
`

Requirements Writing in SysML

 Andrius Armonas
Product Manager
andrius.armonas@nomagic.com

mailto:andrius.armonas@nomagic.com

 © 2011 No Magic , Inc. 2

Contents

Requirement Layers .. 3

Contents of the Business Requirements Layer ... 4

Contents of the Concrete Requirements Layer ... 5

Domain Models .. 6

Requirement Diagram Ownership ... 6

Element Layout in Requirement Diagrams .. 7

Requirement Hyperlinking ... 10

Using SysML Requirements Tables .. 10

Modeling GUI Requirements ... 10

Requirement Decomposition ... 11

Containment vs. Derivation vs. Trace .. 12

«satisfy» relationship ... 12

 © 2011 No Magic , Inc. 3

This document proposes structuring and styling rules that help writing requirements using the
SysML language as well as specific MagicDraw capabilities that support this process.

Prerequisites: basic MagicDraw knowledge; basic knowledge of the SysML language
requirements part1.

The biggest issue users have when they start writing requirements using the SysML language is
that there is little information on how to properly layout the requirement diagrams, how to relate
them to other UML or SysML diagrams, how to structure the requirements project into layers,
what the granularity of the requirements should be, how evolution of the requirements should be
handled, etc. In other words, there is quite a lot of information describing language concepts
themselves, not so many practical experiences describing how to use that language in the real-
world.

In this guide, we share No Magic, Inc. experience using the SysML language for developing
MagicDraw product itself. We hope that this document can lead to a two-way sharing of
experience and ideas – if you as a reader have suggestions or questions, you are very welcome
for a discussion.

Requirement Layers

Every product (tool, plugin, or framework) should have a single MagicDraw requirements project
which should hold requirements for the current state of the product. The recommended name for
the requirements project is “<Tool | Plugin name | Framework > Requirements”, e.g. “Cameo
Infrastructure Requirements” or “MagicDraw Requirements”.

The requirements within a project should be expressed in the “shall” form stating how the
system should work instead of specifying what has to be changed from the current state.

FIGURE 1 Package structure of a requirements project.

A requirements project should have a single root package called Requirements which should
contain all the requirements under it (directly or indirectly). It should be shared so that the
development and QA could use the requirements for their needs.

The Requirements package should have three packages under it (see FIGURE 1):

1
 Recommended books to get acquainted with the requirements part of the SysML language:
- Tim Weilkiens. Systems Engineering with SysML/UML: Modeling, Analysis, Design (The MK/OMG
Press)
- Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The Systems Modeling
Language (The MK/OMG Press)

 © 2011 No Magic , Inc. 4

 Logical Domain. This package should contain domain models expressed in UML class
diagrams. More information on this is provided in the following chapters of this
document.

 Business. This package should contain high-level (business) requirements.
Requirements in this package should be independent of the requirements specified
elsewhere in this project.

 Concrete. This package should contain requirements that implement or satisfy the
business requirements. Requirements in this package should only depend on the
requirements specified in the Business package via the «derive» relationships. For
example if the business requirement is ‘The system shall track changes in projects’, then
its counterpart in concrete requirements could be ‘The system shall support element-
level versioning’.

FIGURE 2 summarizes what has been described so far. It shows the dependencies between the
requirements in top-level requirement packages expressed as «derive» relationships.

FIGURE 2 Dependencies between requirements in top-level packages.

Contents of the Business Requirements Layer

The Business requirements package should have a single non-derived requirement root element
(we will further refer to this element as to root requirement in this document). There can be other
root requirements but they can only be derived directly or indirectly from the root requirement. In
order to emphasize that there is only a single true root element, other root elements should be
moved into packages which represent logical units of a system. Non-derived and derived root
elements should be owned by the packages. Other requirements should be owned by
requirements. In other words, the requirement should either be a root requirement, or belong to
the root requirement directly or indirectly, or be derived from the requirements that belong to the
root requirement directly or indirectly.

