.

115 Copyright © 2017, No Magic, Inc.

[N Path Variable ll

Name:
CCM Catalog Files
Value:
Description:
0K | Cancel

Figure 115 Setting the path variable to the OWL import catalog files

Once an OWL file has been successfully imported, an Imported Ontologies package will appear
in the Containment tree window containing the imported OWL data.

Containment » F X
B w Q o -
B-f&) Data

"E] Example «ConceptModels

E}-F Imported Ontologies

El 22rdf-syntax-ns «Model»

El Corporations «Model

B-53

El Relations «Model

E-F terms «Model»

BHEg UML Standard Profile [UML_Standard_Profile.mdzip]
g Concept Modeling Profile [Concept Modeling Profile.mdzip]

Figure 116 The imported ontology package appears in the Containment tree

Note The Concept Modeler supports importing classes, properties and packages that have the
same label but different URIs.

5.5.6 Import annotations on an OWL Ontology to a concept model

An OWL ontology may have one or more annotations added to itself. Concept Modeler can
import the annotations as annotations on a concept model. If there is only one annotation on the
OWL ontology, it will show u p in the concept model’s Documentation pane in MagicDraw upon
import. When there are more than one annotations imported, they will not show up automatically

116 Copyright © 2017, No Magic, Inc.

in the Documentation pane. You need to specify which one gets to be displayed as the package’s
default documentation by selecting it from the Preferred annotation property option in the
Project Options dialog. The rest of the annotations will become the package owned comments
(UML comments tagged as Annotation).

5.5.7 Version IRI

An ontology can have multiple published versions. To identify various version separately OWL
provides a mechanism to specify "version IRI". The version IRI may be, but need not be, equal
to the ontology IRI. For instance, an ontology document of an ontology that contains an ontology
IRI <http://www.example.com/my>, a version IRI would look like
<http://www.example.com/my/2.0>

Owl version IRI is specified as follows:

<owl:Ontology rdf:about="http://www.example.com/my">
<owl:versionIRI rdfiresource="http://www.example.com/my/2.0"/>

</owl:Ontology>

The version IRI of an ontology will show up under corresponding concept model tag
'versionIRI'.

5.5.8 Display and Hide IRI

The IRIs of classes and properties may not be visible in the diagram pane. Y ou can display them
by using the shortcut menu Display IRI tagged value. To hide the IRIs from the diagram pane,
you can select the shortcut menu Hide IRI tagged value.

To display or hide the IRI tagged value of a class or an association end in the diagram pane:

1. Right-click a class or an association end in the diagram pane.
2. Select Concept Modeling and select either Display IRI tagged value or Hide IRI
tagged value.

Concept Modeling d Display IRI tagged value

Make property sufficient to classify an instance

Create subproperty chain

Create equivalent property

Figure 117 The Display IRI tagged value shorcut menu

117 Copyright © 2017, No Magic, Inc.

http://www.example.com/my/2.0
http://www.example.com/my

Concept Modeling » Hide IRI tagged value

Make property sufficient to classify an instance

Create subproperty chain

Create equivalent property

Figure 118 The Hide IRI tagged value shortcut menu

To display or hide the IRI tagged values of all classes or association ends in the diagram pane:
1. On the main menu, click Edit > Select All. All of the elements in the diagram pane will
be selected.
2. Right-click on any element.
3. Select Concept Modeling and select either Display IRI tagged value or Hide IRI
tagged value.

Note e The menu Display IRI tagged value will appear when you right-click an
element whose IRI is hidden from the diagram pane.
e The menu Hide IRI tagged value will appear when you right-click an element
whose IRI is displayed in the diagram pane.

118 Copyright © 2017, No Magic, Inc.

5.6 Export a Concept Model to an OWL Ontology

5.6.1 Set the Concept Model Export Syntax

The Concept Modeler provides many syntaxes (see section 4. UML to Equivalent OWL (in
OWL Functional Syntax)) that you can select to export your concept model project to an OWL

ontology.

If you export your model without selecting a syntax, the Concept Modeler will export it using

RDF/XML, which is the default syntax.

To set the syntax with which to export a concept model for a MagicDraw project:

1. Click Options > Project.

(X MagicDraw 18.0 - Example.mdzip [C:\git\git-svn-clone

‘ File Edit View Layout Diagrams | Options | Tools Analyz

DEE-DGM-H-& -

B Containment | Diagrams |

Containment

B 1w Q

Project
Environment
Perspectives

v

Ba a2

Figure 119 The Concept Modeler's project options menu

2. Select General project options.

3. Click in the field next to OWL Export Syntax.
4. Select a syntax to export the concept model (see the following figure).

119

Copyright © 2017, No Magic, Inc.

Project Options

Specify general project properties
Specify the validation, project dependency checker options and other general project-specific options.

General project options

E-I0) Symbol styles = 2ol @ B B
F}[ﬁ Default (Default) El Diagrams -
Use i18n property for text rendering in the diagrams true
Display All Pins in Diagrams true
E-«» Stereotypes Bl Concept Modeling
| 5[Defined Eisewhere g O/ Export Syntax T
Default model properties OWL Import Catalog = ‘
El-¢5) Code Engineering URI Construction Strategy JSON-LD &
g Code Generation Add dasses to the glossary OWL Functional
g Reverse Add association ends to the glossary [Turtie
{Kl Java Language Options : Add attributes to the glossary Manchester
-g3] C++ Language Options Add enumerations to the glossary [7] false
~gH C# Language Options i Add enumeration literals to the glossary [7] false
-¢5] CORBA IDL 3.0 language op B urDM
Architecture Framework <undefined>
SysML compliance mode (UPDM L1 compliance level) [7] false
Display solid control flows in SysML compliance mode [7] false v
OWL Export Syntax

The preferred syntax for OWL exports

Q.- Type here to filter properties

Reset to Defaults

OK] [Cancel] [Help]

< m | »

Figure 120 The OWL export syntax options

5.6.2 Set the Concept Model Export URI Style

The Web uses Uniform Resource Identifiers (URIs) as a global identification system. A URI is
used to identify a resource, such as a document or an abstract thing, either by a location, such as
a DNS host name and a path on that machine, or a name.

When identifying real-world objects using a URI, you can choose between (i) Hash URI and (ii)
303 URI The differences are as follows:

(1) Hash URI: for smaller and stable sets of resources that evolve together, for example,
RDF Schema vocabularies and OWL ontologies. The advantage is that all resources
are in the same file because the redirection target cannot be configured separately for
each resource.

(11) 303 URI: for large-scale data sets that are likely to grow over time. One document
can be used for describing either each or all resources. When using 303 URI for an
ontology, it can reduce a client’s performance and cause higher latency.

120 Copyright © 2017, No Magic, Inc.

Note

The Concept Modeler imports and preserves the URI or IRI for every OWL class and
property from an OWL ontology file as the tagged value on the corresponding UML
class and property in the Concept Modeler. When exporting this particular model back
to OWL, the Concept Modeler will not apply the normal automatic URI/IRI generation
and preserve the URI or IRI from the original OWL ontology so that the classes and
properties can be used with their correct URIs/IRIs. The export URI style option also

has no effect on the preserved URI or IRIL

To select a concept model export URI style for a MagicDraw project:

1. Click Options > Project.

(X MagicDraw 18.0 - Example.mdzip [C:\git\git-svn-clone

‘ File Edit View Layout Diagrams

Options | Tools Analyz

DESE-D8H-5- -] Poe

r

~3§ e [i Diagrams] Environment
Containment Perspevctwes) 4
5 7 Q .,

| p— TE

Figure 121

The Concept Modeler's project options

2. Select General project options.

3. Click in the field next to URI Construction Strategy.

4. Select either Hash URI or 303 URI.

121

Copyright © 2017, No Magic, Inc.

-
Project Options

Specify general project properties
Specify the validation, project dependency checker options and other general project-specific options.

[RifGeneral project options General project options
B Diagram Info
—1-IE) Symbol styles ’E‘ 24 E‘ B2 B
i Bl Diagrams -
Use i18n property for text rendering in the diagrams true
Display All Pins in Diagrams true
El Concept Modeling
| E}-I0 Defined Elsewhere OWL Export Syntax OWL Functional -
; Default model properties OWL Import Catalog ; | ’
B¢ Code Engineering 4 IHMI—II N
- gi” Code Generation Add dasses to the glossary _
e Reverse Add association ends to the glossary 303 URL
-g2] Java Language Options : Add attributes to the glossary [] false
-g] C++Language Options Add enumerations to the glossary [] false
~g3] C# Language Options Add enumeration literals to the glossary [] false
-¢3] CORBA IDL 3.0 language op 2 uPDM
Architecture Framework <undefined>
SysML compliance mode (UPDM L1 compliance level) [7] false
Display solid control flows in SysML compliance mode [7] false v
URI Construction Strategy |
The preferred URI construction strategy, as defined in http: //www.w3.0rg/TR cooluris/.
Q.+ Type here to filter properties
< 1 »
OK] [Cancel] [Help]
~ >}

Figure 122 Selecting a URI construction strategy

5.6.3 OWL Export Folder

Every time you export a concept model to an OWL ontology, it will go into a default export
location. The default location is an OWL directory, which is created automatically next to the
project file. However, you can disable this default directory and enable the option that will allow
you to choose your desired destination folder whenever you export a concept model.

Selecting Always prompt for a file destination when exporting OWL in the Project Options
dialog allows the Concept Modeler to prompt for an export directory to store your «Concept
Model» every time you export one.

e Ifyou have previously selected an export location, a window will open showing the file
path of the former saved location.

e If'the previously saved export location is invalid, a message will show in the notification
window, the previously saved location will clear, and a prompt for a file destination will
open to a default location.

122 Copyright © 2017, No Magic, Inc.

e If'the previously saved export location no longer exists for any reason, the Concept
Modeler will revert to the default location and prompt for file destination.

Turning off this project option (default) allows the Concept Modeler to automatically remember
and select the last export location for your «Concept Model» without asking you first.

e I[fthe export location no longer exists, it will export your file to the default OWL
directory.

e [Ifthere is a valid saved export location, the Concept Modeler will export to the saved
export location.

e If'the saved export location is not valid and the default location exists, then the Concept
Modeler will revert to the default location and display an error message; otherwise, it will
create a new OWL folder and revert the saved export location back to the default
location.

e If'there is no saved export location and the default location exists, then the Concept
Modeler will set the export location to the default location; otherwise, it will create a new
OWL folder at the project location and set the export location to the default location.

When you would like to select multiple packages, you must right-click on one of the packages to
export. You will always receive a prompt for file destination which is applied to all of your
packages and the same file location will be loaded to all the packages. You are able to select
different file destinations for each package, but the software always loads the same starting
location for each package.

The error that appears in the Notification Window when trying to export the concept model to an
OWL ontology can be caused by entering an incorrect path name or the path name to the
previous export location does not exist anymore. If you encounter this type of error, you need to
open the fileExportPath tagged value in the model’s Specification dialog and correct the path
name, or select another location (Figure 7).

To prompt for a dialog that allows you to select a destination folder on export:

1. Click Options > Project on the main menu. The Project Options dialog will open (see
the following figure).

123 Copyright © 2017, No Magic, Inc.

=

B Project Options

Specify general project properties
Specify the validation, project dependency checker options and other general project-specific options.

’Q Type here to filter option:] Concept Modeling
B [General L= IE‘ o3> 4

% oncet M°d" B Concept Modeling
ependency Checker [} Always prompt for a file destination when exporting OWL true

g 2:_? ::; s QWL Export Syntax RDF /XML
.. [Numbering OWL Import Catalog
- [Suspect Links URI Construction Strategy Hash URI
- [Validation Add dlasses to the glossary false
E Diagram Info . | Add assodation ends to the glossary false
B[] Symbol styles i | Add attributes to the glossary false
Add enumerations to the glossary false
Add enumeration literals to the glossary false
Preferred annotation property

[«» Stereotypes = =
E}- [P Defined Elsewhere Always prompt for a file destination when exporting OWL
Turns off use of the default file path and opens a file explorer window on export of OWL files.

- [E5] Default model properties

Reset to Defaults

Figure 123 The OWL export destination folder option

2. Select General > Concept Modeling.
3. Select the check box Always prompt for a file destination when exporting OWL.
4. Click OK.

124 Copyright © 2017, No Magic, Inc.

5.6.4 Export a Concept Model to OWL

Before exporting a model to an OWL ontology, you can specify the file export path in the
Specification window. The fileExportPath property allows you to store the file export path as a
tagged value in the Concept Modeling package (see the following figure).

