e e B —~ =
= ——;‘-/{/= %
¥ T =2 7 %S 4
= El=——[N="=

— - & —
== =<4
]

OBJECT MANAGEMENT GROUP

@

Date: March 2015

UNIFIED o

MODELING
LANGUAGE ™

OMG Unified Modeling Language ™ (OMG UML)

Version 2.5

OMG Document Number formal/2015-03-01
Normative Reference: http://www.omg.org/spec/UML/2.5

Associated Normative Machine Consumable Files:

http://www.omg.org/spec/UML/20131001/Primitive Types.xmi
http://www.omg.org/spec/UML/20131001/UML.xmi
http://www.omg.org/spec/UML/20131001/StandardProfile.xmi
http://www.omg.org/spec/UML/20131001/UMLDI.xmi

Version 2.5 is formally a minor revision to the UML 2.4.1 specification, having been substantially re-
written as solicited by the UML Specification Simplification RFP ad/09-12-10. It supersedes
formal/2011-08-05 (Infrastructure) and formal/2011-08-06 (Superstructure).

Copyright © 2009-2013 88Solutions

Copyright © 2009-2010 Artisan Software Tools

Copyright © 2001-2013 Adaptive

Copyright © 2009-2010 Armstrong Process Group, Inc.

Copyright © 2001-2010 Alcatel

Copyright © 2001-2010 Borland Software Corporation

Copyright © 2009-2010 Commissariat a I'Energie Atomique
Copyright © 2001-2010 Computer Associates International, Inc.
Copyright © 2009-2010 Computer Sciences Corporation

Copyright © 2009-2013 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2009-2013 Deere & Company

Copyright © 2009-2013 European Aeronautic Defence and Space Company
Copyright © 2001-2013 Fujitsu

Copyright © 2001-2010 Hewlett-Packard Company

Copyright © 2001-2010 I-Logix Inc.

Copyright © 2001-2013 International Business Machines Corporation
Copyright © 2001-2010 IONA Technologies

Copyright © 2013 Ivar Jacobson International SA

Copyright © 2001-2010 Kabira Technologies, Inc.

Copyright © 2009-2010 Lockheed Martin

Copyright © 2001-2010 MEGA International

Copyright © 2009-2010 Mentor Graphics Corporation

Copyright © 2009-2013 Microsoft Corporation

Copyright © 2001-2010 Motorola, Inc.

Copyright © 2009-2010 National Aeronautics and Space Administration
Copyright © 2009-2013 No Magic, Inc.

Copyright © 1997-2015 Object Management Group, Inc

Copyright © 2009-2010 oose Innovative Informatik GmbH
Copyright © 2001-2010 Oracle Corporation

Copyright © 2009-2010 Oslo Software, Inc.

Copyright © 2009-2010 Purdue University

Copyright © 2012-2013 Simula Research Laboratory

Copyright © 2009-2010 SINTEF

Copyright © 2001-2010 SOFTEAM

Copyright © 2009-2013 Sparx Systems Pty Ltd

Copyright © 2001-2010 Telefonaktiebolaget LM Ericsson

Copyright © 2009-2010 THALES

Copyright © 2001-2013 Unisys

Copyright © 2001-2010 X-Change Technologies Group, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.

ii Unified Modeling Language 2.5

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made
to this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

This specification is published under the “RF on Limited Terms” IPR mode listed in the OMG Intellectual Property
Rights Policy Statement, OMG Document ipr/12-09-02, available at: http://doc.omg.org/ipr/12-09-02

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48

Unified Modeling Language 2.5 iii

C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™, Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™,
XMI Logo™, CWM™, CWM Logo™, [IOP™, MOF™, OMG Interface Definition Language (IDL™), and OMG
Systems Modeling Language (OMG SysML™) are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

iv Unified Modeling Language 2.5

OMG'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.htm).

Unified Modeling Language 2.5

L Toto) o1 TSSO ESPRPRRPRPON 1
P2 ©0 101 (o] ¢ 0 111 4 (o1 TNTE TR 3
3 NOMALIVE REIEIENCES. ... oo et 5
4 Terms and DefiNitiONS.co.u ittt e e e e e et e e e e e e e e e e e e raaeas 7
5 NOtationNal CoONVENTIONS.ce e et 9
5.1 Key words for Requirement Statements.............oooiiii e 9
5.2 Annotations on Example DiagramsS........ccoooe oo 9
B Additional INfOrMatioN. ... con e 11
6.1 Specification SImpPlification.............ooooi i 11
6.2 Architectural AlIGNMENT...........ueiiiiiiiii e 11
6.3 ON the SemMaNtiCS Of UML... ... et e e e e e e e e e eanaees 12
6.3.1 Models and What They MOEL............ooiiiiiii e 12
6.3.2 SBIMANTIC ATEAS.. ... et e et e et e et e e e e e e e e e e e eeeat e e eaa s e et e s esaa e eaan e eaneasenaas 13
6.3.3 Stable and Transient Behavioral SEmMantiCs...........uuiiiiiiie i 15
6.4 How to Read this Specification..............oooiiiiiiii e 16
6.4.1 SPECIfICatioN FOMMAL......ooo i e e e e e e 16
6.4.2 (D E=To | =10 0 o] 4 0T P PPPRPRRRUR 18
6.5 ACKNOWIEAGEMENTS.....coiiiiiiiiiiiiiii ettt e e e e e e e e e e e e e 19
6.5.1 PrIMAry AUTNOIS.ooo ettt ettt e e e e st e e e e s abbe e e e e e s sbneeeeeeanes 19
6.5.2 TEChNICAl SUPPOM. ...t e et e e e e e e b e e e e e e nneeas 19
6.5.3 LR AV LSN =] £ 19
6.5.4 ST o] 0 0114 =Y =TT 20
T COMMON SHTUCIUI. ... e e 21
71 SUMIMIAIY ..ttt e e e ettt oo e e ettt e e e e e eeeeaaeeeeeeeeeess s ss b e e e eeeeaaaaaseesssensssnssnnnas 21
7.2 R OO .. e e 21
7.2.1 T[4 0] 0 0= o2 PP 21
7.2.2 ADSIFACT SYNTAX. ..ottt e e e e e nneeas 21
7.2.3 Y=Y 0 =T 1 (o= TP 22
724 N0 ¢ {0 o N 22
7.2.5 =T 0] 0] [T TR 22
7.3 =T] = 1T 22
7.3.1 ST 0] 0 = 2RSSR 22
7.3.2 ADSITACT SYNTAX.ttt e e e e e e e e e e e e e e e e e e e aaaaeas 23
7.3.3 S BIMIANTICS. ...t e e e e e e raaas 24
7.34 [\ L0] €1 1 (o] o T T 26
7.4 I F= T g[S o =Tt S 27
741 100010 E= T Y2 PR SSO 27
7.4.2 ADSTFACE SYNTAX. ..ot 27
74.3 Y=Y 00 E T Lo TP 27
744 N0 =1 {01 o N 29

Vi

Table of Contents

Unified Modeling Language 2.5

745

7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5

7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5

7.7
7.71
7.7.2
7.7.3
7.74
7.7.5

7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.8.6
7.8.7
7.8.8
7.8.9
7.8.10
7.8.11
7.8.12
7.8.13
7.8.14
7.8.15
7.8.16
7.8.17
7.8.18
7.8.19
7.8.20
7.8.21
7.8.22
7.8.23
7.8.24