 © 2011 No Magic , Inc. 5

The root requirement should be named the same as the framework/tool/plugin is named (without
version), e.g. Cameo Infrastructure.

There should be a single diagram directly under the Business package or owned by the root
requirement. It should be the starting point for reading framework/tool/plugin requirements (e.g.
its name could be High-Level Requirements). This diagram should have a symbol representing
the root requirement and (possibly) its directly owned requirements.

The sample structure of the Business package is shown in FIGURE 3. There is a root
requirement under this package and a single diagram graphically representing it. There is also a
bunch of packages which contain requirements derived directly or indirectly from the root
requirement.

FIGURE 3 Structure of the Business package.

Contents of the Concrete Requirements Layer

As stated earlier, requirements in the Concrete package should have requirements that
“implement” or satisfy requirements in the Business layer. Requirements in this package should
be derived from the requirements in the Business package. Generally, the same rules from the
Business package apply here except that there is no root requirement. All the requirements here
are derived and should be owned by packages which on their own should be owned by other
packages or the Concrete package. As for the contents of the packages under the Concrete
package, they should contain both functional and GUI requirements.

Sample structure for the Concrete package is shown in FIGURE 4.

FIGURE 4 Structure of the Concrete package.

 © 2011 No Magic , Inc. 6

Domain Models

Domain models should be owned by the Logical Domain package (see FIGURE 5). Each
package should be structured on its own. Package structure should be created in accordance to
the logical parts of a modeled system.

FIGURE 5 The Logical Domain Package.

Domain models are be modeled using class diagrams. Sometimes state machine, activity or
sequence diagrams are also used in addition to class diagrams. Class diagrams should be
owned by the packages residing in the Logical Domain package. Sometimes it is needed to
describe the overall domain model of a particular feature in several aspects. In such a case
each aspect shall be modeled in a separate class diagram. The diagrams describing separate
aspects should still be owned by the same package that holds classes describing the feature.

Requirement Diagram Ownership

Requirement diagrams should be owned by the requirements they represent. In some cases
requirement diagrams can be placed next to the represented requirements. This approach is
less recommended as the diagram in this case is not kept together with the requirement and all
refactoring-related actions should be performed twice on both the requirement and the diagram
(e.g. moving a requirement to new location will require moving the diagram to another location
too). This may lead to situations where diagrams are scattered over the model in different places
than the represented requirements. This would make reading the requirements model quite a
hard task.

In FIGURE 6, the root requirement is named Cameo Infrastructure. There is a diagram High-
Level Requirements that represents this requirement and is owned by the Business package.
There is also a diagram called Scalability Requirements, which is owned by the Scalability
requirement and it graphically represents the Scalability, Storage, and Distribution requirements
and their subrequirements.

 © 2011 No Magic , Inc. 7

FIGURE 6 Ownership of Requirement Diagrams.

Element Layout in Requirement Diagrams

FIGURE 7 Requirement diagram areas.

There should be mainly two areas in each requirement diagram (see FIGURE 7 for an example):

 Navigation area. There should be an area in the diagram for putting links to/from related
diagrams (e.g. there is a yellow rectangle shape at the top left corner in the diagram

 © 2011 No Magic , Inc. 8

shown in FIGURE 7 holding hyperlinks to domain models and related requirement
diagrams). If the requirement diagram refines a requirement from another requirement
diagram, the Navigation area should have a hyperlink to that diagram.

 Requirements modeling area. There should be a single root node and a certain level of
its owned requirements in a single requirement diagram. One nesting level is
recommended. However, if the number of requirements in each nesting level is small
(e.g. 1-4 requirements), there can be more nesting levels in a single diagrams.
Requirements that have more than 5 owned requirements should be refined in separate
diagrams. Having more than one root node would possibly mean that the navigation
area would contain backlinks to different contexts which could possibly confuse the
reader if he/she wanted to navigate to objects from a single context. Requirements from
other contexts, e.g. derivation targets, should be of a different color (for example the
color could be yellow as shown in FIGURE 7). This is required to distinguish the
requirements in the current context from the requirements in other contexts.

