
MACRO ENGINE

user guide

No Magic, Inc.

2015

All material contained herein is considered proprietary information owned by No Magic, Inc. and is not to be
shared, copied, or reproduced by any means. All information copyright 2009-2015 by No Magic, Inc.

C O N T E N T S

3 Copyright © 2009-2015 No Magic, Inc.

 MACRO ENGINE
1. Introduction 4
2. Working with Macro Engine 4

2.1 Selecting a Default Macro Language 4
2.2 Creating a Macro 7
2.3 Adding a Macro and Editing Macro Information 8

2.3.1 Opening Macro Information Dialog 8
2.3.2 Adding a Macro and Its Information 9
2.3.3 Editing Macro Information 14
2.3.4 Macro Information Dialog Mnemonic Keys 15

2.4 Deleting and Executing Macros 15
2.4.1 Deleting a Macro 15
2.4.2 Executing a Macro 16
2.4.3 Organizing Macros Dialog Mnemonic Keys 18

2.5 Macro Keyboard Shortcuts 20
2.5.1 Assigning a Keyboard Shortcut to a Macro 22
2.5.2 Removing Keyboard Shortcuts from Macro 22

2.6 Opaque Objects 23
2.6.1 Getting an Opaque Object 23
2.6.2 Getting Element Property Values 24
2.6.3 Setting Element Property Values 25
2.6.4 Getting the Child of an Element 28
2.6.5 Getting the Owner of an Element 29
2.6.6 Creating a New Element 29
2.6.7 Creating a Relationship Between Elements 29
2.6.8 Removing an Element 30
2.6.9 Adding a Stereotype to an Element 30
2.6.10 Removing a Stereotype from an Element 30
2.6.11 Printing Element Details 31

2.7 Recording Macros 31
3. Appendix 35

3.1 Using Code Completion to Develop BeanShell Scripts 35
3.2 Using NetBeans IDE to Develop Groovy Scripts 36
3.3 Using Eclipse to Develop Groovy Scripts 37
3.4 Installing Gems for JRuby 38
3.5 Adding a Scripting Language to MagicDraw 39

3.5.1 Script Filename Extension Filter 39

MACRO ENGINE
1. Introduction
Macro Engine (previously called Script Engine) in MagicDraw allows you to create your own macro (script) by
using BeanShell, Groovy, JRuby, JavaScript (Nashorn and Rhino), or Jython. With Macro Engine, you can
control everything that is allowed in Open API, for example, transforming and manipulating models. You can
find MagicDraw Open API in MagicDraw OpenAPI UserGuide.pdf in the manual directory and sample
macros in <MagicDraw>/samples/product features/macros.

Macro Engine comes with Professional, Architect, and Enterprise Editions starting from MagicDraw version
16.6 and greater.

MagicDraw 18.1 Macro Engine supports two types of Javascript: (i) Javascript Nashorn and (ii) Javascript
Rhino). This support is intended to prevent some incompatibility issues in the language syntax with macros that
were created using Java 7 or earlier (Javascript Rhino), because Oracle changed the built-in Javascript engine
from Javascript Rhino to Javascript Nashorn since Java 8 was released.

When you refer to Javascript, Macro Engine will refer to the default Javascript that comes with the JRE, which
is Javascript Nashorn. For example, if you use Java 8, the default Javascript will be Javascript Nashorn. If you
find any incompatibility issues, Macro Engine provides the migration capability to downgrade the Javascript
engine for all of the existing macros to use Javascript Rhino.

To migrate to Javascript Rhino:

• Click Tools > Macros > Migrate to Javascript Rhino.

2. Working with Macro Engine

2.1 Selecting a Default Macro Language

Use the Environment Options dialog to select a default macro language.

To select a default macro language:

1. Click Options > Environment on the MagicDraw main menu (Figure 1). The Environment
Options dialog will open (Figure 2).

NOTE If you are using MagicDraw 18.1 or greater with Java 8 and created a
macro with the new language syntax in Nashorn, and then
downgraded your Java to Java 7, this will cause an execution problem
for your macro.
Copyright © 2009-2015 No Magic, Inc.4

MACRO ENGINE
Working with Macro Engine
Figure 1 -- Environment Options Dialog Menu

2. Select the Macros node (Figure 2).

Figure 2 -- The Environment Options Dialog

3. Click the box next to the Default Macro Language box to see a list of supported programming
languages (Figure 3).
5 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 3 -- Selecting Macro Language

4. Select Jython, BeanShell, Groovy, JRuby, or JavaScript.
5. Click OK to save the selected language as the default macro language.

NOTE: • JavaScript is the default macro language.
• Macro Engine currently supports BeanShell, Groovy, JRuby,

JavaScript (Nashorn and Rhino), and Jython only.
6 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
2.2 Creating a Macro

Once you have selected a default macro language (see 2.1 Selecting a Default Macro Language), you can
create a new macro by using the Create Macro dialog (Figure 4). The dialog allows you to specify a macro
language, enter source code, and save it.

To create a new macro:

1. Click Tools > Macros > Create Macro... on the MagicDraw main menu. The Create Macro
dialog will open (Figure 4).

Figure 4 -- The Create Macro Dialog

2. Select a macro language in the Macro Language box.
3. Enter source code in the text box.
4. Click Run to test and make sure that the source code works properly.
5. Click Save. The Macro Information dialog will open (Figure 7). Follow the steps described in

section 2.3.2 Adding a Macro and Its Information below.
6. After clicking OK in the Macro Information dialog (Figure 7), the new macro will be saved in

the location you have specified in the File text box.
7 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
2.3 Adding a Macro and Editing Macro Information

You can add a new macro and enter all necessary information about it in MagicDraw by following the steps
described in sections 2.3.1 Opening Macro Information Dialog and 2.3.2 Adding a Macro and Its
Information below.

2.3.1 Opening Macro Information Dialog

You can add or modify macro information such as the macro name and description, in the Macro Information
dialog. To open the Macro Information dialog, you need to open the Organize Macros dialog first.