B Specification of Package Exa

Element tagged value specification
Select a tag and dlick the Create Value button to create new value for it.

e @ 2 Tags

E:' Example Profile: | <ALL> | Property:

b [B] Traceability ‘ 1

- Documentation/Hyperlinks 2 ez [BIE] -v 38 = | O fileExportPath : String —
Usage in Diagrams
Inner Elements
Relations

E‘ «» «deprecated» Select tag and dlick Create Value to create new value
i i O deprecatedReason for it.

m EI «» «File Export Path»

P =0
E «.» «Info»
i - O author

Constraints

A O version
: | E-«» «Model»

i i O namespacePrefix

) «» «NumberOwners»

: L. O customNumberingData
«» «Resource»

.- » «SDDSubsystem»

i i O subsystemnteractions
O subsystemResources
- «» «Subproperty Chain»

Edit Value
Close Forward

Figure 124 Specifying the file export path before exporting a concept model to an OWL ontology

To export a concept model to an OWL ontology:
1. Right-click on a concept model in the Containment tree.
2. Select Concept Modeling.
3. Select Export Concept Model to OWL.

125 Copyright © 2017, No Magic, Inc.

Containment

» 8 X

E R B

Create Element
Create Diagram
Create Relation
Specification

Go To

Open in New Tree
Related Elements
Refactor

Tools

Stereotype
Rename

Copy
Copy URL

Cut

Delete

Find...

Generate Report...
Concept Modeling

[MOF] Collect parameters
v

F2
Ctrl+C

Ctrl+V
Ctrl+X
Delete

€ % BOBE d-w- iR

package Case 02[Example 02]/|

QT’OOIS—
Rl L e X

1)

[Common

= Note v
abe Text Box v
B Anchor v

Person
(Case 02)

. .
+has name : String

/? Containment +
<2 Abstraction -
- Dependency

E=] Image Shape
Diagram Overview
= Diagram Legend
---- Horizontal Se...
Class Diagram

] Class -
[=] signal

[Tl Data Type v

T3 Port

—o Interface

/! Generalization v
/ Assodation v

Create Concept Model
Export Concept Model

Alt+Shift+N
Alt+Shift+0O

to OWL

Figure 125 The Export Concept Model to OWL menu

I IS TaCE T Vl

5.6.5 Use Path Variables to Export a Concept Model to an OWL Ontology

When you export a «Concept Model» stereotyped package, you must have the 'Always prompt
for a file destination when exporting OWL' set to true. Please refer to section 5.6.3 to see how to
enable this option. This new support allows for users to collaborate their projects with other team
members without having to keep in mind the exact destination of the file.

To use Path Variables to export the concept model to OWL:

1.

126

Find your Concept Model package you wish to export.
In your Containment Tree, right click on that package and select Concept Modeling and
then Export Concept Model to OWL.
Once clicking those, you should be prompted to select a folder from your directory.
Select the desired the location.
The Use Path Variables should pop up next.

a. Note: This popup will appear if and only if the selected destination folder has the
same path destination that is defined for path variable.

Copyright © 2017, No Magic, Inc.

VT P | 1

o o Use Path Variables

Would you like to use path variables?
Original path is "/Applications /CCM".
Available forms:

<coMest>

e

R

Show suggestion to use path variables

Use Selected Use Original Help

5. Now, you may do one of the following:
a. Select Use Selected to show the form highlighted in purple.
b. Select Use Original to show the path shown in quotes right above the highlighted
portion.
6. After clicking the button of your choice, you should have the file generated, exported,
and saved inside the directory path described.

5.7 Add a Concept Model to Teamwork Cloud and Export it as an OWL Ontology

You can collaborate with your team members in constructing a concept model. The collaboration
feature in MagicDraw allows you to add a concept model to the TWCloud server so that
everyone on the team can access the shared model, make changes to it, and commit them to the
server. You can easily update the model every time someone commits the changes to the server.

Once your model or project has been added to TWCloud, you can start a collaborative session.
You can save the model locally so that you can continue working on the model even though you
are not connected to the server (offline mode). This offline mode feature allows you to commit
the changes the next time you are online and connected to the server. (For more information
about offline projects, see http://docs.nomagic.com/display/MD184/Offlinet+modeling.)

Exporting either a concept model on your local machine or the one in TWCloud to an OWL
ontology works the same way. The Concept Modeler allows you to export it to the default
location, a previous location, or a selected destination folder. Prior to exporting the model, you
can enable the prompt to export OWL to a selected destination so that you can select a desired
location every time you export an OWL ontology.

5.7.1 Add a Concept Model to Teamwork Cloud

Teamwork Cloud (or TWCloud) is a new generation of server that is designed to work with large
amounts of data. TWCloud provides a modeling repository standard that can be

127 Copyright © 2017, No Magic, Inc.

http://docs.nomagic.com/display/MD184/Offline+modeling

transparently scaled from a single workstation to hundreds of servers. It enables multiple servers
to interconnect and share resources (see Teamwork Cloud Documentation for more information
about TWCloud).

Before adding the concept model to the TWCloud server, you must first log into the server.
When adding the concept model to the server, you need to select a category for the model,
because TWCloud groups projects into categories. If you do not select any category, your model
will be stored under the Uncategorized category by default. You can later move your model to
another category using Teamwork Cloud Admin (TWAdmin), which is the user interface of
TWCloud (for more information about moving a project category,

see http://docs.nomagic.com/display/TWCloud184/Moving+projects+from+one+category+to+an
other).

To log into the TWCloud server:
1. Click the main menu Collaborate > Login. The Login dialog will open.

Collaborate I Window Help

Recent Server Projects 4
Open Server Project Ctrl+Shift+0
Proie € y
e e b

ate Project Ctrl+U

_hanges to Serve Ctrl+K
odate Lock Information Ctrl+Shift+U
Legin L\\} Ctrl+Shift+L

Figure 126 Logging into the Teamwork Cloud server.

128 Copyright © 2017, No Magic, Inc.

http://docs.nomagic.com/display/TWCloud184/Teamwork+Cloud+Documentation
http://docs.nomagic.com/display/TWCloud184/Moving+projects+from+one+category+to+another
http://docs.nomagic.com/display/TWCloud184/Moving+projects+from+one+category+to+another

Login to a server

Enter user name, password
and server address to login to
the server.

User name: | Administrator
Password: sscsssssseee
Server name: |10.1.1.123
Server type: :Teamwork Cloud

[7] Auto Login to Server

[7] Use Secured Connection (SSL)

[OK] [Cancel] [Help

Figure 127 The Login to the Teamwork Cloud server dialog.

Type your username and password, for example, Administrator.
Enter the server address, for example, 10.1.1.123.

Select Teamwork Cloud as the server type.

Click OK. You will be connected to the server.

nhkwbd

Once you are logged into TWCloud, you can add a concept model to the server. The following
instructions use the concept model StereotypeDisjointSample as an example.

To add a concept model to the TWCloud server:
1. Open a concept model project.
2. Click the main menu Collaborate > Add Project to Server. The Add Project to Server
dialog will open.

129 Copyright © 2017, No Magic, Inc.

130

Collaborate | Window Help

Recent Server Projects

@ Open Server Project...
| Add Project to Server...
Project Usages %
Project Usage Map
Merge From...
2 Projects...
¥ | Update Project
Commit Changes to Server
Save Changes Locally
Unlock All
View Locked Elements
Update Lock Information
Login
Logout

»

Ctrl+Shift+ 0

Ctrl+U
Ctrl+K

Ctrl+Shift+U
Ctrl+Shift+L

Figure 128 The Add Project to Server menu allows project export to Teamwork Cloud.

"[®] Add Project to the Serve

Add Local Project to Teamwork Cloud

Enter a name for the project and dick Add to add the project to the server.
Entered comment will represent a version comment of the project.

Name:

[ShereotypedDisjointSample

Category:

Uncategorized

Comment:

Figure 129 Exporting a concept model to Teamwork Cloud.

Copyright © 2017, No Magic, Inc.

The name of the active concept model that you are going to add to the server will appear
in the dialog by default. The concept model StereotypeDisjointSample is used in this
example.

3. Select a category for your concept model. The default option is Uncategorized.
4. Click Add. The concept model will be added to the server.

To check if the concept model has been successfully added to TWCloud:
e Click the main menu Collaborate > Projects. The concept model that was added to the
server will appear in the Manage Projects dialog. The concept model used in this
example is StereotypeDisjointSample.

Manage Teamwork Cloud projects

Manage online and offiine server projects. For online projects, you can add a new or open, rename, or remove a
selected project. For offline projects, you can open or remove a selected server projects. Note that online server
projects are removed from a server, while offline server projects are removed only from your machine.

| " Online Projects |
s Bl 0o B 8

Name Last modified Branch

B Uncategorized
[ccMonTWC Friday, August 05, 2016 11:55:00 AM trunk
[Concept Modeling Profile Friday, August 05, 2016 11:33:41 AM trunk
[Inventory Control System Wednesday, August 03, 2016 2:48:25PM trunk

B StereotypedDisjointSample Friday, August 05, 2016 1:52:23 PM ok |

[0pen][Rename][Add][Remove]

[Cose | [Hep |

Figure 130 The Manage Projects dialog showing the exported concept model in Teamwork Cloud.

A concept model that has been added to TWCloud is saved on the server as a server project.
Users with the permission to work on server projects can access the concept model. Before
editing the concept model, you first need to lock it to prevent others from editing it at the same
time. (For more information on locking models for editing,

see http://docs.nomagic.com/display/MD184/Locking+model+for+edit.)

To open a concept model in TWCloud

131 Copyright © 2017, No Magic, Inc.

http://docs.nomagic.com/display/MD184/Locking+model+for+edit

N —

Log into the TWCloud server.

On the MagicDraw main menu, Click Collaborate > Projects to open the Manage

Projects dialog.

Select a concept model that you want to open and click Open. The concept model will open in
read-only mode.

To edit the model, right-click Data in the Containment tree, and select Lock > Lock Elements
for Edit Recursively. The concept model will be locked for editing.

If you make changes to the model, you need to commit them so that others can update the model
with your changes.

(See http://docs.nomagic.com/display/MD184/Committing+changes+to+CEDW for the
instructions to commit changes to TWCloud.)

5.7.2 Export a Concept Model in Teamwork Cloud to an OWL Ontology

When exporting your model to an OWL ontology, you can let the Concept Modeler export it to
the previous OWL export location or your selected directory. See 5.6.3 OWL Export Folder to
learn more about the OWL export location options.

If the option Always prompt for a file destination when exporting OWL in the Project
Options dialog is enabled, the Concept Modeler will always prompt you to select an OWL
export file location every time you export the concept model. Figure 6 below shows the prompt
for OWL export folder option is enabled (set as “true”).

132 Copyright © 2017, No Magic, Inc.

http://docs.nomagic.com/display/MD184/Committing+changes+to+CEDW

N —

Specify general project properties
Specify the validation, project dependency checker options and other general project-specific options.

’Q Type here to filter option: Concept Modeling

- [General B8 = = =X
g i Concept Modeling E Concept Modeling

D pependency Chedr [» true
. & General OWL Export Syntax RDF/XML
. [F Numbering OWL Import Catalog
- [Suspect Links URI Construction Strategy Hash URI
- [Validation Add dlasses to the glossary [7] false
E Diagram Info . | Add assodation ends to the glossary [7] false
&[0 Symbol styles i | Add attributes to the glossary [false
Add enumerations to the glossary [] false
Add enumeration literals to the glossary [] false
Preferred annotation property

5% Diagram

B «» Stereotypes == =
B [Defined Elsewhere Always prompt for a file destination when exporting OWL

1 B Default model properties Turns off use of the default file path and opens a file explorer window on export of OWL files.

Reset to Defaults

ok) [concs][o]

Figure 131 The prompt for an OWL export file destination option in the Project Options dialog.

You do not have to lock the concept model to export it to an OWL ontology. The following
steps explain how to export a concept model that you have added to TWCloud.

How to export a concept model in TWCloud to an OWL ontology

Right-click a concept model in the Containment tree.
Click Concept Modeling > Export Concept Model to OWL to export the concept model. Any
one of the following will happen:

o Ifthe prompt for export location is either enabled or disabled and you never export the
project to an OWL ontology before, a dialog will open to prompt you to select a desired
location. This location will be set as default.

e When saving new export location and package is unlocked, Concept Modeler will try to lock
it and show message in notification window. If locks cannot be obtained, due to package
being locked by another user, a message will show in notification window and export
location will not be saved, but concept model will still export.

133 Copyright © 2017, No Magic, Inc.

If the prompt for export location is enabled and you have exported a project before, and the
location is valid, a dialog will open prompting you to select either the previous location or a
new location.

If the prompt for export location is enabled and you have exported a project before, and the
location is invalid, an error will open in the Notification Window, and a dialog will open
prompting you to select a new location.