7.9
7.91
7.9.2
7.9.3
7.9.4

e 0]][ST 30
Types and MURIPICILY......ccuuei e e e e e e e e e eaeaan s 32
SUMMIAIY ...ttt e e e oo oo e ettt e et e e eeeeaeeeeeeeeaaaassabassaeeeeeeaaeaeeeeeesaaasansssseneneees 32
ADSTFACT SYNTAX. ..ttt e e 33
RS T=T 0 =T o 1o 3SR 33
I\ [o] ¢= 11 [o PP PP PPPPRPP 34
= 0] 0] 1= 3SR 35
(O] 0153 1 =11 OSSO 35
101010 0 F=1 o2 PP PP EPPR 35
F Y o1 i = Lo S 01 = G PSSP 36
RS T=T 0 =T a1 oS EERRRRSRI 36
I (o] ¢= 11T o TSP 36
= 101 o] L= TSP PUPRRN 37
=T 0= g o (=T o Tor =TSR 38
104010 0= o2 PP ERT 38
F N o1 1= Yo)] - PSP 38
ST 0= 10 o= 3SR PURRN 38
I [0 £ 11T o TS 39
e 0] 0] [T PR 39
ClasSifier DESCIIPLIONS.iiii it e e e e e e e e aaaeeeeeeenaareee 40
F Y o1 i = Lo (o] g T @1 =TT PP PP PURURRRRN 40
(O70] 0 001=T o 4 L0 =T R RPPOPPI 40
1070 g 1S3 i = 1o B [0 = TS S 41
DEPENAENCY [CIASS]....ccuuutiiiiiieiiii et e e ettt e e e e e e e e e e s e s et a e aeeeeeaaaeaeeeesaeaaannnnrnnes 42
DirectedRelationship [AbStract Class]...........coooiiiiiiiiiiiieeeee e e e 42
Element [ADSIract Class]......oooi ittt e e e e e e e e e e e e e e 43
Elementimport [Class]......ccooii oo aa e 44
MultiplicityElement [ADSIract Class].........ooouueiiiiiiiiiiii e 45
NamedElement [ADSIract Class].........coiiiiiiiiiiii e 47
Namespace [ADSIraCt CIasS]........uuuiiiiiiiiiiiii i e e e e e e e e e e e eaanes 50
= Tt 1= T 11 [y o oY i 0 = T SRS 52
PackageableElement [ADStract Class]........coou i 52
ParameterableElement [AbStract Class]........ccoou i 53
REAIZALION [CIASS]....uuuuuiiiiiiiiiiiie ettt e asnabssreeeeees 54
Relationship [ADSIract ClIasS].....uuuiiiiiiiiiiiiiie et a e e e e e e e e e 54
TemplateBinding [Class]. .. u i e e e e e e e e e e e e e e e e e aaeeas 55
TemplateParameter [Class]......coo et e e 55
TemplateParameterSubstitution [Class]..........ccccuiiiiiiiiiiiieeee e 56
TemplateSigNature [Class]........cui i e e e e e e e 57
TemplateableElement [ADStract Class]..........ooooiiiiiiiiiiiiiiie e, 58
TYPE [ADSITACE CIASS]....eeeeiiiiiiiie ettt ettt e e s s e e e e e st e e e e e snsbaeeeeeennsbaeeeeeennsees 59
TypedElement [ADSIract Class].........cuuuiiii i e e e 59
LU= Lo T [0 F= T PP PRRR 60
VisibilityKind [ENUMEration].........oooeee e e e e e e 60
ASSOCIation DESCIIPLIONS......coiiiii e e e e e e e e e e e e e 61
A_actual_templateParameterSubstitution [Association]...........cccccviiiiiiiiiiii 61
A_annotatedElement_comment [ASSOCIAtIoN]..........ccooiiiiiiiiiiii 61
A_clientDependency_client [ASSOCIAtioN]...........uiiiiiiiiiii e 61
A_constrainedElement_constraint [ASSOCIation]..........ccooviiiiiiiiiiicc e 61

Unified Modeling Language 2.5 vii

7.9.5 A_default_templateParameter [ASSOCIatioN]..........ccuviiiiiiiiiii e 61

7.9.6 A_elementimport_importingNamespace [Association]............ccoovveeiiiiiiiiiiiii e, 62
7.9.7 A_formal_templateParameterSubstitution [Association]..............c.ooooiiiiiiiiee 62
7.9.8 A_importedElement_import [ASSOCIAtON]........coiiiiiiiiieiee e 62
7.9.9 A_importedMember_namespace [ASSOCIAtioN]...........uuuiiiiiiiiiiiee e 62
7.9.10 A_importedPackage_packagelmport [ASSOCIation]..........ccovuuiiiiiiiiiiieie e 63
7.9.11 A_lowerValue_owningLower [ASSOCIAtION].........coiiiiiiiiiiie e 63
7.9.12 A_mapping_abstraction [ASSOCIAtION].......c.eiii i 63
7.9.13 A_member_memberNamespace [ASSOCIation]...........uuuuiiiiiiiiiiiii e 63
7.9.14 A_nameExpression_namedElement [ASSOCIAtioN].........ccuviiiiiiiiiiiiiiie e 63
7.9.15 A_ownedActual_owningTemplateParameterSubstitution [Association]...........cccccceeveeiiiiiiniinne. 64
7.9.16 A_ownedComment_owningElement [ASSOCIAtION]..........coicuiiiieiiiiiiiee e 64
7.9.17 A_ownedDefault_templateParameter [Association]............ccccccoviiiiiiiiiiiiee e 64
7.9.18 A_ownedElement_owner [ASSOCIAtION]..........ouiiiiiiiiiiiiiiie e 64
7.9.19 A_ownedMember_namespace [ASSOCIAtION]........cccuuiiiiiiiiiiiie e 65
7.9.20 A_ownedParameter_signature [ASSOCIatioN]..........oooviiiiiiiiiiiciie e 65
7.9.21 A_ownedParameteredElement_owningTemplateParameter [Association].............ccccccevvvee. 65
7.9.22 A_ownedRule_context [ASSOCIAtION].........oiiiiie e 65
7.9.23 A_ownedTemplateSignature_template [ASSOCIation]...........oooii i 65
7.9.24 A_packagelmport_importingNamespace [ASSOCIatioN]........cc.coevriiiiiiiiiiiiiiiiiieeee e 66
7.9.25 A_parameterSubstitution_templateBinding [Association]..........cccvviiiiieiiiiiii e 66
7.9.26 A_parameter_templateSignature [ASSOCIAtION]..........coiiiiiiiieiiiiie e 66
7.9.27 A_parameteredElement_templateParameter [Association]..........cccooeeeiiiiiiiiiiiiiiicceeee, 66
7.9.28 A_relatedElement_relationship [ASSOCIAtioN]..........ccooiiiiiiiii i 67
7.9.29 A_signature_templateBinding [ASSOCIAtION]........cuuiiiiiii e 67
7.9.30 A_source_directedRelationship [ASSOCIAtION]..........ccooiiiiiiiiiicce e 67
7.9.31 A_specification_owningConstraint [ASSOCIatioNn].............cooiiiiiiiiiiiieee e 67
7.9.32 A_supplier_supplierDependency [ASSOCIAtION]..........uuiiiiiiiiiieeieie e e e 67
7.9.33 A_target_directedRelationship [ASsOCIation]...........cocoeeiii e 68
7.9.34 A_templateBinding_boundElement [ASSOCIation]..........ccooveiiiiiiiiiiiccee e 68
7.9.35 A_type_typedElement [ASSOCIAtIoON]..........ooiiiiiiiiiiie e 68
7.9.36 A_upperValue_owningUpper [ASSOCIAtioN]... ... 68
8 ValUEBS.... 69
8.1 RS T0 0 1 =T U PURUSR 69
8.2) =T = 69
8.2.1 101010 0 F=1 o2 PP RPP 69
8.2.2 F o1 i = Lo S 01 =) PSP 69
8.2.3 S T=Y g = 0 (o= SRR UPRR 69
8.24 I (o] £= 11T o PSSO 70
8.3 D o] £ =S oo - TP 70
8.3.1 SUMMIAIY ...t eeee ettt e e e e e e e e e e e et e et e eeeeaaeaeeeesaeaa s asssbssaaeeeeeaeaaaeeeseesaansnnssssannneees 70
8.3.2 ADSIFACT SYNTAX. ..ottt e e e e e e e e 71
8.3.3 RS T=T 0 =T o 1o 3PP EURRRSR 71
8.3.4 I\ [o] ¢= 11 [o T U TSRS 72
8.3.5 e 0] 0] [PPSR 72
8.4 1L = T 73
8.4.1 T80] 0= 2SR 73
8.4.2 F N o1 1= Yo) o = PSSR 73
8.4.3 S T= 0 =T a1 (o= SRR 74

viii Unified Modeling Language 2.5

8.44
8.4.5

8.5
8.5.1
8.5.2
8.5.3
8.54
8.5.5

8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8
8.6.9
8.6.10
8.6.11
8.6.12
8.6.13
8.6.14
8.6.15
8.6.16
8.6.17
8.6.18
8.6.19
8.6.20
8.6.21
8.6.22

8.7
8.7.1
8.7.2
8.7.3
8.74
8.7.5
8.7.6
8.7.7
8.7.8
8.7.9
8.7.10
8.7.11
8.7.12
8.7.13
8.7.14
8.7.15
8.7.16
8.7.17
8.7.18