To open the Organize Macros dialog:

1. Click Tools > Macros > Organize Macros... on the MagicDraw main menu (Figure 5). The
Organize Macros dialog will open (Figure 6).

Figure 5 -- Organize Macros Menu
8 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 6 -- The Organize Macros Dialog

To open the Macro Information dialog:

1. Click Tools > Macros > Organize Macros... on the MagicDraw main menu to open the
Organize Macros dialog.

2. Click Add (Figure 6). The Macro Information dialog will open.

2.3.2 Adding a Macro and Its Information

Use the Add or Edit button in the Organize Macros dialog to add or edit a macro and its information in the
Macro Information dialog. You can also press the mnemonic keys to add or edit a macro (see 2.4.3
Organizing Macros Dialog Mnemonic Keys).

To add a macro and enter macro information in the Macro Information dialog:

1. Open the Organize Macros dialog (click Tools > Macros > Organize Macros... on the
MagicDraw main menu).

2. Click Add. The Macro Information dialog will open (Figure 7).

NOTE: The Edit, Delete, Edit Code, and Run buttons in the Organize
Macros dialog will be disabled if there is no macro in the macro table
or if you do not select any macro from the table.
9 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 7 -- The Macro Information Dialog

3. Type the macro name in the Name box.
4. The default macro language you have previously selected (see 2.1 Selecting a Default Macro

Language) will appear in the Macro Language box (Figure 7).
5. Click the ... button to locate a macro file. The Open file dialog will open (Figure 8).
6. Select the file and its type (there are 5 types of file filter: *.bsh, *.groovy, *.rb, *.js, or *.py)

(Figure 9).
10 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 8 -- Use Path Variables Check Box

7. Click Open (Figure 9). The selected pathname will appear in the File box in the Macro
Information dialog (Figure 10).

Figure 9 -- Types of File Filter
11 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 10 -- Macro Information Dialog

8. Select either (i) the Use path variables check box or (ii) the Add macro to model check box
(Figure 10).
12 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
9. Type the macro description in the Description box (Figure 10).

10. The function of the Automatically run with default values check box (Figure 10) is to allow
you to run the default values automatically. If you select the check box, the system will not open
a dialog to prompt you to input the value.

11. Click Add to specify the arguments of the macro. The arguments specified in the Arguments
table will be the global variables of a specific macro.

• Name column contains the name of a parameter

• Type column contains the type of a parameter

• Array check box is to identify if an array is the parameter

• Null check box is to identify if null is the parameter value

• Default Value column contains an initial value to run the macro

NOTE: • If you have specified the file or network path in the Environment
Options dialog by clicking Options > Environment > Path
Variables and selected the Use path variables check box in Macro
Information dialog, the <Path Variable name> will show in front
of the file pathname. This field is the [Required] field, for example,
<mypath>/<macro_name>.js.

• If you select the Use path variables check box, the full pathname
will not be saved.

• If you select the Add macro to model check box, your source code
will be imported from the file to the model. The location to keep the
model is Data::MacroEngine.

• You can open the Macro Information by using Ctrl+Alt+m as a
shortcut key.

NOTE: A macro name must be unique and cannot be duplicated.

NOTE: If you select the Automatically run with default values check box,
you need to enter the valid default value of each parameter.

NOTE: • A parameter type can be a String, Integer, Long, Double, Date, or
ElementPath.

• If the Null check box is selected, you cannot enter the default value
of that particular parameter.

• An empty value in the Default Value column does not necessarily
mean a null value, for example an empty string value is an empty
string.

• If you input an invalid default value or you do not enter the argument
name, the system will display the following error message when you
run the script: The following argument(s) are invalid: <List of the
invalid argument...>.
13 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
12. Type a keyboard shortcut that will be used to run the macro in the Press new shortcut key
box and click Assign. The newly assigned keyboard shortcut will appear in the Current keys
box.

13. Click OK. The Organize Macros dialog will open, showing the newly added macro name,
description, and keyboard shortcut.

14. Click Close to close the Organize Macros dialog.

2.3.3 Editing Macro Information

You can see macro information such as names and descriptions, as well as the macro keyboard shortcuts in
the Organize Macros dialog.

To edit macro information:

1. Click Tools > Macros > Organize Macros... . The Organize Macros dialog will open
(Figure 11).

Figure 11 -- Editing a Macro

NOTE: • Macro names, filenames, and languages are required.
• Macro description and keyboard shortcuts are optional.
• If any of the required fields are not entered or duplicate macro name

is entered, the following message will open: The following field(s)
are invalid: <List of the problems>.

• If the Automatically run with default values check box is selected
and at least one value is empty or not valid, then the following error
message will open: The following value(s) are invalid. <List of
the invalid value...>

• If the Automatically run with default values check box is selected,
all variables must have valid values or are set to null.
14 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
2. Select a macro from the table and either click Edit or press Alt + E. The Macro Information
dialog will open.

3. Edit the macro information.
4. Click OK to save it. You will see the altered information in the Organize Macros dialog.
5. Click Close.

2.3.4 Macro Information Dialog Mnemonic Keys

Macro Engine provides mnemonic keys for you to perform some operations, for example, highlight a textbox
and click a specific button in the Macro Information dialog. Table 1 below lists the Macro Information dialog
mnemonic keys and their function.

Table 1 -- Macro Information Dialog Mnemonic Keys

2.4 Deleting and Executing Macros

You can click the Delete or Run button in the Organize Macros dialog to (2.4.1) delete or (2.4.2) execute a
selected macro. You can also press the predesigned mnemonic keys to delete or run a macro (see section
2.4.3 Organizing Macros Dialog Mnemonic Keys below).

2.4.1 Deleting a Macro

To delete a macro from the Organize Macros dialog:

1. Click Tools > Macros > Organize Macros... to open the Organize Macros dialog.
2. Select a macro from the table and either click Delete or press Alt + D. A dialog will open,

asking whether you want to delete the macro (Figure 12).