If the prompt for export location is disabled and you have exported a project before, and the
location is valid, the Concept Modeler will export it directly to the location.

If the prompt for export location is disabled and you have exported a project before, and the
export location is invalid, an error will open in the Notification Window, and the Concept
Modeler will prompt you to select another location.

When you would like to select multiple packages, you must right-click on one of the packages to
export. You will always receive a prompt for file destination which is applied to all of your
packages and the same file location will be loaded to all the packages. You are able to select
different file destinations for each package, but the software always saves the same starting
location for each package.

The error that appears in the Notification Window when trying to export the concept model to an
OWL ontology can be caused by entering an incorrect path name or the path name to the
previous export location does not exist anymore. If you encounter this type of error, you need to
open the fileExportPath tagged value in the model’s Specification dialog and correct the path
name, or select another location (Figure 7).

134

Copyright © 2017, No Magic, Inc.

[B%| Specification of Package Example

Element tagged value specification
Select a tag and dlick the Create Value button to create new value for it.

B B 2 Tags

03 Example Profile: | <ALL> v
" : Property:
:» Traceability [ek i

Documentation/Hyperlinks = oex |8 “E =v B8 =3 | O fileExportPath : String |)
Usage in Diagrams

) &
Inner Elements EI gez:;t:; dReason Value
Relations EI » <File Export Path» *file: /D: /Concept Model /ExportOWL"

! Etram Y fileExportPath = "file:/D:/Concept Model/ExportOWL"

él...«» «Info»
O author
O version
» «Model»
L © namespacePrefix
] «» «NumberOwner>»
e ® customNumberingData
EI - «Resourcex»

B-«» «SDDSubsystem»
O subsystemInteractions
O subsystemResources
i «Subproperty Chain»

[Remove Value][EditValue] N E]
Close Back Forward

Figure 132 The OWL export destination directory in the model's Specification dialog.

For more information about changing the OWL export location, see 5.6.4 Export a Concept
Model to OWL.

5.8 Automatically Generate Glossaries

The Concept Modeler can automatically generate glossaries for classes, association ends,
attributes, enumerations, and enumeration literals in a concept model upon importing an OWL
ontology. Additionally, it can generate glossary entries when those concept model elements are
created or edited in the diagram or the containment tree.

To set the options for automatic generation of glossaries:

1. Select Project from the Options menu.

135 Copyright © 2017, No Magic, Inc.

(¥ MagicDraw 18.0 - Example.mdzip [C:\git\git-svn-clone
‘ Fle Edit View Layout Diagrams | Options | Tools Analyze

DBEE-08 8 -%-& -9 Project r
d% Containment [A0 Diagrams] Environment
Containment PerSpevctlves » 4

ot Q -
= =

Figure 133 The Concept Modeler's project options

2. Select General project options.
3. Click on the corresponding checkbox for the option to enable or disable the following
options (by default, these options are disabled):
a. Add classes to the glossary.

b. Add association ends to the glossary.
c. Add attributes to the glossary.
d. Add enumerations to the glossary.
e. Add enumeration literals to the glossary.
4. Click OK.
Concept Modeling

lg2ls (=] =% oz

= Concept Modeling
Always prompt for a file destination when exporting OWL [| false

OWL Export Syntax RDF /XML
OWL Import Catalog

URI Construction Strategy Hash URI
Add dasses to the glossary [7] false
Add association ends to the glossary [7] false
Add attributes to the glossary [7] false
Add enumerations to the glossary [7] false
Add enumeration literals to the glossary [7] false

Preferred annotation property

Figure 134 The Concept Modeler's glossary options

5.9 Create a Glossary Table

In a concept model, a glossary table contains the names and descriptions of classes, association
ends, attributes, enumerations, and enumeration literals that are defined in the concept model.

136 Copyright © 2017, No Magic, Inc.

To create a glossary table:

1. Right-click the owning package.

Note The owning package must have the correct «Model» or «Concept Model» stereotype
for these menus to appear.

2. Select Concept Modeling > Create Glossary Table (see the following figure).

Note If a glossary table already exists in the owning package, the Create Glossary Table
menu option will not be available.

Containment
B wQ
Bl-[& Data
=
-7 Relations Create Element »
E A Class Create Diagram »
5 (B:((::Il:s:s Create Relation >
E 'Il?h(':lasspv-r —_— Specification Enter
Ex:riplel A GoTo Y
B-Eg UML Standard Profile [UM Open in New Tree
Eel-Eg Concept Modeling Profie Related Elements >
Refactor »
Tools »
Rename F2
M Copy Ctrl+C
Copy URL
(] Ctrl+V
¥ Cut Ctrl+X
i Delete Delete
Find...
Generate Report... 4
Concept Modeling 2 Create Concept Model Alt+Shift+N
Export Concept Model to OWL Alt+Shift+0
[MOF] Collect parameters Create Glossary Table
v

Figure 135 The Concept Modeler's Create Glossary Table menu

At least one glossary generation project option must be enabled. If all of the options are turned
off, the Create Glossary Table menu option will be disabled.

137 Copyright © 2017, No Magic, Inc.

Create Concept Model Alt+Shift+N
Export Concept Model to OWL Alt+Shift+0

Figure 136 The glossary creation menu is disabled

5.10 Rebuild a Glossary Table

When the glossary-generation options change, one may want to rebuild existing glossary tables
to only contain the specified kinds of entries.

To rebuild an existing glossary table for a concept model:

1. Right-click on the existing concept modeling generated glossary.
2. Select Concept Modeling.
3. Select Rebuild Glossary Table.

Note The owning package must have the correct «Model» or «Concept Model» stereotype
and a glossary table must not already exist for this menu item to appear.

138 Copyright © 2017, No Magic, Inc.

Containment

5w Q

B-[Eg Concept Modeling Pr

Bl-{Z) Data
B Example «ConceptModel>
- Relations

Standard Profilg Open Ctrl+Enter
Open in New Tab Enter
Create Relation »
Specification
GoTo »
Open in New Tree
Related Elements »
Refactor »
Tools »
Rename F2

M Copy Ctrl+C

Copy URL

Paste Ctrl+V

Cut Ctrl+X

Delete Delete

E R B

Print... Ctrl+P

Find...

Generate Report... 4

Concept Modeling » Create Concept Model Alt+Shift+N
v Export Concept Model to OWL Alt+Shift+0

Rebuild Glossary Table

Figure 137 The Concept Modeler's Rebuild Glossary Table menu

Note At least one glossary generation project option must be enabled for the Rebuild
Glossary Table menu item to be enabled, otherwise it will look like the last menu item
in the following figure.

Create Concept Model Alt+Shift+N
Export jel to OWL Alt+Shift+0
Reb slos Table (Nothing selecte Project Options
Figure 138 The Rebuild Glossary Table menu is disabled
139 Copyright © 2017, No Magic, Inc.

5.11 View a Glossary
The generated glossary is created in the package of the owning concept model.

To view a glossary’s contents:

e Double-click the glossary in the Containment tree.

Containment

B w Q

B Data

L:JE] Example «ConceptModel»
-7 Relations

#-E= A Class

#--E C Class
#-E D Class

B[R Concept Modeling Profile [Concept Modeling Profile.mdzip]

Figure 139 A generated glossary in the Containment tree

v @ Example Glossary X ’
& P % [AddNew [AddExistng W Delete By Removei
J Term J
The A Class.
1 | E Aclass
An Association End.
2 O Assocendb
The B Class.
3 | E BClass
The C Class.
4 | EcCdlass
The D Class.
5 | EDClass

Figure 140 A Concept Modeler's glossary table

Editing the glossary name or a description in the glossary will automatically update the
corresponding element in the concept model.

Furthermore, clicking the name of a class, association end, attribute, enumeration, or
enumeration literal will display the provided element’s description.

140 Copyright © 2017, No Magic, Inc.

n [
A .B Asseciation End r R)

(Glossary Test) Description em X
a property B Association End (Glossary Test Glossary):

An association end on Class B.

Figure 141 A element’s description in the Concept Modeler

For additional information on how to manually create, delete, and update elements in the
glossary, please refer to the user manual for MagicDraw 18.0 SP4 or higher.

5.12 Create a Property Holder

To create a property holder (UML class stereotyped as «Anythingy»):
1. Create a UML class (named “Thing” below).

[]
Thing
(Case 1

Figure 142 A UML class

2. Right-click on the created class.
3. Click Stereotype.

141 Copyright © 2017, No Magic, Inc.

s

A
— s
[J Thing 2

a Specification Enter
Symbol Properties Alt+Enter
Create Diagram »
Go To »

B Select in Containment Tree Alt+B
Related Elements »
Refactor »
Tools »
Stereotype \
Conceptual Modeling »

v

Figure 143 The Stereotype shortcut menu of the class

4. Type “Anything” in the search box.
5. Select the stereotype “Anything”.
6. Click Apply.

O Thing ;

(Case 1,
w @ Stereotype: Anything

E—— Anything [Class) —

' (press ~_ to select)

Apply Clear All Order —

Figure 144 Selecting the Anything stereotype for the class

142 Copyright © 2017, No Magic, Inc.

5.13 Universal Quantification Constraints for an Existing Property

In the concept modeling interpretation of UML, redefining an existing property creates a
universal quantification constraint in the context of the owning class (see section 3.6 Universal
Quantification Constraint). This interpretation is based on {redefines} in UML, which allows for
more specific constraints to be added to an existing property without defining a new one.

5.13.1 Add a Universal Quantification

To add a universal quantification:
1. Drag and drop a property to be redefined (for example, “has” from “Person”) onto a
redefining property (for example, “has” from “Dog Lover”).

Note The property is owned by the class at the opposite end of the association. Additionally,
the target can have the same name as the source or be unnamed. The resulting
redefinition’s multiplicity is adjusted to conform to the multiplicity of the dragged,
redefined property.

Person has Pet

(Case 22 0.*, (Case 22

Dog Lover Drag and Drop action |
(Case 08) 1.+ (Case 08)

Figure 145 Dragging the property to be redefined to the redefining property

2. Click Create universal quantification.

Person
(Case 22
Dog Lover
(Case 08) 1+ (Case 08)
Create subproperty

Create existential quantification

Create universal quantification

Figure 146 The Create universal quantification shortcut menu

143 Copyright © 2017, No Magic, Inc.

5.13.2 Remove a Universal Quantification

To remove a property redefinition from a property:

1.

1as
-

Pet
(Case 22)

Dog
(Case 22)

Edit Name
Specification
Symbol Properties
Go To

Select in Containment Tree
Related Elements
Refactor

Tools

Show Role

Edit Compartments
Stereotype

Owned By
Navigable

None

Shared

Composite
(Unspecified)

0

0.1

0.*

1

1.%

AutoStyler
Concept Modeling

Enter

Alt+Enter
»

Alt+B

Right-click a redefining property.
2. Select Concept Modeling.
3. Select Remove universal quantification.

Make property sufficient to classify an instance

Remove universal quantification

Figure 147 Removing a universal quantification constraint from a property

5.14 Subproperties

In the Concept Modeling interpretation of UML, subsetting a property creates a subproperty
when the subsetting property has a different name than the subsetted property (see section 3.4
Subproperty). UML provides a {subsets} constraint that asserts that the values within a

144

Copyright © 2017, No Magic, Inc.

subsetting property are also in the set of values within a subsetted property. The concept
modeling profile interprets a subproperty as a subsetting property that has a different name.

5.14.1 Add a Subproperty

To add a subproperty:
1. Drag and drop a subsetted property (for example, “consists of” from “Soccer Team™)
onto a property (for example, “composed of” from “Futsal Team”).

Note The property is owned by the class at the opposite end of the association. Additionally,
the target can have the same name as the source or be unnamed. The resulting
redefinition’s multiplicity is adjusted to conform to the multiplicity of the dragged,

subsetted property.
Soccer Team consists of | Soccer Player
(Case 05) 5 11 (Case 05)

I : Drag and Drop sctionl
Futsal Team gomposed g7 | Futsal Player

(Case 05) 3 (Case 05)

pu

2. Click on Create subproperty.

. | I B
Soccer Team L 0"SiStS 0T 1s . or Player
(Case 05) 5.1 (Case 05)
Futsal Team compoy——— - —=
(Case 05) Create subproperty

Create existential quantification

Create universal quantification

Figure 148 Dragging a subsetted property to another property to create a subproperty

5.14.2 Remove a SubProperty

To remove a property subsetting from a property:
1. Right-click a subsetting property (for example, “composed of” from “Futsal Team”).
2. Select Concept Modeling > Remove subproperty.