I [= 11T o S 75
= 1 0] 0] 1= 3SR PPRPRN 75
T (=T Y= U 75
101010 0= o2 PP EPP 75
ADSTFACE SYNTAX. ..ot 76
ST g = o (o= U TRUSRN 76
[N\ [o] 2= 11 [o PP PP PPPPRPP 77
= 0] o 1= 3SR 77
Classifier DESCIIPLIONS.ciiiiiii e e e e e e e e e e e e e e e e e s aannnes 78
D10V (o) (@7 = 1] PP PPPRRRTROt 78
DurationConstraint [Class].........uuie ittt e e e e s st e e e e s abeeeeeeeane 78
DUurationInterval [Class]........ccooi it e e e e e e e e e e e e aaaaaaaaes 79
DurationObservation [CIaSS]......uueuiiiiii ittt e e e e e e e e e e e e e e anabeeaees 79
o] (=TT o] I [F= T SRR 80
1] =TTz | [= E1= PP 81
INtervalConStraint [ClassS].........cooiiiiiiieee et e e e e e e e 81
LiteralBoolean [ClassS]..........ccciciuiiiiiiei et e et e e e e e e e e e e e e e et e e e e e e eeaeaeeeeeeaanaaans 82
Literallnteger [Class].... ... ittt e et e e e e ab e e e e s b e e e e an 82
) L= = N T 7 =TT PP 83
LiteralREal [ClasS]......cccccuuriiiiiiei et e et eeaaaaeaeeessaeannnnnnnrnnes 83
LiteralSpecification [ADSIract Class]..........coooiiiiiiiiiiiiieeeee e 84
) (=T = 1S g T 07 = T U 84
LiteralUnlimitedNatural [Class].........cooouiuiiiiiiiiiie e 85
Observation [ADSIract Class].......coeiiiiiiiiiiiiiiiie e e e e et e e e 85
OpaqUEEXPrESSION [ClasS].....uuuiiiiiiiiiiiie ettt e et e e e s saba e e e e s snbeeeeeeeans 85
StHINGEXPrESSION [CIaSS]....ciiuiiiiiieiiiiiiie ettt e e e e e e e e et e e e e e snbee e e e e e ansaeeeeeeansees 87
TIMECONSIrAINT [ClAaSS].....cci i it e e e e e e e e e e e e e e e aaaaeeeaanan 88
TIMEEXPreSSIiON [ClassS]........uuiiiiiiiiiiie et e e e e e e e e neeeas 89
TIMEINEEIVAI [CIASS].....eeeieiiiiieiie et s e e e e e e e e e e 89
TIMeODSErvation [ClassS].........ccoiiiiiiiii et e e e e e e e e e e e eeeaaaaaeeaaeas 90
ValueSpecification [ADSIract ClasS]......uuuiiiiiiiiiiiiiiccc e e e e 90
ASSOCIation DESCIIPLIONS......coiiiii e e e e e e e e e 91
A_behavior_opaqueExpression [ASSOCIatioN].........couiiiiiiiiiiiiiiieeee e 91
A_event_durationObservation [ASSOCIAtioN].......ccviiiieeeiiiii e 92
A_event_timeObservation [ASSOCIAtioN].........cccuuiiiiiiiiiiieeee e 92
A_expr_duration [ASSOCIAtION]....... . e et a e e e e e e 92
A_expr_timeExpression [ASSOCIAtioN]..........cooiiiiiiiiiiicie e 92
A_max_durationInterval [ASSOCIAtION].........cooiiiiiie e 92
A_max_interval [ASSOCIAtION].........oiiiiiiiiiii e 93
A_max_timelnterval [ASSOCIAtIoN].........uuuiiiiiiii e 93
A_min_durationinterval [ASSOCIAtION]...........cooiiiiiiicce e ———- 93
A_min_interval [ASSOCIAtION]..........eiiiiiiiiii e 93
A_min_timelnterval [ASSOCIAtIoON]...........uiiiiiiiiie e 94
A_observation_duration [ASSOCIAtioN]..........cooiiiiiiiiieie e ———— 94
A_observation_timeEXxpression [ASSOCIatioN]...........coeveiiiiiiiiiiiiiie e 94
A_operand_expression [ASSOCIAtION].........oiiiiie e 94
A_result_opaqueEXpression [ASSOCIAtioN]..........u i i 95
A_specification_durationConstraint [Association]............ccccccviiiiiiiiiiiiie e 95
A_specification_intervalConstraint [ASSOCIatioNn]..........ccooiiiiiiiiiiiiiiiiie e 95
A _specification_timeConstraint [ASSOCIatioNn]...........ccoeiiiiiiiiiiiiee e 95

Unified Modeling Language 2.5 ix

8.7.19 A_subExpression_owningExpression [ASSOCIatioN].........cccviiiiiieieiiiiiiiiceeeee e 96
S B O F= 1SS = 4o o PSR R 97
9.1 10101 g = OO PPPPPPPPPPRR 97
9.2 L0 T oY OSSP 97
9.21 RS T0 0 0T 7SS 97
9.2.2 F N o1 1= Yo)] - PSSR 97
9.2.3 S T=T 0 =T a1 oSSR 97
9.24 I [0 = 11T o TS 99
9.2.5 = 1101 o] (=TT U UUPRPPPPPPTPPPPIN 101
9.3 ClasSifier TEMPIAIES.oo et e e e e e e e e aaes 101
9.3.1 S T0 L1010 0= o2 PP TRPRRPP 101
9.3.2 ADSTFACT SYNTAX. ..o 102
9.3.3 ST 0= 1) (o= SRR 102
9.34 [N\ [o] £= 11] o PP T PP OPP PP 103
9.3.5 = 0] o 1= 3PP 104
9.4 Y= (0 =T 105
9.4.1 SUMMIAIY ..eeeeeeiee ettt e e e e e e e e e e e e e ea b e e aeeeeeeeeaaaeeeeeeasaaasasasbaasaseeeeaeaaaeaeesesanaannnssnes 105
9.4.2 F Y o1 i = Lo SV 01 = TSR P 105
9.4.3 RS T=T 0 =T o 1o PR 105
944 I (o] £= 11T o PSS 108
9.5 g 0T 0 1= 1= T PRSP 109
9.5.1 ST [10] 0 0= 2RO 109
9.5.2 F Y 015 = Lo 0 V01 = R 109
9.5.3 ST 0= 1o o= SRR PRSR 109
9.54 1[0 = 11T o PSSR 111
9.5.5 e 0T) [T PR PERR 113
9.6 (@121 ¢ (o] o 1P SPURPRPPPI 114
9.6.1 T[4 0] 0 0= 2 USRS 114
9.6.2 ADSIFACT SYNTAX. .. et naeeas 114
9.6.3 RS T=T 0 =T o 1o SRR 114
9.6.4 N\ [o] £= 11 [T USSP 115
9.6.5 = T 0] 0] 1= 3 URURPPRPRRN 117
9.7 Generalization SetS.........cooi i e e e e ——————————— 117
9.7.1 101010 0 F=1 o2 PP PRP 117
9.7.2 F Y o1 i = Lo SV 01 = USRS 117
9.7.3 S T=Y 0= o) (o= TR PRSRR 117
9.74 1[0 ¢= 11T o PSS 118
9.7.5 [tz 1101 o] (=TT U UUPRPPPPPTPPPPPPON 120
9.8 T TS = g o= 3SR 124
9.8.1 RS T0 L4010 0= o2 PRSP 124
9.8.2 F Y o1 i = Lo 0 V01 = P 124
9.8.3 ST 0= 1o o= RSSO 125
9.8.4 I [0 = 11T o PSS 126
9.8.5 EXAMIPIES. . e e e e e e e e e e e e e e e annnee 126
9.9 ClasSifier DESCIIPLIONS.ciiii it e e e e e e e e e e e e e e e e eeeaeeaaaes 127
9.91 AggregationKind [EnUMEration]...........oooiiiiiiii e 127
9.9.2 BehavioralFeature [ADSIract Class].........cuuiiiiiiiiiii e 128
X Unified Modeling Language 2.5