Mnemonic keys Function

Alt + N To place the pointer in the Name box.

Alt + M To highlight the Macro Language box.

Alt + F To place the pointer in the File box.

Alt + . To open the File dialog.

Alt + D To place the pointer in the Description box.

Alt + A To add an argument in the Arguments area.

Alt + l To delete an argument in the Arguments area.

Alt + U To highlight the Current keys box.

Alt + G To click the Assign button.

Alt + R To click the Remove button.

Alt + E To click the Remove All button.

Alt + P To place the pointer in the Press new Shortcut key box.

Alt + O To click the OK button.

Alt + C To click the Cancel button.

Alt + H To click the Help button.
15 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 12 -- Deleting Macro

3. Click Yes and the macro will be deleted from the Organize Macros dialog.

2.4.2 Executing a Macro

To execute a macro from the Organize Macros dialog:

1. Click Tools > Macros > Organize Macros.... The Organize Macros dialog will open
(Figure 13).

Figure 13 -- Executing Macro

2. Select a macro from the table and click Run. After the macro has been executed, a message
will open: The macro <macro name> has been executed.

3. If you have the parameters in the Macro Information dialog, you need to specify the value in
the Macro Arguments dialog (Figure 15) before running the macro.
16 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 14 -- Specification Dialog Example

NOTE: • For an array datatype, you need to click the “...” button in the Value
column in the Macro Arguments dialog and enter each value into
each line. The value of the first line will be the value in array index 0.

• An ElementPath is a Qualified Name. You can find this information in
the specification dialog of each element (Figure 14).

• The Macro Arguments dialog (Figure 15) will be displayed if the
Automatically run with default values check box is not selected.

• If you want to save argument values in the Macro Arguments
dialog, you need to select the Set as default values check box
before you click OK.
17 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 15 -- Macro Arguments Dialog

NOTE: • You can also execute a macro from the main browser in MagicDraw
by pressing the shortcut keys that you have defined in the Organize
Macros dialog.

• You can only run macro one at a time.
• If there is an error while running a macro, for example, syntax error,

the following message will open: MagicDraw cannot execute the
<macro language> macro, please make sure that <path,
filename, extension> is correct. <error description>.

• If MagicDraw cannot find a macro file in the location that you have
specified in the Open dialog, the following message will open:
MagicDraw cannot find the macro: <path, filename, extension>.
18 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
2.4.3 Organizing Macros Dialog Mnemonic Keys

Macro Engine also provides mnemonic keys to add, edit, delete, and run a macro from the Organize Macros
dialog. Table 2 shows the Organize Macros dialog mnemonic keys and their function.

Table 2 -- Organize Macros Dialog Mnemonic Keys

Mnemonic keys Button Function

Alt + A Add To add a macro in the Macro Information dialog.

Alt + E Edit To edit a macro in the Macro Information dialog.

Alt + D Delete To delete a macro from the Organize Macros
dialog.

Alt + O Edit Code To edit source code in Macro Editor.
Alt + R Run To run a macro from the Organize Macros dialog.

Alt + C Close To click the Close button.

Alt + H Help To click the Help button.

NOTE: • You can click the Edit Code button in the Organize Macros dialog
(Figure 13) to edit and save source code in the Macro Editor dialog
(Figure 16).

• You can click Save to save the source code or click Run to run the
macro in the Macro Editor dialog (Figure 16).
19 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 16 -- Macro Editor
20 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
2.5 Macro Keyboard Shortcuts

Macro Engine allows you to assign keyboard shortcuts to the macros that you have created using either the
Environment Options (Figure 17) or Macro Information dialog (Figure 18). You can later press the keyboard
shortcuts to execute or run the macros in MagicDraw.

Figure 17 -- Environment Options Dialog

To open the keyboard shortcuts pane in the Environment Options dialog:

1. Click Options > Environment on the MagicDraw main menu. The Environment Options
dialog will open.

2. Click Keyboard (Figure 17).

The macro information and keyboard shortcuts that are saved either in the Environment Options or Macro
Information dialog will be stored as a MagicDraw environment. They will not be kept in a specific project file
[*.mdzip].
21 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 18 -- Macro Information Dialog

NOTE: • The Assign button in the Macro Information or Environment
Options dialog will be disabled until you type a keyboard shortcut in
the Press new shortcut key box.
22 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Table 3 -- Keyboard Shortcut Buttons

Table 4 -- Keyboard Shortcut Text Boxes

2.5.1 Assigning a Keyboard Shortcut to a Macro

To add a new keyboard shortcut to a macro:

1. Open either the (i) Environment Options or (ii) Macro Information dialog.
2. Type a keyboard shortcut in the Press new shortcut key box.
3. Click Assign to assign the keyboard shortcut to a macro.
4. Click OK.

2.5.2 Removing Keyboard Shortcuts from Macro

To remove a keyboard shortcut:

1. Open either the (i) Environment Options or (ii) Macro Information dialog.
2. Select a keyboard shortcut from the Current keys box.
3. Click Remove. The selected keyboard shortcut will be removed from the Current keys box.

To remove all keyboard shortcuts:

1. Open either the (i) Environment Options or (ii) Macro Information dialog.
2. Click Remove All. All keyboard shortcuts will be deleted from the Current keys box.

Button Function

Assign To assign a new keyboard shortcut to a macro.

Remove To remove the keyboard shortcuts from the selected item in
Current keys box.

Remove All To remove all keyboard shortcuts from a macro.

Field Function

Current keys To store a list of keyboard shortcuts currently assigned to a macro.

Press new shortcut
key

To type a new keyboard shortcut to be assigned to a macro.

NOTE: If a keyboard shortcut key entered in the Press new shortcut key box
has already been assigned to another macro, the following message
will appear under the Press new shortcut key box: Currently
assigned to <the command name>.

NOTE: You can also remove a keyboard shortcut through the Environment
Options dialog by clicking Options > Environment > Keyboard on
MagicDraw main menu.
23 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
2.6 Opaque Objects

Macro Engine creates opaque objects to represent the elements in MagicDraw. Through these opaque objects,
you can access the elements, retrieve, or assign values to them instead of using MagicDraw OpenAPI to do it.