145 Copyright © 2017, No Magic, Inc.

its of | Soccer Player
5 11 (Case 0S)

(

sed of | Futsal Player

g (Case 05)

4 Edit Name

Specification Enter

Symbol Properties Alt+Enter

GoTo »
B Select in Containment Tree Alt+B

Related Elements »

Refactor »

Tools »
¥ | Show Role

Edit Compartments

Stereotype

Owned By 4
¥ | Navigable
v | None

Shared

Composite

(Unspecified)

0

0.1

0.%

1

15

*

AutoStyler >

Concept Modeling ’ Make property sufficient to classify an instance

Remove subproperty

Figure 149 Removing a property subsetting from a property

5.15 Create an Existential Quantification (Qualified) Constraint for a Property

In the Concept Modeling interpretation of UML, subsetting a property without giving the new
property a different name (or leaving off the new property name altogether) creates an existential
quantification constraint (see section 3.5 Existential Quantification Constraint). As {subsets}
with an omitted name is not well defined in UML, it is used in the Concept Modeling profile to
express that a subset of values must meet the stated cardinality and type constraints of the
subsetting property.

146 Copyright © 2017, No Magic, Inc.

5.15.1 Add an Existential Quantification

To add an existential quantification constraint to a property:
1. Drag and drop a subsetted property (for example, “has” from “Person’) onto the
cardinality of the property that will subset another property (for example, “unnamed”
from “Dog Caretaker”). Note that the target can have the same name as the source or be

unnamed.

Note The resulting subsetting property’s multiplicity is adjusted to conform to the dragged,
subsetted property, and to have a minimum cardinality of at least one.

Person has Pet
(Case 22 0.*: (Case 22
Dog Caretaker ' Doo I

Drag and Drop actionl
x T T

(Case 08) | 1 ,!

Figure 150 Dragging a subsetted property to a cardinality of another property to create an existential quantification constraint

2. Right-click the subsetted property and select Create existential quantification.

Person

(Case 22

Dog Lover
(Case 08) P (Case 08)

Create subproperty

Create existential quantification

Create universal quantification

Figure 151 The Create existential quantification shortcut menu

147 Copyright © 2017, No Magic, Inc.

5.15.2 Remove an Existential Quantification

To remove an existential qualification constraint:

1.

Right-click a subsetting property.
2. Select Concept Modeling.
3. Select Remove existential quantification.

has

0.*

Pet
(Case 22)

Dog
(Case 22)

Edit Name
Specification
Symbol Properties
Go To

Select in Containment Tree
Related Elements
Refactor

Tools

Show Role

Edit Compartments
Stereotype

Owned By
Navigable

None

Shared

Composite
(Unspecified)

0

0.1

0.*

1

1ns

AutoStyler
Concept Modeling

Enter

Alt+Enter

Alt+B

»

n

Make property sufficient to classify an instance

Remove existential quantification

Figure 152 The Remove existential quantification shortcut menu

148

Copyright © 2017, No Magic, Inc.

5.16 Go to Redefined Property

It is often useful to go to a redefined property to see its original definition. There are two ways to
do so. The first is to go to the redefined property in the Containment tree. The second is to go to
the redefined property on a diagram.

5.16.1 Go To Redefined Property in Containment Tree

To go to a redefined property in the Containment tree:
1. Right-click a redefining property, its multiplicity, or its redefinition.

s;lls to Store
0..* | (Game Collecting)

AN

This constrains a
property’'s type.

= Game Store
z 1 (€ - e Collecting)
] \ 0.. [B ,E' L
{redefines sells to}
] [| [§3‘

Figure 153 A redefining property in Concept Modeler

2. Select Go To > Redefined property in containment tree.

0.° 'l“ (Game Collecting)

edefi lis t
{redefines se Edit Name

Specification Enter

£ Symbol Properties Alt+Enter

0.2

{redefines trades |/ GoTo 4 Usage in Diagrams »

B Select in Containment Tree Alt+B E Type Game Store

Related Elements > Hyperlinks »

lects} Refactor » Redefined property on diagram »
Tools » Redefined property in containment tree

Figure 154 The Redefined property in containment tree shortcut menu

149 Copyright © 2017, No Magic, Inc.

The focus will jump to the redefined property in the containment tree, as shown in the diagram
below.

Containment [EIE Se
B w Q -
B@ Data ~

B Game Collecting «ConceptModel»
E--2 Relations
& Cartridge
B2 Collector
-2 Relations
&3-[@] Hyperlinks
@ +trades with : Game Collecting::Collector [i
-
i @ +collects : Game Collecting::Thing [1..%]
1= Collectors Edition
1--= Company
1= Game Store

+1...[%1

+1

Figure 155 The Concept Modeler highlights the redefined property in the Containment tree

5.16.2 Go To Redefined Property on Diagram

To focus on a redefined property on a diagram:
1. Right-click a redefining property, its multiplicity, or its redefinition.

1

sells to Store |
0. | (Game Collecting)
This constrainsa | T
property’s type.
‘ = Game Store
z 1 (€ e Collecting)
0 . ,@ !

[\ & p
{redefines sells to}
B m B

Figure 156 A redefining property in the Concept Modeler

2. Select Go To > Redefined property on diagram and choose a diagram.

150 Copyright © 2017, No Magic, Inc.

Edit Name
Specification Enter
Symbol Properties Alt+Enter
GoTo » Usage in Diagrams »
% Select in Containment Tree Alt+B = Type Game Store
Related Elements » Hyperlinks »
Refactor » Redefined property on diagram » Game Collecting l
Tools » Redefined property in containment tree = :
== T |Game Collecting [Game Collectl‘ng}]l

Figure 157 The Redefined property on diagram shortcut menu

Focus will jump to the redefined property on the chosen diagram.

[] Skl
sells to [§3 Store
(¢ e Collecting)
This coenstrains a
property’s type. [
2 Game Store
0" (Game Collecting) |
{redefines sells to}

Figure 158 The Concept Modeler highlights the redefined property on the selected diagram

5.17 Go To Subsetted Property

It is often useful to go to a subsetted property to see its original definition. There are two ways to
do so. The first is to go to the subsetted property in the Containment tree. The second is to go to
the subsetted property on a diagram.

5.17.1 Go To Subsetted Property in Containment Tree

To focus on a subsetting property in the Containment tree:
1. Right-click on the subsetting property, its multiplicity, or its {subsets}.

Windshield Manufacturer
1.* (Case 20)
{suffi cnent}.
{subsets has contract wrth} ,,E]

L

Figure 159 A subsetting property in the Concept Modeler

151 Copyright © 2017, No Magic, Inc.

2. Select Go To > Subsetted property in containment tree.

o
|

{subsets has contract

1.8

Windshield Manufacturer

{sufficient}

Figure 160 The Subsetted property in the Containment tree

\ GoTo

Tools

Edit Name
Specification

Symbol Properties

Related Elements
Refactor

B Selectin Containment Tree

Enter

Alt+Enter

Alt+B

LA

=

Usage in Diagrams »
Type Windshield Manufacturer

Hyperlinks »
Subsetted property on diagram »
Subsetted property in containment tree |

The focus will jump to the subsetted property in the Containment tree.

Containment [EJNE 4
B Q -
B[Case 05 «ConceptModel» =

B0 Case 06 «ConceptModel»
B}-F] Case 07 «ConceptModel»
--D Case 08 «ConceptModel»
-~E| Case 09 «ConceptModel»
-~E| Case 11 «ConceptModel»
B} Case 12 «ConceptModel»
B}-E Case 13 «ConceptModel»
B} Case 14 «ConceptModel»
B}-F Case 15 «ConceptModel»
B}-F] Case 16 «ConceptModel»
B}-F Case 17 «ConceptModel»
--D Case 18 «ConceptModel»
-~E| Case 19 «ConceptModel»
[—]D Case 20 «ConceptModel»

- Relations

- Car Manufacturer
B Manufacturer

| E[2] Hyperiinks

-] Case 21 «ConceptModel»

< |

1

m

e B +has contract with ; Case 20::Ma

EIE Steering Wheel Manufacturer
&= Windshield Manufacturer

Figure 161 The Concept Modeler highlights the subsetted property in the Containment tree

152

Copyright © 2017, No Magic, Inc.

5.17.2 Go To Subsetted Property on Diagram

To focus on a subsetted property on a diagram:

1. Right-click on the subsetting property, its multiplicity, or its {subsets}.

Windshield Manufacturer

|

1.* (Case 20)
{su fﬁcient}.

" =
{subsets has contract with} |-
] []

Figure 162 A subsetting property in the Concept Modeler

2. Select Go To > Subsetted property on diagram and select a diagram.

Edit Name

Specification Enter

Symbol Properties Alt+Enter

GoTo 4 Usage in Diagrams »

Select in Containment Tree Alt+B E Type Windshield Manufacturer

Related Elements » Hyperlinks »

Refactor » Subsetted property on diagram » Example 20 |

Tools » Subsetted property in containment tree

Figure 163 The Subsetted property on diagram shortcut menu

The focus will jump to the subsetted property on the chosen diagram.

X S|
-has contract with |0. -

Manufacturer |
(Case 20)

FaY

» con

tract with}

Car Manufacturer |

(Case 20) 1F

{sufficient}
{subsets has contract with}

Windshield Manufacturer
(Case 20)

Figure 164 The Concept Modeler highlights the subsetted property on the selected diagram

153

Copyright © 2017, No Magic, Inc.

5.18 Create a Necessary and Sufficient Condition
5.18.1 Add a Sufficient Condition
In the Concept Modeling interpretation of UML, a property that has the {sufficient} constraint

applied to it indicates that when an instance satisfies the multiplicity and type constraints for the

property’s values, not only is a necessary condition to be an instance of the class
met, a sufficient condition is also met (see section 3.7 Necessary and Sufficient Condition).

To create a sufficient condition:

1. Right-click the association end for the property to which the {sufficient} constraint will
be applied (unnamed from “Dog Owner”). Remember that the property is owned by the
class at the opposite end of the association.

2. Select Concept Modeling > Make property sufficient to classify an instance in the
shortcut menu.

Person
(Case 22)

has

Dog Owner
(Case 22)

0.~

Pet
(Case 22)

Figure 165 Make property sufficient to classify an instance shortcut menu

154

1.*

Dog
(Case 22)

{redefines ha

Edit Name
Specification
Symbol Properties
GoTo

Select in Containment Tree
Related Elements
Refactor

Tools

Show Role

Edit Compartments
Stereotype

Owned By
Navigable

None

Shared

Composite
(Unspecified)

0

0.1

0.*

1

15

AutoStyler
Concept Modeling

Enter

Alt+Enter

Alt+B

»

Make property sufficient to classify an instance

Remove universal quantification

Copyright © 2017, No Magic, Inc.

The {sufficient} constraint is toggled on for the property.

Person has Pet
(Case 22) 0.* (Case 22)
Dog Owner Dog
(Case 22) 1.+ | (Case22)
{sufficient}

{redefines has}

5.18.2 Remove a Sufficient Condition

To remove a sufficient condition on a property:

1. Right-click the association end for the property to which the {sufficient} constraint will

be removed (unnamed from “Dog Owner”).

2. Select Concept Modeling > Make property insufficient to classify an instance.

155

Copyright © 2017, No Magic, Inc.

Person
(Case 22)

has Pet

Dog Owner
(Case 22)

(Case 22)

Dog

17| (Case22)
{sufficient}
{redefines has

Edit Name

Specification Enter

Symbol Properties Alt+Enter

GoTo »
B Selectin Containment Tree Alt+B

Related Elements »

Refactor »

Tools »
¥ | Show Role

Edit Compartments

Stereotype

Owned By »
v | Navigable
¥ | None

Shared

Composite

(Unspecified)

0

0.1

0.*

1

v 1.*

*

AutoStyler »

Concept Modeling > Make property insufficient to classify an instance

Remove universal quantification

Figure 166 Make property insufficient to classify an instance

5.19 Working with Subclasses

Users may want to make a set of existing subclasses disjoint, overlapping, complete, or
incomplete. The Concept Modeler provides a quick method for adding a generalization set to
your concept model and setting its properties.

Note

156

Creating generalization sets through the Concept Modeler is only applicable to
generalization relationships connected together through the shared target
notation. The manual method of creating generalization sets will still be
available through the Specification window. Please see the MagicDraw user
guide for additional information.

Anonymous unions are incompatible with {incomplete} because an instance
can only be classified by one or more classes in a union, not the union itself.

Copyright © 2017, No Magic, Inc.