9.9.3 CallConcurrencyKind [ENUMEration]...........coooiiiiiiiiiiiiee e 129
9.94 Classifier [ADSIraCt Class].........coiiiiiiiiiiiiie e e e e eeeaaaaae s 130
9.9.5 ClassifierTemplateParameter [CIass].......ccccuuiiiiiiiiiiieeee e 134
9.9.6 == B Y o 1S3 = Lo A O = T S 136
9.9.7 LCT=T o T=T =] 2= (o] o T [0 =TS SR 136
9.9.8 GeneralizatioNSet [Class].......ccccuuriiiiiiieiie e e e e e e e e e e e e e e e 137
9.9.9 InstanceSpecification [ClassS]........ccuuiiiiiiiiee e 138
9.9.10 INStANCEVAIUE [ClAaSS].......cco i e e e e e e e e e e e e e aaaaaaaees 139
9.9.11 OPEratioN [ClASS]......cciieciiiiiiee ettt e e e e e e e e e e e e e et e e e e e eeeaeaaaaeaeeeesaaannnrenes 139
9.9.12 OperationTemplateParameter [Class].........ccoii i 142
9.9.13 Parameter [Class]..... .o e e 143
9.9.14 ParameterDirectionKind [Enumeration].............oooorriiiiiiiiii e 145
9.9.15 ParameterEffectKind [ENUMEration]............eeeiiiiiiiiiiiiiiciceeeee e 145
9.9.16 ParameterSet [ClassS].......ooiuueiii et e e 146
9.9.17 L o] 0= 4V 7 =TT OSSR 147
9.9.18 RedefinableElement [ADSIract Class]..........uuuiiiiiiiiiiieiiii e 151
9.9.19 RedefinableTemplateSignature [CIassS]........cuiiiiiiiiiiiiie e 152
9.9.20 R o) 0 = T3 SRS 153
9.9.21 StructuralFeature [AbStract ClassS]........oouuuiiiiiiiiii e 154
9.9.22 RST8] o153 11 U110 o I [F= T SRRSO 154
9.10 AsSOCIation DESCHPLIONS........i i e e e e e e e anaaa 155
9.10.1 A_attribute_classifier [ASSOCIAtioN].........oovuiiiiiiiii e ———— 155
9.10.2 A_bodyCondition_bodyContext [ASSOCIAtION]........cccciiiiriiieiiiiiiie e 155
9.10.3 A_classifier_instanceSpecification [ASSOCIAtioN]...........cccoiiiiiiiiiiiiiiiie e 155
9.10.4 A_classifier_templateParameter_parameteredElement [Association]...........ccccccvveeeiiiiiiiiiinnns 155
9.10.5 A_collaborationUse_classifier [Association].............ccoocciiiiiiiiiiiieee e, 155
9.10.6 A_condition_parameterSet [ASSOCIAtioN]..........ueiiiiiiiiiiiiiiieccceee e 156
9.10.7 A_constrainingClassifier_classifierTemplateParameter [Association]...........ccccocvieiiiiiiiienen. 156
9.10.8 A_contract_substitution [ASSOCIAtION].........coiiiiii e 156
9.10.9 A_defaultValue_owningParameter [ASSOCIatioNn].............oooiiiiiiiiiiiiiieceeceee e 156
9.10.10 A _defaultValue_owningProperty [ASSOCIAtioN].........cccvviiiieiiiiiiiiiiceeeeee e 157
9.10.11 A_definingFeature_slot [ASSOCIAtioN].... ... 157
9.10.12 A_extendedSignature_redefinableTemplateSignature [Association]..............ccccoiieiinnnn. 157
9.10.13 A _feature_featuringClassifier [ASSOCIAtioN]...........ccooiiiiiiiiiiii e 157
9.10.14 A_general_classifier [ASSOCIAtioN].......cccoiiiiiiiiiiii e 157
9.10.15 A_general_generalization [ASSOCIAtION].........coiiiiiii e 158
9.10.16 A_generalizationSet_generalization [ASSOCIAtioN]...........coiiiiiiieiiiiiiiee e 158
9.10.17 A_generalization_specific [ASSOCIAtION].........ccoiiiiiiiiiiie e 158
9.10.18 A_inheritedMember_inheritingClassifier [ASSOCIation]............cceiiiiiiiiiiiii e, 158
9.10.19 A _inheritedParameter_redefinableTemplateSignature [Association]............ccccceeeeeeeiiiiiiinn... 158
9.10.20 A_instance_instanceValue [ASSOCIatioN]........cccooiiiiiiiiii i 159
9.10.21 A_method_specification [ASSOCIAtION].......ccoiiiiiiiieii e 159
9.10.22 A_operation_templateParameter_parameteredElement [Association]..........cccccccciiiiiiiiiiinii, 159
9.10.23 A _opposite_property [ASSOCIAtION].......uuuiiiiiieieee e a e e 159
9.10.24 A_ownedParameterSet_behavioralFeature [Association]............cccoovviiiiiiiiiiiie e 160
9.10.25 A _ownedParameter_operation [ASSOCIAtioN]..........cccooiiiiiiiiiiiiccc e 160
9.10.26 A _ownedParameter_ownerFormalParam [Association]..............cccooiriiiiiiiiciciiee e, 160
9.10.27 A_ownedTemplateSignature_classifier [ASSOCIiation]...........ccuviiiiiiiiiiiiiiiee e, 160
9.10.28 A_ownedUseCase_classifier [ASSOCIAtioN].........ccuueiiiiiiiiiiii e 160
9.10.29 A _parameterSet_parameter [ASSOCIAtIoON]............cooiiiiiiiiiiieeeeeeee e 161
9.10.30 A _postcondition_postContext [ASSOCIAtION]............uuuiiiiiiiiiieiiiicc e 161

Unified Modeling Language 2.5 xi

9.10.31 A_powertypeExtent_powertype [ASSOCIAtioN]...........ccoiiiiiiiiiiiiiiee e 161
9.10.32 A _precondition_preContext [ASSOCIAtION]............ccoiiiiiiiiiiiiieeeee e 161
9.10.33 A _qualifier_associationEnd [ASSOCIAtioN]..........uuuriiiiiiiieeeeii e 161
9.10.34 A _raisedException_behavioralFeature [Association]............cceeeiiiiiiiiiiiiiiiieee e 162
9.10.35 A_raisedException_operation [ASSOCIatioN]........coeviiiiiiiiiiiiii e 162
9.10.36 A _redefinedClassifier_classifier [ASSOCIation]...........cccuvuiiiiiiiiiieeiii e 162
9.10.37 A_redefinedElement_redefinableElement [ASSOCIation]...........ccooiiiiiiiiiiiiiiiiiiiee e 162
9.10.38 A _redefinedOperation_operation [Association]............ooooumiiiiiiiiiiiii e 162
9.10.39 A _redefinedProperty_property [ASSOCIAtION].........ccuiiiieiiiiiiiee e e e 163
9.10.40 A_redefinitionContext_redefinableElement [Association]............ccooiiiiiiiiiiiic e, 163
9.10.41 A_representation_classifier [ASSOCIAtioN]........coiiuuiiiiiiiii e 163
9.10.42 A_slot_owningInstance [ASSOCIAtION]........cccuuiiiiiiiiiii e 163
9.10.43 A_specification_owninglnstanceSpec [Association].............ccooociiiiiiiiiiiiiiieee e 164
9.10.44 A_subsettedProperty_property [ASSOCIAtIoN]...........ooiiiiiiiiiiiiiiiiee e 164
9.10.45 A _substitution_substitutingClassifier [ASSOCIation]............ceeiiiiiiiiiiiiiiiiieeeee e 164
9.10.46 A _type_operation [ASSOCIAtION]........uuuuiiieii i a e e e e e e araan 164
9.10.47 A _value_owningSIot [ASSOCIAtION]........ccccuiiiiiiiiiiiii e —————— 164
10 SIMPIE ClaSSITIEIS. .. .uuueiiiiiiiiiiiiiiiiieei et aaaeaaaseaaesesssenseasssssssnnssnnssnnnsnnnnes 165
(O T S 10T 10 = RO PPPPPPPIR 165
(L B 7= r= 1 Y o1 PP PPOPPPPPP 165
10.2.1 S T0 L4010 0= 2P PPPPOTRPRRPP 165
10.2.2 ADSIFACT SYNTAX. ..o 165
10.2.3 ST 0=) o= 3RS PRRRR 165
10.2.4 [N\ [o] £= 11] o PP T PP OPP PP 166
10.2.5 = 0] o 1= 3PP 166
L0 S 1o | o = LSRR 167
10.3.1 SUMMIAIY .. eeeeieee ettt e e e e e e e e e e e e e e aa b e e aeeeeeeeaaeaeeeeeeasaassssasbsasaneeeaeeaaaaeeeaesanaannnsnnes 167
10.3.2 F Y o1 i = Lo SV 01 =) GRS UROP 167
10.3.3 RS T=T 0 =T o 1o 3SR 167
10.3.4 I (o] £= 11T o PSS 168
10.3.5 EXAMPIES. ..ttt ettt e e e e e e e e e 168
L0 10 =T o = o =TSSP 168
10.4.1 RST8] E=T 7SS U 168
10.4.2 F o1 1= 1o S] = USRS 169
104.3 RS T=T 0 = a1 (o= SRR 169
104.4 1[0 = 11T o PP 170
10.4.5 = 1101 o] (=TT U UUPRPPPPPPTPPPPIN 170
10.5 Classifier DESCHPUONS.ue e e e e e e e e e e aees 172
10.5.1 BehavioredClassifier [AbStract Class].........cooiiiiiiiiiii e 172
10.5.2 D= =l Y oL [F=] O PO PUPT 172
10.5.3 ENUMETAtioN [CIaSS]....cciiiiiiie i e e e e e e e e e e e e e e eeeaaaaa s 173
10.5.4 EnumerationLiteral [Class]..........oiii oo 173
10.5.5 T (=T =Tt @ =T PSR 174
10.5.6 InterfaceRealization [Class]......ccccuuuuieiiiiiiei et e e e e e 175
10.5.7 PrimitiVETYPE [ClasS]....cccciiitiiiiiiiie ettt e e e e e e e e e e s e e e ereeeaaaaeeeeesaaeannnnnns 175
10.5.8 E=Te=T o) o] o T [0 F= 11 PP PER 176
10.5.9 ST (o E= L [0 = T USSR 176
10.6 AsSSOCIAtioN DESCHPHONS.uiitiitiiiiiee e e e e e e e e e eeaaas 177
xii Unified Modeling Language 2.5