2.6.1 Getting an Opaque Object

You can get an opaque object of an existing MagicDraw element by using either:

(i) AutomatonMacroAPI.getOpaqueObjectByPath(String path)

(ii) AutomatonMacroAPI.getOpaqueObject(Element element)

If the above methods cannot find the element, they will return null.

(i) getOpaqueObjectByPath(String path)

To use getOpaqueObjectByPath(String path), for example, type:

AutomatonMacroAPI.getOpaqueObjectByPath ("PackageA::Element2");

(ii) getOpaqueObject(Element element)

To use getOpaqueObject(Element element), for example, type:

var element = ModelHelper.findElementWithPath("PackageB::ClassB");

var a = AutomatonMacroAPI.getOpaqueObject(element);

You can also use two other methods to get an opaque object as follows:

(iii) AutomatonMacroAPI.getModelData()

(iv) AutomatonMacroAPI.getSelectedElementFromContainmentTree()

NOTE: • The Assign, Remove, and Remove All buttons in the Macro
Information or Environment Options dialog will be disabled if
there is no keyboard shortcut either in the Press new shortcut key
or Current keys box.

• The Assign button will be enabled if the new keyboard shortcut
entered has not been assigned to any other macro.

• You can assign more than one keyboard shortcut to a macro.

NOTE: All examples given in this section is written in Javascript.
24 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
(iii) getModelData()

This method will obtain an opaque object of the model Data in the Containment tree.

(iv) getSelectedElementFromContainmentTree()

This method will obtain an opaque object of the selected element in the Containment tree.

Macro Engine uses methods (iii) getModelData() and (iv) getSelectedElementFromContainmentTree() to
retrieve opaque objects in order to identify the defined scope in its recording mechanism.

2.6.2 Getting Element Property Values

Once you have obtained an opaque object, you can get the property value of the element by using any of the
following methods:

(i) <variableName>.get<PropertyName>()

(ii) <variableName>.<PropertyName>

(iii) <variableName>._automatonGetValue(String realPropertyName, String
stereotypePath)

The <variableName> is the name of a macro variable that stores the opaque object. The <PropertyName>
is the name of the property that appears in the Specification dialog.

You need to capitalize the first letter of <PropertyName> and replace the whitespace with an underscore. If a
duplicate property name occurs, you can refer to the right property name by using the following additional
information: <SterotypeName>_<PropertyName><RunningNumber>.

Figure 19 -- A Duplicate Property in Stereotype

If there are two stereotypes applied to the same element (Figure 19), you can differentiate one from the other,
for example, by specifying <PropertyName> as StereotypeA_PropertyA1 and
StereotypeA_PropertyA2 in the macro.

You can also use the method _automatonGetValue to get a property value. If you want to get the value of a
PropertyA from SterotypeA in PackageA., for example, you can use
_automatonGetValue(“PropertyA”, “PackageA::StereotypeA”).

A realPropertyName is the real property name that is used in MagicDraw openAPI. A stereotypePath is
the path of a stereotype that contains the property. This property will not be needed if it is in the Element itself.

If you refer to a property that does not exist, Macro Engine may or may not throw an error, depending on which
language library you use. For example, if you use Javascript to call the property that does not exist, Macro
25 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Engine will not throw an error. But if you use JRuby, it will throw an exception to report the error condition:
org.jruby.exceptions.RaiseException.

If the value of a property is an element, Macro Engine will convert it to an opaque object and you can call it, for
example, by typing classA.Owner.Name.

If a property has more than one value, Macro Engine will convert the values to a list of opaque objects. If you
need to get a value from the list, you can call the method of the class java.util.List, for example, by
typing:

(i) classA.appliedStereotype.get(<index>).Name

or

(ii) classA.appliedStereotype.add(anotherOpaque)

If a property is read-only, an exception will be thrown.

2.6.2.1 Getting Element Property Value Examples

The following are some examples of how to get an element property value using the methods given in section
2.6.2 above:

• to use get<PropertyName>, for example, type:

var classA = AutomatonMacroAPI.getOpaqueObjectByPath ("MyClass");

Application.getInstance().getGUILog().log(classA.getName());

• to use <PropertyName>, for example, type:

var classA = AutomatonMacroAPI.getOpaqueObjectByPath("MyClass");

Application.getInstance().getGUILog().log(classA.Name);

• to use _automatonGetValue, for example, type:

var reqA = AutomatonMacroAPI.getOpaqueObjectByPath("MyRequirements");

Application.getInstance().getGUILog().log(reqA._automatonGetValue(“Pr
opertyA”, “PackageA::StereotypeA”);

• to use a SysML Element, for example, type:

var reqA = AutomatonMacroAPI.getOpaqueObjectByPath("MyRequirements");

Application.getInstance().getGUILog().log(reqA.getID());

2.6.3 Setting Element Property Values

You can assign values to a MagicDraw element by using any of the following methods:

(i) <variableName>.set<PropertyName>(Object value)

(ii) <variableName>.<PropertyName> = value; and then call persist()
26 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
(iii) <variableName>._automatonSetValue(String realPropertyName, String
stereotypePath, Object value)

The value of an element can be a primitive data type, an opaque object, or an element. If you use a setter to
set the value, for example, _automatonSetValue() or change the value on a list, it will be saved in the
MagicDraw element automatically.

If you use <variableName>.<PropertyName> = value to set the value, you must call persist() to
persist the change to the MagicDraw element. You need to first set the data, call persist(), and finally call a
getter method in order to set the data and retrieve them. This process will force an opaque object to retrieve
the current value from a MagicDraw model and overwrite the value that you have just specified in the opaque
object.

2.6.3.1 Setting Element Property Value Examples

The following are some examples of how to set an element property value by using the methods given in
section 2.6.3 above.