5.19.1 Make Subclasses Disjoint

To make subclasses disjoint:

1. Right-click on the generalization relationship.
2. Select Concept Modeling.
3. Select Make subclasses disjoint.

Manufacturer

(Case_23)

Steering Wheel Manufacturer
(Case 23)

Symbol Properties

Related Elements

Tools

Generalization Set

Ungroup Tree
AutoStyler
Concept Modeling

Alt+Enter

Figure 167 Make subclasses disjoint shortcut menu

5.19.2 Make Subclasses Complete

To make subclasses complete:

Make subclasses disjoint

Make subclasses complete

1. Right-click on the generalization relationship.
2. Select Concept Modeling.
3. Select Make subclasses complete.

Manufacturer
(Case_23)
pay

Steering Wheel Manufacturer
(Case 23)

Car M

Symbol Properties

Related Elements

Tools

Generalization Set

Ungroup Tree
AutoStyler
Concept Modeling

Alt+Enter

» lake

Figure 168 Make subclasses complete shortcut menu

157

Make subclasses disjoint

Make subclasses complete

Copyright © 2017, No Magic, Inc.

5.19.3 Make Subclasses Overlapping

To make subclasses overlapping:

1. Right-click on the generalization relationship.
2. Select Concept Modeling.

3. Select Make subclasses overlapping.

Manufacturer
(Case 23)

=

|

Steering Wheel Manufacturer
(Case 23)

Car M fact

(Case 23)

[]
?co mplete, disjoint} =
= g

Specification

Symbol Properties

GoTe

Select in Containment Tree
Related Elements

Refactor

Tools

Stereotype

Ungroup Tree

AutoStyler

Concept Modeling
v

Enter

Alt+Enter
»

Alt+B

Figure 169 Make subclasses overlapping shortcut menu

Make subclasses overlapping

Make subclasses incomplete

Note e Setting the {incomplete, disjoint} constraint back to the default setting of

{incomplete, overlapping} will result in the removal of the generalization set,
which has the same meaning.

e Starting from MagicDraw 18.3, the Concept Modeling menu is disabled when
you right-click a tree or a generalization set on a diagram because the menu
options for creating a generalization set have been moved outside the Concept
Modeling menu (see the following menu example).

158

Copyright © 2017, No Magic, Inc.

package Case 28] Example 28 U
Manufacturer
(Case 28)
Symbol Properties Alt+Enter
Steering Wheel Manufacturer Car Manufi Related Elements »
(Case 28) (Case |
Refactor »
Tools »

Generalization Set
Ungroup tree

Subclasses Complete
Subclasses Disjoint

AutoStyler »

Figure 170 The Concept Modeling menu is disable in MagicDraw 18.3

e Starting from MagicDraw 18.3, the Concept Modeling menu options (i) Make
subclasses complete and (i) Make subclasses disjoint have been replaced with
Subclasses Complete and Subclasses Disjoint respectively (see the following
figure).

159 Copyright © 2017, No Magic, Inc.

package Case 28] Example ZSU

Manufacturer
(Case 28)

complete, disjoint},

set1
Symbol Properties Alt+Enter
Steering Wheel Manufacturer Car Manuf
(Case 28) __(Case Related Elements 4
Refactor 4
Tools 4

Generalization Set
Ungroup tree

Subclasses Complete
Subclasses Disjoint
AutoStyler »

Figure 171 The Concept Modeling menu options

The following is how the menu options work:

(1) When you make subclasses complete, there is a check mark before
Subclasses Complete. If it is not complete, there is no check mark before
the menu item.

(i) When you make subclasses disjoint, there is a check mark before
Subclasses Disjoint. If it is not disjoint, there is no check mark before the
menu item.

5.19.4 Make Subclasses Incomplete

To make subclasses incomplete:

1. Right-click on the generalization relationship.
2. Select Concept Modeling.
3. Select Make subclasses incomplete.

160 Copyright © 2017, No Magic, Inc.

Manufacturer
(Case 23)

[+

[]
complete, disjoint}
o}
[

|

Steering Wheel Manufacturer
(Case 23)

Car Manufacty
(Case 23)

Specification

Symbol Properties

GoTo

Select in Containment Tree
Related Elements

Refactor

Tools

Stereotype

Ungroup Tree

AutoStyler

Concept Modeling
v

Enter

Alt+Enter
»

Alt+B

Figure 172 Make subclasses incomplete

Make subclasses overlapping

Make subclasses incomplete

Note Setting the {complete, overlapping} constraint back to the default setting of
{incomplete, overlapping} will result in the removal of the generalization set, which
has the same meaning.

5.20 Working with Annotations

UML comments can be stereotyped as an « Annotation», then tied to a property that is
stereotyped as an «Annotation Property». When a concept model is exported to OWL, these

stereotyped UML comments become OWL annotations.

There are two ways that a user can add annotation properties to annotations: by importing an
OWL ontology that defines annotation properties, or by defining a property and stereotyping it as
an «Annotation Property».

5.20.1 Import an Ontology that Defines Annotation Properties

To import an ontology into an existing concept model:

1. Select File > Import From > OWL Ontology File.
2. Browse and select an OWL Ontology file.

161

Copyright © 2017, No Magic, Inc.

Figure 173 Importing an OWL ontology file to the Concept Modeler

162

m Edit View Layout Diagrams Options Tools Analyze Collaborate Window Help
@ New Project... Ctrl+Shift+N # ~ Perspective: :FuH Featured v : @ Create Diagr;
Ii Z)peinrt.)ject... Etr:+§) L -' Example:)-' Bamgle X |
ave Project trl+ . : :
= SavePro;ectAs... * | st ‘B0 TE A E.—
Close Project] T =] package Exampl
& Close All Projects Ek e
Open Element from URL L X «Propi;‘ti)':;
Model Execution & Integration... Concept Modeling (Example Exz
Use Project » L3 Annotation -
Import From b Another Project...
Export To . CSV File
Share Packages... UML 2.1/2.5 XMI File
Save asImage... MagicDraw Native XML File
0 Print... Ctrl+P OWL Ontology File b Alt+Shift+I |
& Print Preview Eclipse UML2 XMI File 4
B Print Options... Enterprise Architect UML 2.1 XMI 2.1 File
Project Properties Requirements Interchange Format (ReqIF) File
By Switch Projects » MOF XMI File
B 1 C\Pr.otationImportSample.mdzip EA;:‘/;:;‘?\;: ot
B': 2 C:\Pr...typedDisjointSample.mdzip J S T
= 3 C\Pr...udies\Magic Library.mdzip
B 4 C\Pr..es\model validation.mdzip | “
Exit

3. Annotation properties imported from the OWL ontology will be displayed in the
Containment tree under Imported Ontologies as shown in the following figure.

Copyright © 2017, No Magic, Inc.

=) Data

B+ Imported Ontologies

- 22-rdf-syntax-ns «Model»

=~ AnnotationVocabulary «Model»

£+~ Annotation Property Holder «Resources «PropertyHolders
— @ +definition origin «AnnotationProperty»
— @ +usage note «AnnotationProperty»

— @ +term origin «AnnotationProperty»

— @ +abbreviation «AnnotationProperty»

— & +name origin «AnnotationProperty»

— @ +modified by «AnnotationPropertys

— @ +synonym «AnnotationProperty»

— @ +adapted from «AnnotationPropertys

— @ +modified on «AnnotationPropertys

'— @ +explanatory note «AnnotationProperty»
.| AnnotationVocabulary

. AnnotationVocabulary Glossary

-0 core «Model»

1 rdf-schema «Model»

- SpecificationMetadata «Model»

- terms «Model»

= Annotation Property Holder «Resource» «PropertyHolders
E LicenseDocument «Resources

™ terms Glossary

B XMLSchema «Model»

Figure 174 The imported ontology file is highlighted in the Containment tree

5.20.2 Define an Annotation Property

To define an annotation property for a property:

163

1.
2.

Create a UML property.

Open the property’s Specification by double-clicking the property in a diagram or the
Containment tree.

In the Specification window, select Annotation Property under the Applied
Stereotype option.

Click Apply.

Copyright © 2017, No Magic, Inc.

Specification of Property properties

Specify properties of the selected Property in the properties specification table. Choose the Expert or All options from the Properties
drop-down list to see more properties.

ol 2 a
o] 28 lm! B By Properties: | Standard v

Documentation/Hyperlinks
Usage in Diagrams B Property
Name b

Type E A [Example]
Visibility public

Default Value

Owned By E B [Example]

' Rhopicdsireotpe |
[ety e stereotype:

Multiplicity
Is Read Only AnnotationProperty [Property] O
Is Static «» autoGeneratedName [NamedElement]
::ggr:rg,aet;on «» CustomImageHolder [Element]

«» deprecated [Element]
To Do «» derivedPropertySpecification [Property]
«» Equivalent Property [Property]
«» grouped [Property]
[7] «» hasGroupName [Property]
[7] «» HyperlinkOwner [Element]

|Applied Stereotype [7] «» InvisibleStereotype [Element]
Stereotypes applied to this element. [7] «» metaProperty [Property]

(press Ctrl+Space to select) |
’Q Type here to filter properties [Apply][Clear All ” Order ‘

[Close] ‘ Back l Forward [Help

Figure 175 Applying an Annotation Property stereotype to a property

5.20.3 Apply an Annotation Stereotype

To apply an annotation stereotype to a comment:

1. Create a UML Comment containing whatever text you like, and anchor it to the
element to be annotated.

2. Double-click the Comment to open its specification.

In the specification window, select Annotation under the Applied Stereotype option.

4. Click Apply.

(O8]

164 Copyright © 2017, No Magic, Inc.

85 Specification of Comment T

Specification of Comment properties

Specify properties of the selected Comment in the properties specification table. Choose the Expert or All options from the Properties
drop-down list to see more properties.

@ e This represents any item physical or electronic...

(Y This represents any item physical or ele §IFES T % oy abc Pr] _
: £ : operties: | Standard v
Documentation/Hyperlinks LIRS it

Usage in Diagrams B Comment
Inner Elements Owner 3 Library
Tags [} Applied Stereotype
- stereo
; Constraints Annotated Element type:
L Traceability

[¥] «» Annotation [Commcnt
Body
0
[[] «» CustomImageHolder [Element]
«» deprecated [Element]
«» HyperlinkOwner [Element]
Documentation «» InvisibleStereotype [Element]
«» migrationLog [Element]
«» NumberOwner [Element]
[E) ReportTemplate [Comment]
[8] SmartPackage [Comment, Package]
«» Subproperty Chain [Element]

Applied Stereotype
Stereotypes applied to this element. (press Ctrl+Space to select)

[Apply || Clearal | orcer

Back ‘ i Forward] [Help]

Figure 176 Applying Annotation stereotype to a comment

5.20.4 Associate an Annotation Property with an Annotation

The UML comment specification dialog allows you to select a particular kind of annotation
property for each annotation.

To select a type of annotation property for an annotation:

1. Double-click an annotation on the diagram pane. The Specification window of the
selected annotation will open (see the following figure).

165 Copyright © 2017, No Magic, Inc.

Element tagged value specification
Select a tag and dlick the Create Value button to create new value for it.

& IO 2 Tags
[This represents any item physii Profile: | <ALL>
. : Pr :
Documentation/Hyperlinks [v] ey
4] Usage in Diagrams B 8% »Eg |[E' =v B8 = IO annotationProperty : AnnotationProperty[1] IE]
Inner Elements

m E] «% «Annotation» Sy ———
Constraints Y
)| Traceability Bl «» «deprecated»
- O deprecatedReason
«» «NumberOwner»
O customNumberingData
- «» <«Subproperty Chain»

Create Value | [Edit Value]
s

[Close] [Back } [Forward] [Help]

Figure 177 Selecting an annotation property tagged value

166 Copyright © 2017, No Magic, Inc.

2. Select Tags on the left-hand side list and select annotationProperty.
3. Click Create Value. The Select Property dialog will open (see the following figure).

Select, search for, or create elements

Search for an element by using list or tree views. To find an element type text
or wildcard (¥,?) into the "Search by Name” input field. Search elements by
their qualified names or use camel case when searching if the appropriate mode
is enabled.

IQ'Search by Name
g Tree | EE List |

B s = =X 89 matches foundwith filter applied

o (79 <UNSPECIFIED >
B[Data (89 matches)

B[] Imported Ontologies (39 matches)
El-[] AnnotationVocabulary (10 matches)
=S E Annotation Property Holder (10 matches)

+definition origin

+usage note

+term origin

+abbreviation

+name origin

+modified by

+synonym

+adapted from

+modified on
o
+-[] core (10 matches)
+-[7] rdf-schema (4 matches)

[SpedificationMetadata (42 matches)
#-[] terms (16 matches)

Apply Filter (Ctrl+Space) ¥ Creation Mode

Figure 178 Selecting explanatory note as the annotation property tagged value

167 Copyright © 2017, No Magic, Inc.

4. Select an annotation property and click OK. The selected annotation property will be
created for the annotation (see the following figure).