10.6.1 A_classifierBehavior_behavioredClassifier [Association]............ccueeeiiiiiiiiiiiiieeeeee 177

10.6.2 A_classifier_enumerationLiteral [Association].............ccccoiiiiiiiiiiiiiie e 177
10.6.3 A_contract_interfaceRealization [ASSOCIAtioNn]............uuueiiiiiiiiiiiei e, 177
10.6.4 A_interfaceRealization_implementingClassifier [Association]............ccccco e 177
10.6.5 A_nestedClassifier_interface [Association]............ccoeii e 178
10.6.6 A_ownedAttribute_datatype [ASSOCIatioN]..........cceeeiiiiiiiie e 178
10.6.7 A_ownedAttribute_interface [ASSOCIAtION]...........ooiiiiiiiiiii e 178
10.6.8 A_ownedAttribute_owningSignal [ASSOCIatioNn]...........uuuiiiiiiiiiii e 178
10.6.9 A_ownedBehavior_behavioredClassifier [Association]..............ccoooiiiiiiiiiiiiiiieieeeee, 178
10.6.10 A_ownedLiteral_enumeration [ASSOCIAtION].......c.coiiiiiiiiiiiiii e 179
10.6.11 A_ownedOperation_datatype [ASSOCIAtioN]...........eeiiiiiiiiiiii e 179
10.6.12 A_ownedOperation_interface [ASSOCIAtioN]..........ceeiiiiiiiiiiiiiiiiiieeee e 179
10.6.13 A_ownedReception_interface [ASSOCIAtioN]...........ceiiiiiieiiiiiiiiieeeee e 179
10.6.14 A_protocol_interface [ASSOCIAtION].......cooiiiiiiiii e 180
10.6.15 A_redefinedinterface_interface [ASSOCIAtioN].........cooiiiiiiiie e 180
10.6.16 A _signal_reception [ASSOCIAtION]........ccciiiiiiiiiiieee e e e e ———— 180
11 Structured ClasSifierS.........uu e aesraseraesannsanssannsnnnnes 181
S TS 10T 10 = PP PPPPPRUPPPIOt 181
11.2 Structured ClasSIfiers....... ..o oo e e e e e e e e e e e e 181
11.2.1 T8 L0100 = 2 PRSPPI 181
11.2.2 ADSIFACT SYNTAX. .. e e naeeas 181
11.2.3 RS T=T 0 =T o 1o SRR 182
11.24 I\ [o] ¢= 11] o T PP P PP 183
11.2.5 = T 0] 0] 1= 3 UEURPPSPRRN 184
11.3 Encapsulated Classifiers.........ccuuuuiiiiiiiiiiiiieece et 187
11.3.1 S TU L1010 0= o2 PP PPPUPPPPRPPN 187
11.3.2 F Y o1 i = Lo SV 01 = USRS 188
11.3.3 S T=Y 0= o) (o= TR PRSRR 188
11.34 1 [0 ¢= 11T o PSSO 189
11.3.5 o= 1101 o] (=TT PR UUPRPPPPPTPPRPPPON 190
R O =TT 192
11.4.1 RS T0 L4010 0= o2 PRSP 192
11.4.2 F Y o153 = Lo 0 V01 =) P 192
11.4.3 ST 0= 1o o= RSSO 192
11.4.4 I [0 = 11T o PSS 193
11.4.5 e 10T) [T SRR 193
R T X1~ T = 1 T - USRS 197
11.5.1 T8 [0] 0= 2 PR SUUPRRR 197
11.5.2 ADSIFACT SYNTAX. ..ot naeeas 197
11.5.3 RS T=T 0 =T o 1o SRR 197
11.54 I\ [o] ¢= 11] o T PP P PP 199
11.5.5 = T 0] 0] 1= 3 UEURPPSPRRN 201
L T ©7 T 1 4T oo =Y o1 £ TSP 206
11.6.1 101010 £ =1 o2 PP PPPPOPPPPRPN 206
11.6.2 F Y o1 i = Lo S0 =) PR URSP 207
11.6.3 RS T=Y g = o) (o= RS PRRRR 207
11.6.4 I [0 ¢= 11T o PSS 208
11.6.5 o= 1101 o] (=TT PR UUPRPPPPPTPPPPPPIN 209

Unified Modeling Language 2.5 Xiii

11.71 S TU L1010 £ F=1 o2 PP PPPUPPPPRPN 213
11.7.2 F Y o1 i = Lo S0 =) PR URSP 213
11.7.3 RS T=Y 40P o) (o= R URRPPRR 214
11.74 I [0 ¢= 11T o PSS 215
11.7.5 o= 1101 o] (=TT PR UUPRPPPPPTPPPPPPIN 215
11.8 Classifier DESCHPONS.ue e e e e e e e e e eees 217
11.8.1 ASSOCIALION [ClASS]..ciiiiitiiiiiee ittt ettt e et e e e e ab et e e e s s be et e e e e s aneeeeeeesannneeaeens 217
11.8.2 ASSOCIAtIONCIASS [ClaSS]...uuuuiiiieiiii et e e e e e e e e e e e e e e e e as 218
11.8.3 107 P T [0 1= T (RSOOSR 219
11.8.4 1070][E=1 o o] r=1 1T0] g TN (7 F= 1] PP 220
11.8.5 1070][E=1 o o] r=1 1T0] a1 8= L0 = T PP 221
11.8.6 COMPONENE [CIASS]...eiiiiiiieiiii it e e e e e e e e e e e e e e et b e r e e e e e eeaaaaeaas 222
11.8.7 ComponentRealization [Class].......cccccuuriiiiiiiiieee e e e e e e e e e e 223
11.8.8 ConnectableElement [ADStract Class]...........eeiiiiiiiiiii e 224
11.8.9 ConnectableElementTemplateParameter [Class]........ccccoiiiiiiiiiiieeeeee e 224
11.8.10 CONNECION [ClASS]....cciie i ittt ettt e e et e e e e e e e e e e s e e et st e s eeeeeeaaaaeaeessaesaaasnnsenes 225
11.8.11 1070] gl g =Tox (o] ¢ =1 o [N (01 1= 1= PR 226
11.8.12 ConnectorKind [ENUMEration]...... ..o e e e e e e e e e eeas 227
11.8.13 EncapsulatedClassifier [Abstract Class]...........ccceiiiiiiiiiiiiiicce e 228
(< T S oo B [= 1 PSPPSR 228
11.8.15 StructuredClassifier [ADStract Class].........ccoouiuiiiiiiiiie e 230
11.9 ASSOCIation DESCHIPLIONS.ci i e et e e 231
11.91 A_collaborationRole_collaboration [Association]...........c.ouuuiiiiiiiiiiiii e 231
11.9.2 A_connectableElement_templateParameter_parameteredElement [Association]................... 231
11.9.3 A_contract_connector [ASSOCIAtION]........oiuiiiii i 232
11.9.4 A_definingEnd_connectorEnd [ASSOCIAtIoN].........cccoiiiiiiiiie e 232
11.9.5 A_endType_association [ASSOCIAtION].......cccoiiiiiiiiii e e e e 232
11.9.6 A_end_connector [ASSOCIAtION]........coiiiiiiiiiie e 232
11.9.7 A_end_role [ASSOCIAtION].. ..o e e e aae s 232
11.9.8 A_extension_metaclass [ASSOCIAtION]..........coiiiiiiiiiiieiee e 233
11.9.9 A_memberEnd_association [ASSOCIAtioN]..........ceeeiiiiiiiiiiiiiiiccee e 233
11.9.10 A_navigableOwnedEnd_association [ASsOcCiation].............oooiiieiiiii e 233
11.9.11 A_nestedClassifier_nestingClass [Association]...........ccccuuiiiiiii e 233
11.9.12 A_ownedAttribute_class [ASSOCIAtION]........cccoiiiiiiiiiiiiie e 234
11.9.13 A_ownedAttribute_structuredClassifier [ASSOCIation]............cooiiiiiiiiiiiiii e 234
11.9.14 A _ownedConnector_structuredClassifier [Association]..............cccuveeeeiiiiiiiiiiiiiicceeeee. 234
11.9.15 A_ownedEnd_owningAssociation [ASSOCIatioN]..........ccccuuiiiiiiiiiiiiiiee e 234
11.9.16 A_ownedOperation_class [ASSOCIAtION]........ccooiiuiiiiiiiiii e 235
11.9.17 A_ownedPort_encapsulatedClassifier [ASSOCIation]............cooiiiiiiiiiiiiiii e 235
11.9.18 A _ownedReception_class [ASSOCIAtioN]..........uuuiiiiiiiiiiiiicieeeeeee e 235
11.9.19 A _packagedElement_component [ASSOCIAtioON].......cccoieiiiiiiiiiiieeecce e 235
11.9.20 A_partWithPort_connectorEnd [ASSOCIatioN].......ccoviiiiiiiiiiiie e 235
11.9.21 A_part_structuredClassifier [ASSOCIAtioN]..........oo e 236
11.9.22 A _protocol_port [ASSOCIAtION].........uuuiiiiiiiiiiiiiiee e e e e e e e e e e e e e e raaaaaaaaeas 236
11.9.23 A_provided_component [ASSOCIAtION]...........eouiiiiiiiiiie e 236
11.9.24 A _provided _port [ASSOCIAtION]........oooiiiiiiiee e ————— 236
11.9.25 A realization_abstraction_component [Association]..............uceiiiiiiiiiiiiiiii e, 236
11.9.26 A_realizingClassifier_componentRealization [Association]..........cccccceiiiiiiiiiiiiie e 237
11.9.27 A_redefinedConnector_connector [ASSOCIatioNn]..........ccouiiiiiiiiiiiiiiiiee e 237
xiv Unified Modeling Language 2.5