• to use set<PropertyName>(value), for example, type:

var classB = AutomatonMacroAPI.getOpaqueObjectByPath("Element2");

classB.setName(“NewElementName”)

• to use <PropertyName> = value), for example, type:

var classB = AutomatonMacroAPI.getOpaqueObjectByPath("Element2");

classB.Name = “NewElementName”;

classB.Is_Abstract = true;

classB.persist();

• to use _automatonSetValue, for example, type:

var classB = AutomatonMacroAPI.getOpaqueObjectByPath("Element2");

classB._automatonSetValue(“PropertyA”, “PackageA::StereotypeA”, “Demo
String value”);

• to set an opaque object to another opaque object, for example, type:

var ele1 = AutomatonMacroAPI.getOpaqueObjectByPath("Element1");

var ele2 = AutomatonMacroAPI.getOpaqueObjectByPath("Element2");

ele1.setPackaged_Element(ele2);

NOTE: If you use JRuby, do not capitalize the first letter of <PropertyName>
in <variableName>.<PropertyName>.
27 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Table 5 below lists the supported element properties in Macro Engine.

Table 5 -- Supported Element Properties

Property Type Support Operation

Active Hyperlink String Read

All General Classifiers List<AutomatonOpaqueObject> Read

All Realizing Elements List<AutomatonOpaqueObject> Read

All Specific Classifiers List<AutomatonOpaqueObject> Read

All Specifying Elements List<AutomatonOpaqueObject> Read

Applied Stereotype List<AutomatonOpaqueObject> Read

Applied_Stereotype_Instance N/A Read

Attribute List<AutomatonOpaqueObject> Read

Base Classifier List<AutomatonOpaqueObject> Read

Class AutomatonOpaqueObject Read

Classifier Behavior AutomatonOpaqueObject Read

Client Dependency List<AutomatonOpaqueObject> Read

Collaboration Use List<AutomatonOpaqueObject> Read

Element ID N/A -

Extension List<AutomatonOpaqueObject> Read

Feature List<AutomatonOpaqueObject> Read

Generalization List<AutomatonOpaqueObject> Read

Image N/A -

Imported Member List<AutomatonOpaqueObject> Read

Inherited Member List<AutomatonOpaqueObject> Read

Interface Realization List<AutomatonOpaqueObject> Read

Is Leaf Boolean Read/Write

Is Final Specialization Boolean Read/Write

Is Active Boolean Read/Write

Is Abstract Boolean Read/Write

Member List<AutomatonOpaqueObject> Read

Name String Read/Write

Name Expression AutomatonOpaqueObject Read

Namespace AutomatonOpaqueObject Read

Nested Classifier List<AutomatonOpaqueObject> Read

Owned Attribute List<AutomatonOpaqueObject> Read

Owned Connector List<AutomatonOpaqueObject> Read

Owned Comment List<AutomatonOpaqueObject> Read

Owned Diagram List<AutomatonOpaqueObject> Read

Owned Element List<AutomatonOpaqueObject> Read

Owned Member List<AutomatonOpaqueObject> Read

Owned Operation List<AutomatonOpaqueObject> Read
28 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
2.6.4 Getting the Child of an Element

You can get the child of an Element by typing the following:

• <variableName>._getChild(String childElementName)

If the above method cannot find the childElementName, it will throw an error.

To get the child of an element named ClassB from ClassA, for example, type:

Owned Port List<AutomatonOpaqueObject> Read

Owned Reception List<AutomatonOpaqueObject> Read

Owned Rule List<AutomatonOpaqueObject> Read

Owned Template Signature AutomatonOpaqueObject Read

Owned Trigger List<AutomatonOpaqueObject> Read

Owned Use Case List<AutomatonOpaqueObject> Read

Owning Package List<AutomatonOpaqueObject> Read

Owning Template Parameter N/A -

Owner AutomatonOpaqueObject Read/Write

Package AutomatonOpaqueObject Read

Package Import List<AutomatonOpaqueObject> Read

Part List<AutomatonOpaqueObject> Read

Participates In Activity List<AutomatonOpaqueObject> Read

Participates In Interaction List<AutomatonOpaqueObject> Read

Powertype Extent List<AutomatonOpaqueObject> Read

Qualified Name List<AutomatonOpaqueObject> Read

Realized Interface N/A -

Realizing Component List<AutomatonOpaqueObject> Read

Realizing Element List<AutomatonOpaqueObject> Read

Redefined Classifier List<AutomatonOpaqueObject> Read

Redefined Element List<AutomatonOpaqueObject> Read

Redefinition Context List<AutomatonOpaqueObject> Read

Representation N/A -

Role List<AutomatonOpaqueObject> Read

Specific Classifier List<AutomatonOpaqueObject> Read

Specifying Component List<AutomatonOpaqueObject> Read

Specifying Element List<AutomatonOpaqueObject> Read

Supplier Dependency List<AutomatonOpaqueObject> Read

Template Binding List<AutomatonOpaqueObject> Read

Template Parameter N/A -

To Do String Read/Write

Use Case List<AutomatonOpaqueObject Read/Write

Visibility String Read/Write
29 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
var classA = AutomatonMacroAPI.getOpaqueObjectByPath("ClassA");

var classB = classA._getChild(“ClassB”);

2.6.5 Getting the Owner of an Element

You can get the owner of an element by typing the following:

• <variableName>._getOwner()

If the above method cannot find the owner, for example Model Data, it will throw an error.

To get the owner of an element named ClassA, for example, type:

var classA = AutomatonMacroAPI.getOpaqueObjectByPath("ClassA");

var classB = classA._getOwner();

2.6.6 Creating a New Element

You can create a new element by using its Meta-class name, such as a Class in Standard UML or a
Requirement in SysML by using the following method:

• AutomatonMacroAPI.createElement(String metaClassName)

This method will return an opaque object of the created element. If the method cannot find the Meta-class, it will
throw an exception.