FIGURE 8 Vertical requirement layout.

Requirements in the Requirement modeling area can be laid-out in three different ways:

 Horizontally. In this layout, requirements of the same nesting level are laid-out
horizontally. Nested requirements are positioned below the owning requirement by
aligning the center of the whole row of requirements to the center of the owning
requirement. This layout type is handy when requirement texts are not large (and they

 © 2011 No Magic , Inc. 9

should not be large; if they are – they should be decomposed into several
requirements). Requirements in this layout are read in the left-to-right, depth first order.
Horizontal layout is the recommended layout. A sample of horizontal requirement
layout is depicted in FIGURE 7.

 Vertically. In this layout, requirements of the same nesting level are laid-out vertically.
Nested requirements are positioned below the owning requirement by shifting the whole
column of requirements to the right relatively to the owning requirement. This layout type
is handy if there is a list of requirements whose texts take a considerable amount of
space. A sample of vertical alignment is depicted in FIGURE 8.

 Horizontally and vertically in a single diagram (mixed layout). Sometimes it is useful to
mix horizontal and vertical layouts in a single diagram, e.g. for saving diagram space.
FIGURE 9 shows a sample requirement diagram where requirements Reusable Dialogs,
General Requirements for a Dialog Window, and Open Dialogs Only When Connected to
Server are laid-out horizontally, where others are laid-out vertically to save space (this is
much more readable and understandable than organizing the requirements horizontally
in this particular case).

FIGURE 9 Mixed requirement layout.

Note

This section only describes three layouts that are most common, however depending on
the situation you can layout requirements differently, e.g. when you have only derived
requirements in a single diagram you may want to use something different.

 © 2011 No Magic , Inc. 10

Requirement Hyperlinking

Requirements should have hyperlinks to the requirement diagrams in the following cases:

 If the requirement is refined with another diagram, then it should have a hyperlink to the
refining diagram;

 If the requirement B is derived from the requirement A then both A and B should have
hyperlinks to the diagrams in which they are described if these diagrams are different.
The diagram where A is described should have a symbol representing B and the
derivation path to B. The diagram where B is described should have a symbol
representing A and the derivation path to A.

Using SysML Requirements Tables

FIGURE 10 Requirements table.

In some cases, requirements tables (see FIGURE 10) can be used instead of ordinary
requirements diagram. This diagram is mostly useful in situations where there is a single
requirement which has one nesting level of requirements under it. It is worth noting that the table
is not capable of showing derivations and other relationships, thus the usage of this table is
limited currently. In cases where relationships and related elements need to be displayed, the
Generic Table can be used. This diagram is not specifically devoted for requirements, but
requirements can be managed in it too.

Modeling GUI Requirements

It is recommended to use a single template for modeling all GUI requirements. An example of
such a template is described in this subsection.

A diagram representing requirements for a single window should at least satisfy the following
requirements:

 It should have a single root requirement that groups requirements for the whole window;

 Requirements directly owned by the root requirement should describe:

o How the window is opened (by clicking on some button, automatically, etc.);

o Title of the window;

o Any informational messages or descriptive texts the window has, e.g. texts that
describe what the window does;

o Data management components. Usually requirements for data tables or data
input/editing fields are placed under this requirement;

 © 2011 No Magic , Inc. 11

o Data management buttons. Buttons that perform actions on entered or selected
data are placed under this requirement.

 In MagicDraw, it is strongly recommended to use the User Interface Modeling Diagram
for sketching the GUI. If this diagram is used, a sketch of the dialog should be created in
a separate diagram to which a hyperlink should be created from the root requirement.
Alternatively the Diagram Overview shape could be used to display contents of the GUI
in the requirements diagram (see FIGURE 11 for an example). If the User Interface
Modeling Diagram cannot be used, there should be a sketch of the dialog placed in the
same diagram and it should be attached to the root requirement.

A sample requirements diagram of the Open Server Project window is shown in FIGURE 11.