Element tagged value specification
Select a tag and dlick the Create Value button to create new value for it.

B B 2 Tags

This represents any item physical| ol [<ALL> v} -
-[&] Documentation/Hyperlinks : '
Usage in Diagrams 25 =¥ & “El =y 89 = ’ © annotationProperty : Anno...‘ E]

Inner El ts ;
ﬁ emen EI---«_» «Annotation» Value
X annotationPrope = explanatory note
Constraints él..«» Seprecate d» perty - - @ +explanatory note [Imported Ontolog...

Traceabiity i O deprecatedReason
-« «NumberOwner»

- customNumberingData
B- «» «Subproperty Chain»

[Remove Value | [Edit Value =

] { Forward] [Help]

Figure 179 Types of annotation property available in the Specification window

168 Copyright © 2017, No Magic, Inc.

In this example (see the preceding figure), the annotation property explanatory note is a UML
property stereotyped with «Annotation Property».

5.20.5 Show Annotations on the Diagram

A diagram may contain annotations for a class or a property. They may not appear on the
diagram pane, but you can see them in the Containment tree. The following steps will show you
how to make them appear on the diagram.

To show an annotation(s) for a class on a diagram:

1. Right-click a class and select Related Elements > Display Related Elements.

- Fle Edit View Layout Disgrams Optiors Tooks Anatyze Collabocate Window Help (L
‘DB DRBMN D PG (Ey . Fermectve; N Festured v - 3 Creste Dagran
T Cona, {0 Duagr,. |) Ubwary X | (&) Amotssorvocauiary |) : ivm
gaa e % DOBD A ABB00 cEE0 &&aQd s ib-
o . ‘ -
= e H,—;— package Lihcary| % Liary ||
0 nportec Cntcoges |3 1 & 9 L
B0 deary T eS0UtCes
£/ Relatens {3 Comeon Froperty Hold .
-é’thkv e Annotation Property K ¥ 1
'FWC‘V@”’V B Note X rported Omologies tation £ istula
-5 sox e TextBax w | P
/7 Relatons M andor v L i
B ltem @ cweiat
O ssteredin:o) | 1 Comenmast « A
[glb-v /3 Mostracton = A
B Midtreds "o " of
S :“ = s <
o EEEEEEE | cespmoms | [Tibmn lsste mall secheme e
-85, Concen? Modelrg
) gass A (Lbrace) o 4 -
& L . Symbol Propertes Alte Erter
(3 Data Type Create Diagram ’
- .
Dm - r Go To ’
o Multimedia T Sefect in Contamenent Tree AlteB
< >} | = cmbwaten ADEr) 8B Sdectininheritance Tree
e o - v Related
Bz Bon TP e caseagran . [} Ol patte
Docmentazon SRR T (e — Refoctor ’ Dsplay Parts
Documentation of Class Ttem = Took 2 Display Intemal Structure .
Ui Ctject Oagram
[Jsma i L £dt Compartments Dapley Releted Elemants
~l It Sterectype Create Relstion Map
i Compoute Stucta.. | Simulation L Used 8y.. Cerde ARV
) dnterrvaten Fows e * | Depends On. CerleAh+D
T Profie Dagrann . v
v v L€ &= e L &

Figure 180 The Display Related Elements menu

169 Copyright © 2017, No Magic, Inc.

B Display Related Elements

2. Inthe Display Related Elements dialog, select Comment > OK (see the following
figure). The annotation(s) for the class will appear on the diagram.

Display related elements

Show symbols on the diagram representing elements which are related to the selected
model element. Specify the relationship types to be used when searching for the
related elements and choose where to search for related elements (scope).

Element: |Class Item

() Incoming
(©) Outgoing

@ Both

~Expand Relations ———

~Scope
(@ Whole Project

(©) Package

~Depth

() Indefinite

@ Definite

~Relations

] 4% Containment

™ Comment

Always create new symbols Layout related elements

Figure 181 The Display Related Elements dialog

170

Copyright © 2017, No Magic, Inc.

To show an annotation(s) for a property on a diagram:

1.

171

: File Edit View Layout Diagrams Options Tools Analyze Collaborate

Drag an annotation(s) from the Containment tree to the diagram pane.

Window Help

DB“'D@&Q‘@'?'@@ m' gPaspecﬁve:‘ﬁllFeamred

ﬁ/"‘ B Containment | £ Diagrams |

Containment 2 8 X
&5 v Q -
[=] Data A

=3 Annotation

v | i [3 Create Diagram

(/7 Relations
|| Annotation
B[Imported Ontologies
B[R Concept Modeling Profile [Concept ¥
< >
/'/ e Zootp/) "B Docu.. | [3 Proper. I
Documentation LI ¢
Body of Comment This is an annotation on A
[JH™™ML
This is an annotation on A)

&) Annotation X |

,>§E gv:>)§°ih'

»

Rin? L XIT
Ocommon . .
=4 Note v A
abc Text Box v
B Anchor v

Edas o A
{3 signal

«PropertyHolders
Thing
(Annotation)

5,

Figure 182 Dragging annotations from the Containment tree to the diagram pane

Copyright © 2017, No Magic, Inc.

172

2. Right-click the annotation(s) and select Related Elements > Display Paths (see the
following figure). A question dialog will open.

package Annotation | Annotationu

AutoStyler

~nrent Madalhins
oncept wicdeiung

«PropertyHolders
Thing
(Annotation)
n L ™}
AN
Symbol Properties Alt+Enter «Annotation»
= . - it
A R Selectin Containment Tree Alt+B snmotationYoparty = i
T This is anno on 'B
Related Elements » Display Paths
Refactor / Display Related Elements
3
e Used By... Ctrl+Alt+U
Stereotype Depends On... Ctrl+Alt+D
Zoom To Selection tionProperty = sbbreviation}
Layout > |
Print Selected
Simulation 4
3

(Annotation)

I \Aunbmwn} —

Figure 183 The Display Paths menu item

Copyright © 2017, No Magic, Inc.

173

3. Click No.

package Annotation [Annotation U

«PropertyHolders
Thing
(Annotation)
[|
1 i «i'::::mam:n:m e «Annotation»
;::xbon - . {annotationProperty = title}
This is an annotation on A This is anno on ‘B’
ll N lll . =
Question n_

Do you want to display paths only between the selected symbols?

i Yes |l NON

v 7 !

Figure 184 The Display Related Elements menu of a property

The annotation(s) for the property(ies) will appear on the diagram (see the following

figure).

Copyright © 2017, No Magic, Inc.

package Annotation [Annotation U
«PropertyHolders
Thing
(Annotation)

A) «/;:motatlo_n:m 4 «Annotation»
L:::me} R fannotationProperty = title}
This is an annotation on A Thisis anm; on'6'

| !

| /

| /

| «Annotation» «Annotation»

| fannotationProperty = usage {annotationProperty = abbreviation}

I note} This is on b’ /

This is on end "a’ T

| T /

| / ‘ [

| / ‘ /

1 \ 1

A ! ' B

{Annotation) | 2 | (Annotation)

Figure 185 The annotations for the properties showing on the diagram

174 Copyright © 2017, No Magic, Inc.

5.20.6 Show an Annotation in the Documentation Pane

There are several ways to make an annotation for a class or a property appears in the

Documentation pane any time you click the annotation in the Containment tree or in the diagram
pane.

To show an annotation for a class in the Documentation pane when you click the class:

1. Drag the annotation (either on the diagram or in the Containment tree) to the class. (This
makes it owned by the class.)

package Library [,,"n Library y

«ReSouUrces
«Property Holder:
Annotation Property Holder

(Imported Ontologies.AnnotationV ocabulary)

«Annotatio

«Annotati

«AnnotationProperty »e e
«Annotation»
Library stored in 0an Item {annotationProperty = explanatory note}
Library n Library — T T T T T]This represents any temphysical or
¢) 0.1 () electronic that can be lent out by a
library.
Multimedia Book
(Library) (Library)

Figure 186 Dragging an annotation to a class

175 Copyright © 2017, No Magic, Inc.

2. Click the class. The annotation will show up in the Documentation pane.

N SR T N R &’"%"“&“\.H‘ogms?ﬁﬁ?i
sciueasle T A N S Rt il I e e S S S 4 e Ty
package Lincani[) Ubcas 1] =

ARRHOUCCE S
«Propatty Holder s

Annotation Property Molaer
{Frported Onlologies A nnotabonV ocateary)

Data

L7 tmported Ontologes
] wrey

[Corwapt Modebne Prafie [Con

wirtutas
vAnnctatioedroperty »3fINBon ongn | .‘I |
cAnnokationsy operty »2bbiév iston (7]
sANnctatonPIopert) »&x pnatory nobs i

any tam phy 5
electronic that can be lent out oy 3
by

Figure 187 The annotation owned by the class shows in the Documentation pane

176 Copyright © 2017, No Magic, Inc.

To make an annotation for a property appear in the Documentation pane when vou click the

property:

177

1.

Double-click an annotation in the Containment tree to open its Specification dialog.

" R Containment [8 piagrams]

Containment » 8 X
B wQ Lo 204
E-[E Data

-~E] Imported Ontologies
&3 Library
(/7 Relations

----- Library
it Library Glossary

&= Book

E-E Item

&-E& Library

L. © Hoans : Library::Item [*]
&-E& Multimedia

..... E Thing

-
EE}"m UML Standard Profile [UML_Standard_Profile.md
B Fey Concept Modeling Profile [Concept Modeling Prof

< | m | »

L Zoom) [Documenta.. [Properties]
Documentation » 8 X
Body of Comment This represents any item physical or ele...
[HTML

This represents any item physical or electronic thatcan »
be lent out by a library.

Figure 188 An annotation in the Containment tree

Copyright © 2017, No Magic, Inc.

178

2.

In the Specification dialog, click () next to Annotated Element. The Select Elements

dialog will open.

Specification of Comment properties

Specify properties of the selected Comment in the properties specification table. Choose the Expert or All options from the Properties
drop-down list to see more properties.

B @ 2

Documentation/Hyperlinks
Usage in Diagrams
Inner Elements
Tags
Constraints
i [B] Traceability

[meY This represents any item physical or electror|

This represents any item physical or electronic...

s (@ oz @

E Comment
Owner

Applied Stereotype

N Annotated Element

Body
Image

To Do

3 Library

«» Annotation [Comment] [Concept Modeling Profile]

E Item [Library]

.

This represents any item physical or electronic that

can be lent out by a library.

Annotated Element
References the Element(s) being commented.

Figure 189 The Specification dialog of a selected annotation

Copyright © 2017, No Magic, Inc.

Help

)

] [Forward] [

3. Remove the current element, in this example, Item, from the Selected elements pane by

selecting it and click [:]

4. Select a property that will be the new annotated element of the annotation from the Tree

view list, for example, loans, and click .

| [B5] Select Elements . =

Select, search for, or create elements

Search for an element by using list or tree views. To find an element type text or wildcard (%,?) into the “Search by Name®input @ _
field. Search elements by their qualified names or use camel case when searching if the appropriate mode is enabled.

N . N Selected elements: 7
[Q'SEchh by Name _ : :
= ?IE—T [E= st O Hoans : Library::Item [*] [Library::Library]
/ ree | 8= Lis |

B ¥ B 8% 251 matches found with filter applied
EE] @ (251 matches)

- [] Imported Ontologies (219 matches)
FJE] Library (13 matches)

Library Glossary

1= Book (1 match)
E Item (1match)
ERE Library (1 match)
i L. © Hoans: Library:Item [¥]

E Multimedia (1 match)

K Thing
i // Association[loans:Library::Item - stored in:Library::Library]
iy This represents any item physical or electronic th...
]»E UML Standard Profile [UML_Standard_Profile.mdzip] (17 matches)

Apply Filter (Ctrl+Space) Y Creation Mode

Single Selection

Figure 190 Selecting annotated element for an annotation in the Select Elements dialog

179 Copyright © 2017, No Magic, Inc.

5. Click OK. The Annotated Element of the annotation has been changed, in this example,
from Item to loans.

o

Specification of Comment properties
Specify properties of the selected Comment in the properties specification table. Choose the Expert or All options from the Properties
drop-down list to see more properties.

& (@ 2 This represents any item physical or electronic...
[m.]This represents any item physical or electror fIFFRIPY B oy akc
i1 [B] Documentation/Hyperlinks l_=-| £y 'g‘ L S &

Usage in Diagrams B Comment
Inner Elements Owner £ Library

Tags Applied Stereotype «» Annotation [Comment] [Concept Modeling Profile]

Constraints [} Annotated Element © Hoans : Library::Item [*] [Library::Library]

Traceabilty This represents any item physical or electronic that
Body can be lent out by a library.