11.9.28 A_redefinedPort_port [ASSOCIAtION]..........uuiiiiiii e 237

11.9.29 A _required_component [ASSOCIAtioN]..........uuuuuiiiiieiiii e ———— 237
11.9.30 A _required_port [ASSOCIAtION].......uuueeieiie i e e e e e e e e e aaaaa 237
11.9.31 A_roleBinding_collaborationUse [Association]............cooociiiiiiiiiie e 238
11.9.32 A_role_structuredClassifier [ASSOCIAtioN].......cooeiiii i 238
11.9.33 A _superClass_class [ASSOCIAtION]........cccccuiiiiiiiiiiiii e a e e e s es 238
11.9.34 A_type_collaborationUse [ASSOCIAtioN]........ccceiiiiiiiiieiiiiiie e 238
11.9.35 A_type_connector [ASSOCIAtION]......coi it e e e 238
L2 = T3 =T [PO 239
P22 S T o o o 2 = oSSR 239
12,2 PACKAGES. ...ttt ettt e e e e e e e e e 239
12.2.1 101010 £ =1 o2 PP PPPPOPPPPRPN 239
12.2.2 F Y o1 i = Lo SV 01 =) PRSP 239
12.2.3 RS T=Y g = o) (o= TSR PRSRRN 239
12.2.4 I (o] ¢= 11T o PSSO 246
12.2.5 o= 1101 o] (=TT PR UUPRPPPPPTPPPPPPON 247
12.3 PrOfil€S... ..o 250
12.3.1 RS T0 L4010 0= o2 PRSP 250
12.3.2 F Y o1 = Lo 0 V01 = PP 251
12.3.3 ST 0= 1o o= USSR 251
12.3.4 I [0 = 11T o PSS 260
12.3.5 EXAMIPIES. e e e e e e e e e e e e e e e anneee 262
12.4 Classifier DESCIHPLONS.uuuiiii i e e e e e e e 271
12.4.1 EXEENSION [CIASS]. . uuuutiiiiiiiiiiiei ettt e e e e e e e e e et e e e e e e e e e e e s e e eaaabbsbaaeeeeeeeeas 271
12.4.2 EXtENSIONENA [ClaSS]...cccii it e e e e e e 272
12.4.3 T g F=To [[F=] TR OPRPPRR 273
12.4.4 1V FoTo L=y I @ = T PP 273
12.4.5 = 1ol = To (-3 [F= 11 T PPPRRRPRR 274
12.4.6 PackageMerge [ClasS]......oouutiiiiiiiiiiee ettt e e e bt e e e e 276
1247 0 1 L= @ =T S 276
12.4.8 Profile Application [ClasS]........cooiiiiie e e e e e e e e e eaaaaa e 277
12.4.9 StErEOtYPE [ClASS]....ueeeiieiiiiieiie et e e e naeeas 278
12.5 ASSOCIation DESCHIPLIONS.ci i e e e e 279
12.51 A_appliedProfile_profileApplication [Association]..............uuvuiiiiiiiiiiiiiec e 279
12.5.2 A_icon_stereotype [ASSOCIALION]........uuuiiiiiiiiiiiiei e 279
12.5.3 A_mergedPackage_packageMerge [ASSOCIation]..........c.ueviiiiiiiiiiiiiiiiiiee e 279
12.5.4 A_metaclassReference_profile [ASSOCIatioN].............cooiiiiiiiiiiiieeeeeeeeeeee e 280
12.5.5 A_metamodelReference_profile [Association]............cocoociiiiiiiiiiiiee e 280
12.5.6 A_nestedPackage_nestingPackage [ASSOCIatioNn]...........ccuveeiiiiiiiiiiiei e 280
12.5.7 A_ownedEnd_extension [ASSOCIAtION].........oiuiiiiiiiii e 280
12.5.8 A_ownedStereotype_owningPackage [ASSOCIation]...........cooeveiiiiiiiiiiiiiiiiieeeee e, 280
12.5.9 A_ownedType_package [ASSOCIAtIoN]..........uuuuuiiiiiiei e 281
12.5.10 A_packageMerge_receivingPackage [AsSsociation]...........cccccuiiiiiiiiiiiiiiee e 281
12.5.11 A_packagedElement_owningPackage [Association]...........cccoumiiiiiiiiiiiiie e 281
12.5.12 A_profileApplication_applyingPackage [Association].............ceeeiiiiiieeiiiiiiiiciiiiieeeeeee e, 281
12.5.13 A_profile_stereotype [ASSOCIAtION].......cooiiiiiiiiiiii e 282
12.5.14 A_type_extensionEnd [ASSOCIAtION]........coooieiiiie e 282
13 COMMON BENAVIOI ...ttt e e e e e e s s e e e aeeeas 283

Unified Modeling Language 2.5 XV

LRSI = = o = 1Y o S PEEEPPPRRR 283
13.2.1 SUMMIAIY ...ttt e e e e e e e e e e e et et e e aeeeeeeeeeaaeeeeeeesaaasasasbaasaeeeeeeaaaaeeeeaesaaaannnssnes 283
13.2.2 F Y o1 i = Lo SV 0 =) USRS 284
13.2.3 RS T=T 0 =T o 1o 3RS 284
13.24 I (o] ¢= 11T PSS 288
13.2.5 =] o1 1= 3PP PPPP 288

RS TG T Y= o | (P URPUR 288
13.3.1 S TU L1010 0 F=1 o2 PP PPPOPPPPRPPN 288
13.3.2 F Y o1 = Lo) V01 = R 289
13.3.3 S T=T 0 = o Lo PP EUEPRUR 289
13.34 1[0 = 11T o PSS 291
13.3.5 o= 1101 o] (=T TP UURPRPPPPPTPPPPIN 292

13.4 Classifier DESCHPONS.uu i e e e e e e e e e e 292
13.4.1 ANYRECEIVEEVENT [ClaSS].....uueiiiiieiiiiiiiie ettt et e e e st e e e e s rnbaeeeeeeaaes 292
13.4.2 Behavior [ADSIrACt ClasS]........iuueiiiiiiiiiiiii ettt s 292
13.4.3 07 ||y o] Y [0 F= T [OOSR 295
13.4.4 ChangeEVENT [CIaSS]......uuuuiiiiiiiiiiiie et e annresreees 295
13.4.5 EVent [ADSIraCt ClassS].......cooii i 295
13.4.6 FUNCtioNBehavior [Class].. .. ueieiieiiieiiiee et e et e e e e e e e e e e e e e aaeannns 296
13.4.7 MessageEvent [ADSIract ClasS]......ccuiiiiiiiiiiiii it a e e e e e e e e 296
13.4.8 OpaquUEBENAVIOL [ClaSS]......cccoiieiiiiietee ettt e e e e e e e e e s e e e e e e e eaaaaeaeeanan 297
13.4.9 ST fo [E= 1| oY= o) 0 =T SRR 297
13.4.10 TIMEEVENT [ClasS]..ueiiiiiiiiii it e st eeeeas 297
RS 2 B T 4 o T =T [= T PRSP 298

13.5 ASSOCIation DESCHIPLIONS.ci i e 299
13.51 A_changeExpression_changeEvent [Association]............oooiiiiiii e 299
13.5.2 A_context_behavior [ASSOCIAtioN]..........uuuuiiiiii e 299
13.5.3 A_event_trigger [ASSOCIAtION].......ooii i 299
13.54 A_operation_callEvent [ASSOCIAtION]..........uiiiiiiiiiie e 299
13.5.5 A_ownedParameterSet_behavior [ASSOCIation]..............coooiiiiiiiiiiiiiiieeeeeee e 299
13.5.6 A_ownedParameter_behavior [ASSOCiation]...........oouviiiiiiiiiiii e 300
13.5.7 A_port_trigger [ASSOCIAtION]... ... a e e e e e e e 300
13.5.8 A_postcondition_behavior [ASSOCIAtioN]..........ccociiiieeee e 300
13.5.9 A_precondition_behavior [ASSOCIAtION].......c..uiiiiiiiiii e 300
13.5.10 A_redefinedBehavior_behavior [ASSOCIation]............ccooiiiiiiiiiiiiii e 300
13.5.11 A_signal_signalEvent [ASSOCIAtION]......cooii i 301
13.5.12 A_when_timeEvent [ASSOCIAtION].........coi i 301

14 StateMacChings........coooi i 303

T4 SUMMI@IY ..ottt ettt e e e e e et e e e e e e n e e e et e e e aeeeeaaaaaas 303

14.2 Behavior StateMacChineS..........eeeiiiiiiiiiee e 303
14.2.1 SUMMIAIY ...ttt e e e e e e et e e e e e et e e e e e e eeeeeaeeeeeeeessaaasasasbsasaeeeeeeaaaaaeeeaesanaannnssne 303
14.2.2 F Y o1 i = Lo S0 =) PR URSP 304
14.2.3 RS T=T 0 =T o 1o SRR 304
14.2.4 I [0 ¢= 11T o PSS 317
14.2.5 =] o1 1= 3PP PSP 333