FIGURE 11 GUI requirements for a single window.

Requirement Decomposition

When writing requirements in SysML a question when to decompose a requirement into other
requirements arises quite often. The rules here are as follows:

 if some part of the requirement is going to be used somewhere else, e.g. some other
requirement derives from it, or it is a subject to decomposition itself, then the requirement
should be decomposed into smaller requirements

 if the requirement has information from different (sub)topics, it should also be
decomposed into subrequirements

 if parts of the requirement are not used by any other requirement and the requirement
holds information that naturally describes the same topic or thing, but the text of the
requirement becomes too big (e.g. 8-10 sentences), it should still be decomposed into
several requirements for better readability

 © 2011 No Magic , Inc. 12

Containment vs. Derivation vs. Trace

It is important to distinguish when to use derivation and when containment.

If a requirement contains or owns other requirements, it serves as a grouping requirement and
does not enforce any true requirements itself. Its text field usually describes the group of
requirements in general (a brief text describing what are all owned requirements for), but does
not really imply any requirements that should be directly implemented. So, if it is needed to only
structure the requirements, the containment should be used.

If there is a relationship of the supplier-client, producer-consumer, reason-consequence,
interface-implementation, need-satisfaction, abstract-concrete type between requirements, then
the «derive» relationship should be used between them, not containment. Derivation targets
should be requirements playing roles specified on the left hand side in the aforementioned
relationship types (client, consumer, reason, etc.), derivation sources should be requirements
playing roles specified on the right hand side (supplier, producer, consequence, etc.). In
essence, the following can be used to understand if the derivation should be modeled or not: if
we have a requirement A related with requirements B, C, and D such that after changing the
requirement A, requirements B, C, and D should be reviewed, then B, C, and D should be
derived from A.

The «trace» relationship only signifies that the requirement is somehow related to any other the
model element. This relationship does not even specify the direction of the relationship (even if
there is an arrow, there is no direction, the arrow has no meaning). An important aspect here is
that the «trace» relationship is only modeled between the requirement and other model
elements (non-SysML-requirements).

«satisfy» relationship

The «satisfy» relationship describes how a design or implementation model satisfies one or
more requirements. A system modeler specifies the system design elements that are intended
to satisfy the requirement, e.g. architecture classes satisfying the requirements. This relationship
should not be used between requirements.

 © 2011 No Magic , Inc. 13

About the Author

Andrius Armonas
Product Manager
andrius.armonas@nomagic.com

Andrius is the MagicDraw Product Manager and MagicDraw Analyst Team
Manager with more than ten years of experience in software development.
As a Product Manager, he is responsible for setting directions for the

product, its roadmap and vision, and selecting features for each new version of MagicDraw. His
responsibilities also include understanding the market and the competitive environment. As the
Analyst Team Manager, Andrius is responsible for the MagicDraw R&D team, ensuring
requirements quality and completeness, requirements gathering and specification processes.

Andrius joined No Magic as a System Analyst and trainer. He was responsible for teamwork-
related features such as branching and the Merge plugin. This work included work from the
initial product ideas to final product delivery, various diagramming improvements, and research
related to supporting new standards. Andrius has conducted numerous training in Europe.
Andrius is an OMG Certified UML Professional.

Contacts

 No Magic, Inc.

One Allen Center, 700
Central Expressway South,
Suite 110 Allen, TX 75013
Phone: +1-214-291-9100,
Fax: +1-214-291-9099
E-mail: sales@nomagic.com

No Magic Europe, UAB

Savanoriu ave. 363, Kaunas
LT - 49425, Lithuania
Phone:+370-37-324032,
Fax:+370-37-320670
E-mail: sales@nomagic.com

No Magic Asia

719 KPN Tower, 22nd floor,
Rama IX Road, Bangkapi, Huaykwang,
Bangkok 10310, Thailand
Phone: +66 2717 0250
Fax: +66 2717 0251
E-mail: nomagicth@nomagicasia.com

mailto:andrius.armonas@nomagic.com