Image

To Do

Documentation

Annotated Element
References the Element(s) being commented.

] [Forward l [Help l

Figure 191 The annotated element for the annotation is set to the selected property

180 Copyright © 2017, No Magic, Inc.

181

Click Close to close the Specification dialog.
On the main menu, click Options > Project to open the Project Options dialog.
Click General > Concept Modeling.

Click () next to Preferred annotation property.

10. Select the preferred annotation property tagged value (the value must be the same as that
of the selected annotation), for example, explanatory note, and click OK. The
Preferred annotation property tagged value is now explanatory note.

[)d Select Pmperty « Annotation Property:

Select, search for, or create an element

Search for an element by using list or tree views. To find an element
type text or wildcard (¥,?) into the "Search by Name” input field.
Search elements by their qualified names or use camel case when
searching if the appropriate mode is enabled.

o 0N e

[Q'Eearch by Name
=

%g Tree” BE List |

89 matches foundwith filter applied
+content type : Imported Ontologies::SpedficationMetadata: :content type -
+contributor
+contributor
+copyright
+creator
+definition
+definition origin
+depends on
+description
+direct source

+document number

+editor

+editorial note

+electronic file name

+example

O +family abstract

O +file version

O +filedevel abbreviation or acronym

O +filedevel abstract

... click here to show the remaining 53 matches

OO0 OO0 O0OOOOOOOO0OO0

Apply Filter (Ctrl+Space) ¥ Creation Mode

Figure 192 Selecting the preferred annotation property tagged value

Copyright © 2017, No Magic, Inc.

11. Click OK to close the Project Options dialog. The annotation will be moved to the
property loans. Any time you click loans in either the Containment tree or the diagram
pane, the annotation will appear in the Documentation pane.

B Containment | £ Diagrams ’

Containment 28 X
B wQ o -
B[] Data

~- [Imported Ontologies

B[] Library

-,/ Relations

FFH Library Glossary

& Book

E Item
E]E Library
R ™ol +0ans : Library::Item [*]

E Multimedia

< | 1 »

™3 Zoom [B) Documenta..| [3 Properties ’
Documentation » 8 X
Documentation of Property Hoans : Library::Item [*]
[T HTML

This represents any item physical or electronic thatcan »
be lent out by a library.

Figure 193 The annotation for the property shows in the Documentation pane

Note e Ifyou drag more than one annotation to a class or a property, only the first
created annotation will appear in the Documentation pane and in the class’
Specification window (under the Documentation/Hyperlink property).

e An annotation for a property will appear in the Documentation pane only if its
annotated element is set to the property and its preferred annotation property
tagged value is specified or updated.

e In this current release, only annotations that have been adjusted to show in the
Documentation pane will appear in the Natural Language Glossary.

182 Copyright © 2017, No Magic, Inc.

You can also create a new property and a new annotation for the property, and make the
annotation appears in the Documentation any time you click the property in either the
Containment tree or the diagram pane. The Library loans.mdzip sample is used in the following
instructions.

5.20.7 Select a Preferred Annotation Property for a UML Comment or «Annotation»

To select a preferred annotation property tagged value for an existing «Annotation» of an
element:

1. With your project open, on the main menu, click Options > Project. The Project
Options dialog will open.
2. Select General > Concept Modeling (see the following figure).

Specify general project properties
Specify the validation, project dependency checker options and other general project-specific options.

‘Q Type here to filter option: ‘ Concept Modeling

B 4 General B8 = B oex
gl] Concept Modeling Bl Concept Modeling

| Dgpendency Checker Always prompt for a file destination when exp... [] false
[Diagrams

o General OWL Export Syntax RDF /XML
‘... [Numbering OWL Import Catalog C:\FIBO Pink\fibo-no-git\be\catalog-v00 1.xml
‘.. [/ Suspect Links URI Construction Strategy Hash URI
‘... [Validation Add dasses to the glossary [[] false
E Diagram Info : Add association ends to the glossary [7] false
B lﬁ Symbol styles {|| Add attributes to the glossary [7] false
& [T Defauit (Defauilt) Add enumerations to the glossary [7] false
PR Add enumeration literals to the glossary [] false

(A Preferred annotation property [ﬂ
A

[«» Stereotypes

(- [T Defined Elsewhere The preferred annotation property for comments providing documentation. When nothing is selected,
- 2] Default model properties | | |http://purl.org/dc/terms/description will be used.

Preferred annotation property

| Reset to Defauits |

ok] [concd | [Heb |

Figure 194 The Preferred annotation property option in the Project Options dialog

183 Copyright © 2017, No Magic, Inc.

184

3. Click (). The Select Property «Annotation Property» dialog will open (see the
following figure).

Select, search for, or create an element

Search for an element by using list or tree views. To find an element type text
or wildcard (*,?) into the "Search by Name” input field. Search elements by
their qualified names or use camel case when searching if the appropriate mode
is enabled.

IQ'Search by Name

18 Tree” 8 List |

89 matches foundwith filter applied

<UNSPECIFIED > -
O +abbreviation

O +abstract

O +adapted from

¢ +addressForComments

O +affects model element

O +alternative label

O +author

O +change note

¢ +comment

O +content language

O +content type : Imported Ontologies::SpedficationMetadata: :content type
O +contributor

O +contributor

O +copyright

O +creator

O +definition origin

O +depends on

O +description

O +direct source

[V] Apply Filter (Ctrl+Space) Y Creation Mode

Figure 195 Selecting a preferred annotation property

Copyright © 2017, No Magic, Inc.

4. Click the List tab and select an annotation property for the comments, for example,
definition.

5. Click OK > OK. The selected annotation property tagged value definition will be made
as the current preferred annotation property for all comments/annotations in your model
(see the following figure).

B Project Options

Specify general project properties
Specify the validation, project dependency checker options and other general project-specific options.

Q [ype here to filter options Concept Modeling

- [General . 88 = B oexX
4 % Concept Modeling B Concept Modeling

- M Dgpendency Checker Always prompt for a file destination when exp... [] false
- [/] Diagrams

- & General OWL Export Syntax RDF /XML

- [Numbering OWL Import Catalog C:\FIBO Pink\fibo-no-git\be\catalog-v00 1.xml
- [/ Suspect Links URI Construction Strategy Hash URI

- [Validation Add dasses to the glossary [7] false

Add association ends to the glossary [7] false

Add attributes to the glossary [7] false

Add enumerations to the glossary [] false

Add enumeration literals to the glossary [] false

(M Preferred annotation property O +definition [Imported Ontologies::core::Thing]

[«» Stereotypes
B [7) Defined Elsewhere
- [E5 Default model properties

Preferred annotation property
The preferred annotation property for comments providing documentation. When nothing is selected,
http://purl.org/dc/terms/description will be used.

| Reset to Defauits |

ok | [Concel | [Heb |

Figure 196 The selected preferred annotation property

After clicking OK, a progress bar will appear. If your project is a TWC project, Concept Modeler
will attempt to lock the project’s elements. If any of the elements cannot be locked, whether it is
locked by another user, then the dialog box with the OK button will say “Cannot lock all
elements for edit to allow preferred annotations to be used as element documentation. You may
refer to the Lock View tab to see what still needs to be locked.” Furthermore, an additional
message will appear in the notification window saying “The preferred annotation property

185 Copyright © 2017, No Magic, Inc.

change has been reverted.” After these two messages will appear, the preferred annotation
property will revert back to its previous value.

So after they click OK, they should see progress bar and if it is TWC project, concept modeler
will try and lock elements, then you need to mention what happens if locks cannot be acquired.

The following example shows you how to change the tagged value definition to an unspecified
preferred annotation property.

To change a current preferred annotation property tageed value to an unspecified preferred
annotation property tagged value:

1. On the main menu, click Options > Project. The Project Options dialog will open.
Select General > Concept Modeling.

3. Click [next to Preferred annotation property. The Select Property «Annotation
Property» dialog will open.
4. Select <UNSPECIFIED> and click OK (see the following figure).

186 Copyright © 2017, No Magic, Inc.

187

Select, search for, or create an element

Search for an element by using list or tree views. To find an element type text
or wildcard (¥,?) into the "Search by Name” input field. Search elements by
their qualified names or use camel case when searching if the appropriate mode

is enabled.

IQ'Eearch by Name

T Trgg.vv")'. E;‘E List |

+abbreviation
+abstract

+adapted from
+addressForComments
+alternative label
+annotationTest
+author

+change note
+comment

+content language

+contributor
+contributor
+copyright
+creator
+definition
+definition origin
+depends on
+description
+direct source

OCQOO0OOOO0OO0OOOO0OOOOOOO0OO OO0

<UNSPECIFIED > -

+content type : Imported Ontologies::SpedficationMetadata: :content type

89 matches foundwith filter applied

Apply Filter (Ctrl+Space) Y Creation Mode

Figure 197 Selecting the default <UNSPECIFIED> preferred annotation property

5. Click OK. The definition tagged value will be removed from Preferred annotation
property box and the annotation will be moved back under the owning folder, in this

example, it is the package Agents.

Copyright © 2017, No Magic, Inc.

You can also add annotation properties manually in your Concept Modeling project. The
following instructions show you how to create an annotation property in your model.

To add documentation to your model by using the Documentation pane:

1. Right-click the Data package in the Containment tree and select Concept Modeling >
Create Concept Model to create a new concept model.

Create a property under the Anything and name it, for example, annotationTest.
Right-click the property and select Annotation Property as its stereotype.

Create a class.

Click it and click the Documentation pane.

Type, for example, This is a test class.

Right-click the class and select Display > Display Related Elements. The Display
Related Elements dialog will open.

8. Select the Comment check-box.

9. Clear the Always create new symbol check-box.

10. Click OK.

11. The annotation “This is a test class.” will appear above the class.

Nk wDdD

To add documentation to your model by using the Specification window:

1. Right-click the Data package in the Containment tree and select Concept Modeling >
Create Concept Model to create a new concept model.

Create a property under the Anything and name it, for example, annotationTest.
Right-click the property and select Annotation Property as its stereotype.

Create a class.

Double-click it to open the Specification window.

Type in the Documentation pane, for example, This is a test class.

Right-click the class and select Display > Display Related Elements. The Display
Related Elements dialog will open.

8. Select the Comment check-box.

9. Clear the Always create new symbol check-box.

10. Click OK.

11. The annotation “This is a test class.” will appear above the class.

Nk wbd

To add documentation to your model by using the Concept Modeling Diagram palette:

1. Right-click the Data package in the Containment tree and select Concept Modeling >
Create Concept Model to create a new concept model.

2. Create a property under the Anything and name it, for example, annotationTest.

Right-click the property and select Annotation Property as its stereotype.

4. Create a class.
Concept Modeling

[Annotation [k

[98)

5. Drag
create an «Annotationy.
6. Click the created «Annotation» in the diagram pane.

from the diagram palette to the diagram pane to

188 Copyright © 2017, No Magic, Inc.

7. Type, for example, This is a test class, either in the Documentation pane in the bottom
left of the screen or in the Annotation itself.

8. Click |- Ancher Ik from the diagram palette and click «Annotation» and
the class. The documentation will be created. Any time you click the class, the
documentation will appear in the Documentation pane.

5.21 Generate a Natural Language Glossary

To generate a Natural Language Glossary:

1. Select Tools > Report Wizard from the main menu.
2. Expand the Concept Modeler folder.
3. Select Natural Language Glossary.

Report Wizard O — (S

Select a report template

Select a report template from which you would like to generate a report. In this page,
you can also create new templates, or edit / delete / open / done /import / export

Clone

A concept model translation in the form of a non-technical, naturalHanguage glossary.

existing templates. SE
s
~ Select Template |
E-£7] Architecture Template -
B+ Architecture Template [RTF] F B Edit
B+ Concept Modeler 5
L @ : iy Delete
--{=_—] Default Template |
(-] Default Template [RTF]
6 o
&-£ MODAF
E-ENAF
--{=__| Other Documents -

~

& Export

< Back Generate Cancel] [Help

—

Figure 198 The Natural Language Glossary option in the Report Wizard dialog

4. Click the Next button.
5. Select Built-in.

189 Copyright © 2017, No Magic, Inc.

Report Wizard

Select a report data

Select a report data (a collection of report variables, e.g., Author, Publisher, etc.)
which you would like to be incuded in the generated report. A built-in report data is
provided for every predefined template.

~ Select Report Data

e O

A built-in template

[< Back]E Next > ;{Generate][Cancel][Help

Figure 199 Selecting the built-in glossary creation option

6. Click the Next button.
7. Select the package(s) you want to generate a natural language glossary for.
8. Click the Add button.
9. Click the Next button.