14.3 StateMachine Redefinition............oooo i 334
14.3.1 101010 £ F=1 o2 PO PPP RPN 334

XVi Unified Modeling Language 2.5

14.3.2 ADSIFACT SYNTAX. ..o 335

14.3.3 ST 0=) o= SRR SPRRR 335
14.3.4 I\ [o] ¢= 11] o PP T PP OPPPRPPP 336
14.3.5 = 0] o 1= 3PP 336
14.4 ProtocolStateMacChings..........cooo oo 338
14.4.1 SUMMIAIY .. ee ettt e e e e e e e e e e e e s et ae b e e aeeeeeeeaaaaaeeeeessa s s sasasbaasaeeeeeaeaaaeeeesesanaannsene 338
14.4.2 F Y o1 i = Lo SV 01 =) QTSP 339
1443 RS T=T 0 =T o 1o 3RS 339
1444 I (o] ¢= 11T o PSS 342
14.5 Classifier DESCHPONS.uuu i e e e e e e e e eees 343
14.5.1 ConnectionPointReference [Class]....... .o 343
14.5.2 FINAISTate [ClassS].......ccooiiiiiiieeeece ettt e e e e e e e e ettt e e s e e e e e aeaeeeeeeeaaaens 344
14.5.3 ProtocolConformance [CIAaSS]........uuuuiiiiiiiiiiieeee et e e e e e e e e e e e e e 345
1454 ProtocolStateMaching [ClassS].........uuiiii i e 345
14.5.5 ProtocolTransition [Class]......c.coi i 346
14.5.6 PSEUAOSIALE [ClASS].......cce it aaaaaa e 347
14.5.7 PseudostateKind [ENUMEration]..........cccoooiiiiiii i e e e e e e e eeaeeees 349
14.5.8 (R=To o] T (07 F= 11 PP PRTT 350
14.5.9 R = 1 L= 7 =T SO 352
14.5.10 StateMaching [CIAassS].......ccccccuuiiiiiiiiiiiie e et e e e e e e e s e e e et e e e e e e aaaaeeeessaaaannenns 355
T4.5.11 TranSition [ClasS].....ccceeiiiiiiiecc et e e e e e e e e e e e s e e e e s aeeeeeeeaaaeeeeeesaaaaanns 357
14512 TransitionKind [ENUMEration].........ooo e eeeeeas 360
14.5.13 VerteX [ADSIract Class]......cccooii it 360
14.6 ASSOCIAtiON DESCHPHONS.uiitiiiiiiiiee e e e e e e e e e eaaaas 362
14.6.1 A_conformance_specificMachine [ASSOCIatioNn]...........ccouiiiiiiieiiiiiiiie e 362
14.6.2 A_connectionPoint_state [ASSOCIAtioN].........cccoeiiiiiiiii e 362
14.6.3 A_connectionPoint_stateMachine [Association]...........cccooooiiiiiiiiicccc e, 362
14.6.4 A_connection_state [ASSOCIAtION]........cou i 363
14.6.5 A_deferrableTrigger_state [ASSOCIAtIoN]........cooiiiiiiiiii e 363
14.6.6 A_doActivity _state [ASSOCIAtioN]........cooiii e 363
14.6.7 A_effect_transition [ASSOCIAtION]........eueiiiiiiiii e 363
14.6.8 A_entry_connectionPointReference [ASSOCIation]...........cccooiiiiiiiiiiiie e 363
14.6.9 A_entry_state [ASSOCIAtION]........oi i 364
14.6.10 A_exit_connectionPointReference [Association]...........cccccuviiiiiiiiiiiie e, 364
14.6.11 A_exit_state [ASSOCIAtION].........ccciiiii i ———————— 364
14.6.12 A_extendedRegion_region [ASSOCIAtION]..........e i 364
14.6.13 A _extendedStateMachine_stateMachine [Association]...........ccccceeiiiiiiiiiiiiiiciccie e, 364
14.6.14 A_generalMachine_protocolConformance [ASSOCIation].........c..cceeiiiiiiiiieiiiiiiie e, 365
14.6.15 A_guard_transition [ASSOCIAtION].......ccoiiiiiiiie e 365
14.6.16 A_incoming_target_vertex [ASSOCIatioN].........ccooiiiiiiiii e 365
14.6.17 A_outgoing_source_vertex [ASSOCIAtIoON]..........ooiiiiiiiiii e 365
14.6.18 A_postCondition_owningTransition [ASSOCIAtioN]...........occuiiiiiiiiiiiiii e 365
14.6.19 A_preCondition_protocolTransition [ASSOCIAtioN]............ueiiiiiiiiiiii e 366
14.6.20 A _redefinedState_state [ASSOCIAtION].........c.c..uvviiiiiiiiiiii e 366
14.6.21 A _redefinedTransition_transition [ASSOCIAtioN]...........ccccooiiiiiiiiiiiieee e 366
14.6.22 A_redefinitionContext_region [ASSOCIAtioN]........ccc.uuiiiiiiiiiiiie e 366
14.6.23 A_redefinitionContext_state [ASSOCIAtiON].....ccoiiiiiiiiiiiii e 367
14.6.24 A_redefinitionContext_transition [ASSOCIAtioN].........cccceeiiiiiiiiiieee e 367
14.6.25 A_referred_protocolTransition [ASSOCIAtION].........ouiuiiiiiiiiiiii e 367
14.6.26 A_region_state [ASSOCIAtION].......cooii i 367

Unified Modeling Language 2.5 Xvii

14.6.27 A_region_stateMachine [ASSOCIAtION]........coiiuuiiiiiiii e 368

14.6.28 A_statelnvariant_owningState [ASSOCIation]...........cccccvimiiiiiiiiiiie e 368
14.6.29 A_submachineState _submachine [ASSOCIiation]..............coooiiiiiiiiiiiiieeee e 368
14.6.30 A_subvertex_container [ASSOCIAtION].......couiiiiiiiiiiiiiei e 368
14.6.31 A_transition_container [ASSOCIAtIoON].........ee i 368
14.6.32 A_trigger_transition [ASSOCIAtioN].........cccoiuuiiiiiiiiiiee e —————— 369
15 ACHVITIES. ettt e e e e e et e e e e e e e e e et e aaaaaeaaae 371
(R T IS 10T 10 = SO PPPPPPRPIR 371
15,2 ACHVITIES. ettt ———————— 371
15.2.1 SUMMIAIY ...ttt e e e e e e oo e e et e et e e e e e eeeeeeeaeeeeeeessa e s sasasbsasaeeeeeeaaaaeeesaesaaaannnssnes 371
15.2.2 ADSIFACT SYNTAX. ..o 372
15.2.3 RS T=T 0 =T o 1o SRR 372
15.2.4 [N\ [o] ¢= 11 o PP ORI 377
15.2.5 =] o1 1= 3PP RR R PPPP 380
(TR B 7o a1 1 o] I\ [To [PRERURPRRR 385
15.3.1 S TU L1010 0 F=1 2RO PPPOPPPPRPPN 385
15.3.2 F Y o1 i = Lo S 01 = USRI 385
15.3.3 S T=T 0 0= o Lo P EERPRUR 385
15.3.4 I (o] ¢= 11T o PSS 388
15.3.5 o= 1101 o] (=TT PR UUPRPPPPPTPPPPIN 390
15,4 ODJECE NOUES.ttt et e e e e e e e e e e e et e e e e e e aeaeeeeas 394
15.4.1 RS T0 L4010 0= o2 PRI 394
15.4.2 F N o1 1= 1o)] - PR PRR 394
15.4.3 ST 0= 1) o= SRR SPRRR 395
15.4.4 I [0 = 11T PSS 397
15.4.5 EXAMIPIES. e e e e e e a e e e 399
15.5 EXECULADIE NOGES.uuiiiiiiiiiiee ettt e e e e e e e s e e e e e e e aaeeeas 401
15.5.1 SUMMIAIY ...ttt e e e e e e e e e e et et aaaeeeeeeeeaeaeeeeeeesaaasasasbaasaeeeeeeaaaaeeeeaesaaaannnsenes 401
156.5.2 ADSTFACT SYNTAX. ..ot 401
15.5.3 RS T=T 0 =T o 1o PR 401
15.5.4 I\ [o] ¢= 11] o PP T PP OPPPRPPP 402
15.5.5 =] o1 1= 3PP PPPP 403
R I Nex 111 42 C 1 o 1H o - TSP 403
15.6.1 101010 £ F=1 o2 PO PPP RPN 403
15.6.2 F Y o1 i = Lo SV 01 = PRSPPI 404
15.6.3 RS T=T 0 0= a1 (o= EPEEEPRUR 404
15.6.4 I (o] ¢= 11T o PSS 406
15.6.5 o= 1101 o] (=TT U UUUURPPPPPTPPPPIN 407
15.7 Classifier DESCHPONS. i e e e e e e e e aeeas 409
15.7.1 ACHVIEY [ClASS]....uuriiiieeiiiiiii ettt e e e e e et e e e e et e e e e s s eaaa e e e e e s aarr e e e e e aanrreeaens 409
15.7.2 ACctivityEdge [ADSITACt ClasS].......iiuuiiiee ittt e e e e e e e e e enrae e e e e e nnees 411
15.7.3 ACHIVItYFINAINOGAE [CIASS]....eieeiiiiiiiie ittt ettt e e e e e e s e e e e s s eeeeeesannnseeens 412
15.7.4 ActivityGroup [ADSIraCt ClIasS]........ueiiiiiiiiiiie e 412
15.7.5 ActivityNode [ADSIract Class].........uoiiiiiiiiiei e 413
15.7.6 ActivityParameterNOde [CIasS]........uuuuiiiiiiiiieiiie e a e e e e e e 415
156.7.7 ACHIVItYPArtition [ClasS].....uuueiiiiiiiii e e e e e e e e e e e e e 416
15.7.8 CentralBufferNOde [Class].....iii it e e e e e e e e e e e e e eeeeas 417
15.7.9 107] a1 (o] |l [o TV [0 = T SRR 418