To create a new Class & Requirement element (Javascript), for example, type:

AutomatonMacroAPI.createElement("Class");

AutomatonMacroAPI.createElement("Requirement");

2.6.7 Creating a Relationship Between Elements

You can create a relationship between elements by typing:

• AutomatonMacroAPI.createRelationship(AutomatonOpaqueObject opque1,
AutomatonOpaqueObject opque2, String relationName)

To create a Copy & Abstraction relationship between Element1 and Element2 (Javascript), for example, type:

var a = AutomatonMacroAPI.getOpaqueObjectByPath("Element1");

var b = AutomatonMacroAPI.getOpaqueObjectByPath("Element2");

AutomatonMacroAPI.createRelationship(a, b, "Copy");

AutomatonMacroAPI.createRelationship(a, b, "Abstraction");
30 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
2.6.8 Removing an Element

You can remove an Element from MagicDraw by typing the following:

• AutomatonMacroAPI.removeElement(AutomatonOpaqueObject opaqueObj)

To remove an Element1 (Javascript), for example, type:

var a = AutomatonMacroAPI.getOpaqueObjectByPath("Element1");

AutomatonMacroAPI.removeElement(a);

2.6.9 Adding a Stereotype to an Element

You can apply a stereotype to an element by typing either:

(i) AutomatonMacroAPI.addStereotype(AutomatonOpaqueObject opaque,
AutomatonOpaqueObject opaqueStereotype)

(ii)AutomatonMacroAPI.addStereotypeByStereotypeName(AutomatonOpaqueObject
opaque, String stereotypeName)

To add a StererotypeA to ClassA (Javascript), for example, type:

var classA = AutomatonMacroAPI.getOpaqueObjectByPath("ClassA");

var stereotypeA = AutomatonMacroAPI.getOpaqueObjectByPath("StereotypeA");

AutomatonMacroAPI.addStereotype(classA, stereotypeA);

2.6.10 Removing a Stereotype from an Element

You can remove a Stereotype from an element by typing either:

(i) AutomatonMacroAPI.removeStereotype(AutomatonOpaqueObject opaque,
AutomatonOpaqueObject opaqueStereotype)

(ii)AutomatonMacroAPI.removeStereotypeByStereotypeName(AutomatonOpaqueObj
ect opaque, String stereotypeName)

To remove a StereotypeA from ClassA (Javascript), for example, type:

var classA = AutomatonMacroAPI.getOpaqueObjectByPath("ClassA");

var stereotypeA = AutomatonMacroAPI.getOpaqueObjectByPath("StereotypeA");

AutomatonMacroAPI.removeStereotype(classA, stereotypeA);
31 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
2.6.11 Printing Element Details

If you want to know the method that is used in the opaque object of an element, you can print the element
details by typing the following:

• AutomatonMacroAPI.printElementDetail(AutomatonOpaqueObject opaque);

This method will print the field, constructor, and method that belong to the opaque object in the MagicDraw
Message dialog.

To print the details of ClassA, for example, type:

var classA = AutomatonMacroAPI.getOpaqueObjectByPath("ClassA");

AutomatonMacroAPI.printElementDetail(classA);

2.7 Recording Macros

Macro Engine has the capability to record changes in a model. It uses opaque objects to generate macros and
record them. This capability is especially useful when you want to redo some of your repetitive tasks.

The following is a list of actions that you can record:

• Creating UML, Stereotype, and DSL elements

• Creating relationships between UML, Stereotype, or DSL elements

To record a macro:

1. Click Tools > Macros > Record Macro... on the MagicDraw main menu. The Record Macro
dialog will open (Figure 20).

Figure 20 -- Record Macro Dialog

NOTE: You cannot move the element defined as a record scope during
recording.
32 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
2. Select a macro language in the Language box (you will see the default macro language that
you have previously selected in that particular box (see 2.1 Selecting a Default Macro
Language).

3. Select the Define record scope check box and click the Model Scope “...” button to locate a
scope in the Containment tree. The generated macros will later record the change in the
element by using a relative path that refers to the defined scope.

4. Click Start to start recording.
5. Work with the model in the scope you have defined.
6. Click Stop to stop recording. The Record Macro dialog will close and the Create Macro dialog

will open, showing the recorded macros (Figure 21).

7. Click either Save or Run.

NOTE: • If you do not open a project, the menu Tools > Macros > Record
Macro... will be disabled.

• You can select a record scope only before you start recording
• You cannot change a record scope during recording.
• If you do not define a record scope, the model Data will become the

record scope.
• If you click the Cancel button, the Record Macro dialog will be

closed.
• If you click the Start button, it will be changed to Pause and the

Stop button will enabled.
• You cannot alter the Language, Define record scope, or Model

Scope options after you click the Start button.
• If you click the Pause button, the recording will pause and the button

will be changed to Resume.
• If you click the Resume button, the following things will happen:

• the recording will continue

• the button will be changed to Pause
• The recording mechanism of Macro Engine can generate code for

Beanshell, Groovy, Javascript (Nashorn and Rhino), JRuby, and
Jython. Unsupported languages will be filtered out of the Language
box.
33 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Working with Macro Engine
Figure 21 -- The Create Macro Dialog after Successful Recording
34 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Appendix
3. Appendix
Macro Engine supports five scripting languages: (i) BeanShell, (ii) JavaScript (Nashorn and Rhino), (iii) JRuby,
(iv) Jython, and (v) Groovy.

(i) BeanShell

BeanShell is a lightweight scripting language for Java. The shipped version is 2.1.7. The advantage of using
BeanShell is that its syntax is compatible with Java; therefore, you can use the code assistant feature in most
Java IDE. The BeanShell syntax documentation is available at http://www.beanshell.org/docs.html.

(ii) JavaScript

JavaScript is a scripting language based on Java syntax. The documentation is available at:

http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
index.html and https://developer.mozilla.org/en/Rhino_documentation.

(iii) JRuby

JRuby is a 100% pure-Java implementation of the Ruby programming language. Macro Engine uses JRuby
1.7.11 The documentation is available at http://kenai.com/projects/jruby/pages/Home.