190 Copyright © 2017, No Magic, Inc.

-
Report Wizard

Select element scope
Select one or more elements to be used as the scope of the generated report.

~ Select Element Scope
All data Selected objects:
Bl-f& Data [Add] B-5 elected objects
EI -] Example «Model»

i Concept Modeling Profile [Cor] Add All

[Add Recursively]

Remove

[Remove All]

< L) 3

Generate Recursively
Show Auxiliary Resources Show Only Package Element

[< Back][Next >][Generate][Cancel][Help]

Figure 200 Selected the scope of the glossary

10. Name your file and file location for your file.
11. Click the Generate button.

191 Copyright © 2017, No Magic, Inc.

Report Wizard

Output options

- Output Options
Report file:

E:\example.html
Report image format:
:Joint Photographic Experts Group (*.jpg)

Auto image size:

:Fit image to paper (large only)
- Display empty value as -

(@) Empty text

() Custom text: NA

Display in viewer after generating report

This page allows you to configure report files, e.g. to select the report files output
location and image format, etc. Click Generate button to start generating the report.

i~ Publish to server
Select server:

:No Upload

=l

< Back Next >

[Generate][Cancel][Help]

Figure 201 Generating a glossary

5.21.1 Updating symbol styles in older projects

In the message prompt, if you select No, the prompt will always pop up; otherwise, Concept
Modeler will update your styles. The option called “Ask to update outdated symbol styles”
which prompts you to update symbol styles when styles are out of date is set to True by default.
However, if you set it to False, then the prompt window will not show.

Concept Modeler symbol styles out of date

lr”_\\-' The project is using older symbol styles.

Would you like to update?

[[] Do not ask to update again.

Yes

By updating to newer symbol styles, older styles and all custom styles will be overwritten.

X

No

Figure 202 You will get this popup message when you load an older Concept Modeling project with an older set of symbol styles.

192

Copyright © 2017, No Magic, Inc.

To enable/disable the “Ask to update outdated symbol styles” option:

1. On the main menu, click Options then Project.

2. Inthe Project Options window, click on General then Concept Modeling.

3. In that window, find the “Ask to update outdated symbol styles” field and check the box
so it says true.

x + Project Options
Specify general project properties Y
Specify the validation, project dependency checker options and other general project-specific options. v ==
RS
LS.
R
Q 1y re to filter options Concept Modeling
£~ ¥ General ! w e
I [Concept Modeling OWL Export Syntax RDF/XML
|~ § Corba IDL OWL Import Catalog
— ¥ Dependency Checker URI G ion S Hash URI
|- & Diagrams ONStruction Strategy ash
— ¥ General Add dasses to the glossary false
= ¥/ Numbering Add association ends 1o the glossary false
b~ M ReqliF
Add attributes to the glossa f
— [Suspect Links 9 v aise
— & vakdation Add enumerations to the glossary false
— E4 Diagram Info Add enumeration literals to the glossary false
&6 Symbol styles Preferred annotation
property
= IF) Default (Default) . ‘(M
f— T Shapes :"rx:m'.:n T
h) +defintion [M:
f=<7 Paths Natural Language Glossary annotation property list))
+»n Dagram +detad [Med I
B Stereotypes +version T
&~ [F) Defined Elsewhere Y Ask to update cutdated symbol styles e
=~ B Default model properties
&) Code Engineering Include property definitions in the Natural Langua.. true

Ask to update outdated symbol styles
Prompts to update symbol styles when styles are out of date.

Reset to Defaults

OK Cancel Help

4. Click OK.

5.21.2 Selecting a List of Ordered Annotation Properties

We have added a new feature which allows you to select an ordered list of annotation properties
which will be displayed in the Natural Language Glossary.

To select an ordered list of annotation properties:
1. Click Options then Project.
In the Project options window, select General then click on Concept Modeling.
Find the Natural Language Glossary annotation property list field and add properties.
Click OK.
You should see the changes in effect when you generate a Natural Language Report.

Nk wb

193 Copyright © 2017, No Magic, Inc.

5.21.3 Include Property Definitions in the Natural Language Glossary

Y ou must enable the option labeled “Include property definitions in the Natural Language
Glossary” which lists property definitions in addition to class definitions in the Natural Language
Glossary.

To enable the “Include property definitions in the Natural Language Glossary” option:

1. Click Options then Project.
2. Click on General and select Concept Modeling.
3. Scroll down through the Concept Modeling screen and find the Include property
definitions in the Natural Language Glossary option.
4. Click the checkbox so it says “true.”
® @ Project Options
Specify general project properties ‘i |
Specify the validation, project dependency checker options and other general project-specific options. v
e
L N ee——a
Q Type here to filter options Concept Modeling
- General 2 = &
I— ¥ Concept Modeling OWL Export Syntax ROF /XML
t= ¥ Corba IDL
WL I
= [Dependency Checker O\I mport Catalog Hash URI
| & Diagrams URI Construction Strategy ash UR
— [General Add classes to the glossary false
— [Numbering Add association ends to the glossary false
I ReqlF i
| & suspect Links Add atributes 1o the glossary false
L. M/ Validation Add enumerations to the glossary false
1 Diagram Info Add enumeration literals to the glossary false
5 Symbol styles Preferred
) Default (Default) referrec ammotation property .
g ® Shapes +comment [V
=7 Paths Natural Language Glossary annotation property list rdef-mhor! crel e
% Diagram +detail (Med
= <« Stereotypes +version [Media
F"E Defined Elsewhere Ask to update outdated symbol styles false
[= fault model {0 -
B Code Enueng” Y inciuie property defintions inthe Natural Langua. Lo XN
Include property definitions in the Natural Language Glossary
Lists property definitions in addition to class definitions in the Natural Language Glossary.
Reset to Defaults
OK Cancel Help
5. Click OK.

6. You should see this change in your NLG report.

194

Copyright © 2017, No Magic, Inc.

Properties (jump to Classes)

C

comment
A property that can be used by any class.
Definition:

IS

definition
A property that can be used by any class,
Definition:

detail
A property that can be used by any class.
Definition:

Figure 203 Segmented shot of a report showing the property definitions corresponding to the annotation
property list.

6 References

[1] OMG, MDA Guide rev. 2.0, OMG Document ormsc/2014-06-01
[2] https://www.ietf.org/rfc/rfc3987.txt
[3] http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#description

195 Copyright © 2017, No Magic, Inc.

http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms%23description
https://www.ietf.org/rfc/rfc3987.txt

	1 Introduction
	1.1 MDA
	1.2 Concept Modeling Purpose
	1.3 The Role of Ontologies and Reasoners
	1.4 Open World Assumption vs. Closed World Assumption
	1.5 Information Modeling Purpose

	2 Concept Modeler Capabilities
	2.1 SME Friendly Graphical Notation
	2.2 Automatic Styling of Concept Models
	2.3 Automatic Glossary Generation
	2.4 Concept Model Authoring
	2.5 UML Model Traceability
	2.6 Semantic Integration of Multiple Information Models
	2.7 Natural Language Glossary
	1.1
	1.1
	2.8 Annotation Properties in the Natural Language Glossary
	2.9 Preferred Annotation Property
	2.10 Creation of Multiple Data Models from One Concept Model
	2.11 Connection of Multiple Existing Data Models to One Concept Model
	2.12 Updating Symbol Styles
	2.13 Diagram Preservation After Ontology Import

	3 Concept Modeling Semantics
	3.1 Class
	3.2 Property Ownership
	3.3 Global Properties
	3.4 Subproperty
	3.5 Existential Quantification Constraint
	3.6 Universal Quantification Constraint
	3.7 Necessary and Sufficient Condition
	3.8 Generalization
	3.8.1 Overlapping and Incomplete Subclasses
	3.8.2 Disjoint Subclasses
	3.8.3 Complete Subclasses
	3.8.4 Disjoint and Complete Subclasses

	3.9 Anonymous Union Class
	3.10 Inverse Properties
	3.11 Property Restrictions
	3.12 Annotation and Annotation Properties
	3.13 Preferred Annotation Property
	3.14 Property Chain
	3.15 Equivalent Properties
	3.16 Equivalent Classes

	4 UML to Equivalent OWL (in OWL Functional Syntax)
	4.1 Class
	4.2 Class Generalization
	4.3 Generalization with Disjoint Subclasses
	4.4 Generalization with Subclass Completeness
	4.5 Anonymous Union Class
	4.6 Class with Datatype Property
	4.7 Class with Self-Referential Object Property
	4.8 Class with Object Property
	4.9 Property Holder with Datatype Property
	4.10 Property Holder with Self-Referential Object Property
	4.11 Property Holder with Object Property
	4.12 Class with Object Property without Range
	4.13 Class with Subproperty
	4.14 Class with Universal Quantification Constraint on Property I
	4.15 Class with Universal Quantification Constraint on Property II
	4.16 Class with Existential Quantification Constraint on Property
	4.17 Property Holder with Self-Referential Subproperty
	4.18 Property Holder with Subproperty
	4.19 Class with Subproperty without a Range
	4.20 Class with Necessary and Sufficient Property
	4.21 Class with Property Having Unspecified Multiplicity
	4.22 Class with Inverse Property
	4.23 Annotation and Annotation Property
	4.24 Asymmetrical Inverse Property
	4.25 Disjoint Classes
	4.26 Property Chain
	4.27 Equivalent Property
	4.28 Equivalent Class

	5 Usage
	5.1 Create a Concept Modeling Project
	5.2 Create a Concept Model
	5.2.1 Convert a UML Model into a Concept Model
	5.2.2 Create a Property Chain
	5.2.3 Create Equivalent Property
	5.2.4 Create Equivalent Classes

	5.3 Set the Concept Model URI
	5.4 Create the XML Catalog File
	5.5 Import an OWL Ontology to a Concept Model
	5.5.1 Update the XML Catalog File
	5.5.2 Set the OWL Import Catalog
	5.5.3 Set a Path Variable to Share OWL Import Catalog Files
	5.5.4 Use a Path Variable to Share OWL Import Catalog Files
	5.5.5 Import an OWL Ontology file
	5.5.6 Import annotations on an OWL Ontology to a concept model
	5.5.7 Version IRI
	5.5.8 Display and Hide IRI

	5.6 Export a Concept Model to an OWL Ontology
	5.6.1 Set the Concept Model Export Syntax
	5.6.2 Set the Concept Model Export URI Style
	5.6.3 OWL Export Folder
	5.6.4 Export a Concept Model to OWL
	5.6.5 Use Path Variables to Export a Concept Model to an OWL Ontology

	5.7 Add a Concept Model to Teamwork Cloud and Export it as an OWL Ontology
	5.8 Automatically Generate Glossaries
	5.9 Create a Glossary Table
	5.10 Rebuild a Glossary Table
	5.11 View a Glossary
	5.12 Create a Property Holder
	5.13 Universal Quantification Constraints for an Existing Property
	5.13.1 Add a Universal Quantification
	5.13.2 Remove a Universal Quantification

	5.14 Subproperties
	5.14.1 Add a Subproperty
	5.14.2 Remove a SubProperty

	5.15 Create an Existential Quantification (Qualified) Constraint for a Property
	5.15.1 Add an Existential Quantification
	5.15.2 Remove an Existential Quantification

	5.16 Go to Redefined Property
	5.16.1 Go To Redefined Property in Containment Tree
	5.16.2 Go To Redefined Property on Diagram

	5.17 Go To Subsetted Property
	5.17.1 Go To Subsetted Property in Containment Tree
	5.17.2 Go To Subsetted Property on Diagram

	5.18 Create a Necessary and Sufficient Condition
	5.18.1 Add a Sufficient Condition
	5.18.2 Remove a Sufficient Condition

	5.19 Working with Subclasses
	5.19.1 Make Subclasses Disjoint
	5.19.2 Make Subclasses Complete
	5.19.3 Make Subclasses Overlapping
	5.19.4 Make Subclasses Incomplete

	5.20 Working with Annotations
	5.20.1 Import an Ontology that Defines Annotation Properties
	5.20.2 Define an Annotation Property
	5.20.3 Apply an Annotation Stereotype
	5.20.4 Associate an Annotation Property with an Annotation
	5.20.5 Show Annotations on the Diagram
	5.20.6 Show an Annotation in the Documentation Pane
	1.1.1
	1.1.1
	5.20.7 Select a Preferred Annotation Property for a UML Comment or «Annotation»

	5.21 Generate a Natural Language Glossary
	5.21.1 Updating symbol styles in older projects
	5.21.2 Selecting a List of Ordered Annotation Properties
	5.21.3 Include Property Definitions in the Natural Language Glossary

	6 References