(iv) Jython

Jython, a successor of JPython, is a Python programming language implemented in Java. The documentation
is available at http://wiki.python.org/jython. Besides automating MagicDraw by using Jython
scripting, the plugin development in the Jython programming language is also supported in MagicDraw. For
more information on Jython, see JPython Scripting in MagicDraw OpenAPI User Guide.

(v) Groovy

Groovy is an agile and dynamic language for the Java Virtual Machine. Macro Engine uses Groovy 2.0.1. The
advantage of using Groovy is that its Java-like syntax seamlessly integrates with the existing Java source code
and libraries. It supports many IDEs that provide code completion and debugging. BeanShell scripts can be
easily moved to Groovy, with some modifications. For more information on Groovy, go to http://
groovy.codehaus.org.

3.1 Using Code Completion to Develop BeanShell Scripts

You can use any text editor to develop a scripting language. However, a standard text editor lacks of code
assistant features. Most scripting languages are loose type. For example, to define a variable in JavaScript,
you need to type:

It is difficult to determine what type of "a" later in the source code. With BeanShell, you can use a variable
without declaring it, for example:

Or you can declare it first:

var a;

a = new File("file.txt");
35 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Appendix
Java IDE does not officially support code completion for scripting languages. However, there is a workaround if
you use BeanShell. First you need a Java IDE. If you do not have one, you can select NetBeans because it has
the smallest file size. You can download the latest version of NetBeans at http://www.netbeans.org/
downloads/index.html. The NetBeans Java SE package is enough. Second you need to set up a
MagicDraw classpath.

To set up a classpath point in the MagicDraw library in NetBeans:

1. Click Tools > Libraries on the main menu. The Library Manager dialog will open.
2. Click the New Library button. The New Library dialog will open.
3. Specify a library name, for example, MD16.6. The Library type must be Class Libraries.
4. Click OK to close the New Library dialog.
5. Select your new library in the Libraries tree.
6. Click the Add JAR/Folder... button and add all the JAR files in <MagicDraw>/lib.
7. Click OK to close the Library Manager dialog.

To develop a BeanShell script in NetBeans:

1. Click File > New Project on the main menu to create a Java application project. The New
Project dialog will open.

2. Select Java in the Categories box and Java Application in the Projects box, and then follow
the instructions.

3. Expand your project node in the Project window. The Libraries node will appear.
4. Right-click the Libraries node and select Add Library from the shortcut menu.
5. Select the MagicDraw library that you have previously created (see "To set up a classpath point

in the MagicDraw library in NetBeans:") and click Add Library.
6. Click File > New File on the main menu to add a new Java file.
7. Select Java in the Categories box and Empty Java File in the File Types box, and then follow

the instructions until finish.

You need to create a public static method in a Java file, for example, main()method, to follow the standard
Java programming language. At the end of the file, insert a statement to call the static method. See the
example in create_project_elements.bsh in the <MagicDraw>/samples/product features/macros directory.

3.2 Using NetBeans IDE to Develop Groovy Scripts

You will need NetBeans IDE 6.7.1 or 6.8 with Groovy Plugin to develop Groovy scripts. The Groovy support
comes with NetBeans "Java" and "All" package. If your NetBeans does not have Groovy, download the plugin
through NetBeans Plugin Manager. For more information about adding a new plugin, click IDE Basics >
Plugins > Updating the IDE on the NetBeans Help menu.

Use the following three simple steps to develop and run a Groovy script in NetBeans:

1. Set up a classpath.
2. Develop a Groovy script.

File a = new File("file.txt");

NOTE: The official filename extension for BeanShell is .bsh. However, you
can add a .java file to the BeanShell scripting language.
36 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Appendix
1. To set up a classpath:

1. Click Tools > Libraries on the main menu. The Library Manager dialog will open.
2. Click the New Library button. The New Library dialog will open.
3. Specify a library name, for example, MD16.8. The Library Type must be Class Libraries.
4. Click OK to close the New Library dialog.
5. Select your new library in the Libraries tree.
6. Click the Add JAR/Folder... button and add all the JAR files in <MagicDraw>/lib.
7. Repeat steps 2 to 6 to add the Groovy library that is in <MagicDraw>/plugins/

com.nomagic.magicdraw.automaton/engines/groovy-2.0.1/embeddable/groovy-all-2.0.1.jar.
8. Click OK to close the Library Manager dialog.

2. To develop a Groovy script:

1. Click File > New Project on the main menu to create a Java application project. The New
Project dialog will open.

2. Select Java in the Categories box and Java Application in the Projects box, and then click
Next.

3. Choose a project location. Be sure that you do not select Create Main Class.
4. Click Finish.
5. Expand your project node in the Project window. The Libraries node will appear.
6. Right-click the Libraries node and select Add Library from the shortcut menu.
7. Click File > New File on the main menu to add a new Groovy file.
8. Select Groovy in the Categories box and Groovy Script in the File Types box.
9. Follow the instructions until finish.

3.3 Using Eclipse to Develop Groovy Scripts

Use the following three simple steps to develop and run a Groovy script in NetBeans:

1. Install Groovy-Eclipse Plugin.
2. Develop a Groovy script.

1. To install Groovy-Eclipse Plugin:

1. Go to http://groovy.codehaus.org/Eclipse+Plugin.
2. Follow the instructions for installing Groovy-Eclipse Plugin.

2. To develop a Groovy Script:

1. Create a Groovy project.
2. Right-click the project in Package Explorer and click Properties.
3. Click Java Build Path in the tree on the left-hand side. Click the Libraries tab on the right pane.
4. Click Add External JARs to add all the JAR files in <MagicDraw>/lib and in <MagicDraw>/

plugins/com.nomagic.magicdraw.automaton/engines/groovy-2.0.1/embeddable/groovy-all-
2.0.1.jar.

5. Click OK to close the dialog.
6. Create a new Groovy class in the project. Remove a class declaration, and then put the script

there.
37 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Appendix
3.4 Installing Gems for JRuby

To install a gem for Ruby engine inside MagicDraw:

1. Open command line.
2. Go to folder <MagicDraw folder>\plugins\com.nomagic.magicdraw.automaton\engines").
3. Enter the following command to install a gem.

Once the gem has been installed, you can use it in MagicDraw Macro Engine, for example:

The above example shows how to create a macro that can generate a unique ID by using a gem.

To install a gem for the existing Ruby environment on your machine and use it in Macro Engine:

1. Add the following properties to specify the home and library of JRuby in <MagicDraw>/bin/
mduml.properties under JAVA_ARGS section (assuming you have JRuby installed in C:/jruby-
1.5.3 on your machine).

For example:

java -jar jruby-complete-<version>.jar -S gem install [--user-
install] <gem name1> <gem name2> ...

NOTE: • <version> is the version of the JRuby, for example,
1.5.1 or 1.6.7.2.

• <gem name> is the name of a gem.
• The three dots (...) mean that you can type a list of gem names

there.

require 'java'
require 'rubygems'
require 'uuid'

Application = com.nomagic.magicdraw.core.Application
uuid = UUID.new
Application.getInstance().getGUILog().log(uuid.generate);

-Djruby.home\="C:/jruby-1.5.3" -Djruby.lib\="C:/
jruby-1.5.3/lib”

...
JAVA_ARGS=-Xmx800M -XX\:PermSize\=40M -
XX\:MaxPermSize\=150M -Djruby.home\="C:/jruby-1.5.3"
-Djruby.lib\="C:/jruby-1.5.3/lib”
38 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Appendix
2. Change the JRuby library path to navigate to your jruby.jar in <MDdir>/plugins/
com.nomagic.magicdraw.automaton/plugin.xml.

3.5 Adding a Scripting Language to MagicDraw

You can add a new scripting language that supports JSR-223 to MagicDraw by editing the Macro Engine's
plugin.xml file.

To add a new scripting language:

1. Open the plugin.xml file in <MagicDraw>/plugins/com.nomagic.magicdraw.automaton/
plugin.xml.

2. Add the following jar file tags to the runtime section and save the file.

The path to the jar file is relative to <MagicDraw>/plugins/com.nomagic.magicdraw.automaton or the
absolute pathname can be used, for example, if you want to add Sleep programming language, add the
following tag to the runtime section:

A slash (/) is used as a directory separator for all platforms, including Windows. The new language will be
displayed in most of the Macro Engine dialogs, for example, in the Macros section in the Environment
Options dialog, the Create Macro dialog, and in the Macro Information dialog. The language name is
automatically configured from the information inside the jar file. This version of Macro Engine does not allow
you to modify the language name.

3.5.1 Script Filename Extension Filter

When you open an Open file dialog to browse for a script file in Macro Engine, you can find the filename
extension for the script file in the dialog file filter. If you have added a new scripting language to MagicDraw, for

...
<library name="c:/jruby-1.5.3/lib/jruby.jar"/>

NOTE: • The command in this section should run in <MDdir>/plugins/
com.nomagic.magicdraw.automaton/engine.

• If you have a whitespace in the property file path, you need to type a
double quote to wrap both the property and its value, for each
property, for example:

“-Djruby.home=C:/my white space/jruby-1.5.3" “-
Djruby.lib=C:/my white space/jruby-1.5.3/lib”

...
<library name=”<path to jar file>”/>

...
<library name=”c:/sleep_2.1.jar”/>
39 Copyright © 2009-2015 No Magic, Inc.

MACRO ENGINE
Appendix
example, Sleep programming language, Macro Engine will add the filename extension (*.sl)” in the Open file
dialog (Figure 22).

Figure 22 -- New Script Extension in File Type Filter

The filename extensions are derived from jar files. There can be more than one filename extension for each
engine. However, the current Macro Engine version only shows the first filename extension that is queried from
the engine jar file.

NOTE: • You can remove a scripting language from Macro Engine by
removing the associated library tag in the plugin.xml file. Once the
tag has been removed, the language will be removed from all of the
dialogs in Macro Engine. However, the script configured to be used
with the language will not be removed from MagicDraw. The
language of the script will be reset to the default language, which
has been previously configured in the MagicDraw Environment
Options dialog.
40 Copyright © 2009-2015 No Magic, Inc.

	Contents
	1. Introduction
	2. Working with Macro Engine
	2.1 Selecting a Default Macro Language
	2.2 Creating a Macro
	2.3 Adding a Macro and Editing Macro Information
	2.3.1 Opening Macro Information Dialog
	2.3.2 Adding a Macro and Its Information
	2.3.3 Editing Macro Information
	2.3.4 Macro Information Dialog Mnemonic Keys

	2.4 Deleting and Executing Macros
	2.4.1 Deleting a Macro
	2.4.2 Executing a Macro
	2.4.3 Organizing Macros Dialog Mnemonic Keys

	2.5 Macro Keyboard Shortcuts
	2.5.1 Assigning a Keyboard Shortcut to a Macro
	2.5.2 Removing Keyboard Shortcuts from Macro

	2.6 Opaque Objects
	2.6.1 Getting an Opaque Object
	2.6.2 Getting Element Property Values
	2.6.3 Setting Element Property Values
	2.6.4 Getting the Child of an Element
	2.6.5 Getting the Owner of an Element
	2.6.6 Creating a New Element
	2.6.7 Creating a Relationship Between Elements
	2.6.8 Removing an Element
	2.6.9 Adding a Stereotype to an Element
	2.6.10 Removing a Stereotype from an Element
	2.6.11 Printing Element Details

	2.7 Recording Macros

	3. Appendix
	3.1 Using Code Completion to Develop BeanShell Scripts
	3.2 Using NetBeans IDE to Develop Groovy Scripts
	3.3 Using Eclipse to Develop Groovy Scripts
	3.4 Installing Gems for JRuby
	3.5 Adding a Scripting Language to MagicDraw
	3.5.1 Script Filename Extension Filter