Xviii Unified Modeling Language 2.5

15.7.10 ControINode [ADSIract ClassS]........coouuiiiiiiiiiiiii e e e 418

15.7.11 DataStoreNOAE [ClaSsS].....ciciiiiiiiiiicce et e e e e e e e e e e eeaaaae e 418
15.7.12 DeCiSIONNOAE [ClasS]......ccciiiiiiiieie ettt e e e e e e e e e e s e e et r e e e e e eaaaaaaeaeeaaaan 419
15.7.13 ExceptionHandIer [Class]......cccccuuuuieiiiiiiiiiaeee et e aaaannns 420
15.7.14 ExecutableNode [ADStract Class].........cooooueiiiiiiiiii et 422
15.7.15 FinalNode [ADSIract ClassS].........ccoceiiiiiiiieeeeeee e e e e e e e e e e 422
15.7.16 FIOWFINAINOGE [CIaSS]....cceiiutiiiiieiitiiiie ettt ettt e et e e e ettt e e e e e ebte e e e e e e snbeeeeeeeannes 422
15.7.17 FOrKNOGE [ClasS].. . ieiiiiiiiiiiie ettt ettt e e e e e e e e e e e e e e e e e e e se s s bt eaeaeeeaaaaeaeaeees 423
15.7.18 INItIAINOAE [ClAaSS].....ccciiiiiiie ettt et e e e e e e e e e e s e e et r e e e e e aeaaeaeeeeeeaaaanans 423
15.7.19 InterruptibleActivityRegion [ClIass].........ccuuu i 424
15.7.20 JOINNOAE [ClASS]......ueeiieiiiiiiiiie ettt e et e e e e et e e e e e e b e e e e e e e nbreeeeeennnreeas 424
L A T |V 1= o =T\ [o[- [= T PSR 425
15.7.22 ODJECIFIOW [CIASS].....cciiiiiciieitee ettt e e e e e e e e e e e e e et a e e e e e eeaaaaaeeeesanaaansenes 426
15.7.23 ObjectNode [ADSIraCt ClasS].........uuiiiiiiiiiiiie e e e e 427
15.7.24 ObjectNodeOrderingKind [ENUMEration]............ueeiiiiiiiiiiiiiiie e 428
15.7.25 VaAri@ble [ClassS]......cccoiiiiiiiiiete ettt ettt et e e e e e e e e e e s e e et b e e aeeeeeaeaeaaeaeeaeaaaananrrnes 429
15.8 ASSOCIatioN DESCHPHONS. ... it e e e e e e e 430
15.8.1 A_containedEdge_inGroup [ASSOCIAtION].....cccuiiiii i 430
15.8.2 A_containedNode_inGroup [ASSOCIAtION]........cco i 430
15.8.3 A_decisionlnputFlow_decisionNode [ASSOCIatioNn]............ciiiieiiiieiiiiiieeeeeecre e e e 430
15.8.4 A_decisionlnput_decisionNode [ASSOCIAtioN]...........coiiiiiiiiiiiiiiic e 430
15.8.5 A_edge_activity [ASSOCIAtION]..... .. e e e 430
15.8.6 A_edge_inPartition [ASSOCIAtION]........uueiiiiiiiiiiee e 431
15.8.7 A_exceptionlnput_exceptionHandler [ASSOCIatioN]..........ccuveiiiiiiiiiiiie e 431
15.8.8 A_exceptionType_exceptionHandler [ASSOCIation]...........ccooiiiiiiiiiiiiii e 431
15.8.9 A_group_inACtivity [ASSOCIAtION].......uuueeiiiiiiiiiee e 431
15.8.10 A _guard_activityEdge [ASSOCIatioN]........ccovmiiiiiiiie e ————— 432
15.8.11 A_handlerBody_exceptionHandler [ASSOCIation]............ueviiiiiiiiiiiiie e 432
15.8.12 A_handler_protectedNode [ASSOCIAtioN]..........uuriiiiiiiiiiiieee e 432
15.8.13 A_ininterruptibleRegion_node [ASSOCIation]............uuiiiiiiiiiiiieii e 432
15.8.14 A _inPartition_Node [ASSOCIAtION]........uuuiiiiiiiiiiee e aaaa e 432
15.8.15 A_inState_objectNode [ASSOCIAtioN].........eu i 433
15.8.16 A_incoming_target_node [ASSOCIAtioN]..........uuuuiiiiiiiiiiiiee e 433
15.8.17 A_interruptingEdge_interrupts [ASSOCIAtioN]........cooiuiiiiiiii e 433
15.8.18 A_joinSpec_joinNode [ASSOCIAtION].......cciiiiiiiiiiii e 433
15.8.19 A_node_activity [ASSOCIAtION]..... ... a e e 433
15.8.20 A_outgoing_source_node [ASSOCIAtION]..........uuuuiiiiiiiiiiiaaaiae e 434
15.8.21 A_parameter_activityParameterNode [ASSOCIation]...........ccuueiiiiiiiiiiiiii e 434
15.8.22 A_partition_activity [ASSOCIAtION].......coiiiiiiiiii e 434
15.8.23 A _redefinedEdge_activityEdge [Association]............coooiiiiiiiiiiiieeee e, 434
15.8.24 A _redefinedNode_activityNode [ASSOCIatioN]........ccceveeeiiiiiiiiiiiiieeeeeee e 435
15.8.25 A_represents_activityPartition [ASSOCIatioN].......ccovviiiiiiiiiiiie e 435
15.8.26 A_selection_objectFlow [ASSOCIAtION].......coiiiii i 435
15.8.27 A_selection_objectNode [ASSOCIAtION]........ciiiiiiiiiiiieiicee e a e 435
15.8.28 A_structuredNode_activity [ASSOCIAtIoN]........cooiiiiiiiiiiiii e 435
15.8.29 A_subgroup_superGroup [ASSOCIAtION].......cceiiiiiiiie e 436
15.8.30 A _subpartition_superPartition [ASsociation]...........coooiiiriiiiiiiici e 436
15.8.31 A_transformation_objectFlow [ASSOCIatioN]............cuoiiiiiiiiiiiiie e 436
15.8.32 A_upperBound_objectNode [ASSOCIAtioN]..........ueiiiiiiiiiiiieie e 436
15.8.33 A_variable_activityScope [ASSOCIAtION].......ccciiuiiiiieiiiiie e 436
15.8.34 A _weight_activityEdge [ASSOCIAtION].........ccceeiiii e 437

Unified Modeling Language 2.5 Xix

LG S ¥ {11 4 o= TP EPP PP 439
L2 X 11 1 PRSP 440
16.2.1 SUMMIAIY ...ttt e e e e e e e e e e et ettt ea e e e eeeeeeaeeeeeeeesa e s aabasbaasaeeeeeeaaeaeeeeaasaaaannnssne 440
16.2.2 F Y o1 i = Lo SV 01 = USRS 440
16.2.3 RS T=T 0 =T o 1o 3RS 441
16.2.4 I (o] ¢= 11T PSS 444
16.2.5 =] o1 1= 3PP PPPP 445
S TRC T [NV oToz=1 1 o] o 7AYo (o] TSP 448
16.3.1 S TU L1010 0 F=1 o2 PP PPPOPPPPRPPN 448
16.3.2 F Y o1 = Lo) V01 = R 448
16.3.3 S T=T 0 = o Lo PP EUEPRUR 448
16.3.4 1[0 = 11T o PSS 451
16.3.5 o= 1101 o] (=TT PR URPRPPPPPTPPPPIN 454
16.4 ODJECT ACHIONS. ...ttt e e e e e e e e e e e e e e e e aane 456
16.4.1 S T0 L4010 0= o2 PRI 456
16.4.2 ADSIFACT SYNTAX. .. et naeeas 456
16.4.3 ST 0=) o= SRR 456
16.4.4 I\ [o] ¢= 11] o T PP P PP 458
16.4.5 EXAMIPIES. e e e e e e a e e e 458
16.5 LINK ENA Dat@......uiiiiii et e e ——————————— 459
16.5.1 SUMMIAIY ...ttt e e e e e e e e e e et et aaaeeeeeeeeaeaeeeeeeesaaasasasbaasaeeeeeeaaaaeeeeaesaaaannnsenes 459
16.5.2 F Y o1 i = Lo SV 01 =) USRS 459
16.5.3 RS T=T 0 =T o 1o 3SR 459
16.5.4 1 [0 ¢= 11T o PSSO 460
16.5.5 =] o1 1= 3PP PPPP 460
J 2 T IR 1 X T = U 460
16.6.1 101010 £ F=1 o2 PO PPP RPN 460
16.6.2 F Y 015 i = Lo S V01 = R 461
16.6.3 S T=T 0 = a1 (o= PP EERPRUR 461
16.6.4 I [0 = 11T o PSS 463
16.6.5 o= 1101 o] (=TT U UUUURPPPPPTPPPPIN 463
16.7 LiNK ODJECE ACHONS. ...t e e e e e as 463
16.7.1 S T0 L4010 0= o2 PP RPPOTRPRRPR 463
16.7.2 ADSIFACT SYNTAX. ..o 464
16.7.3 ST 0= 1) o= 3SR 464
16.7.4 I\ [o] ¢= 11] o T PP P PP 465
16.7.5 EXAMIPIES. e e e e e e e 465
16.8 Structural Feature ACHONS.uuiiiiiieeee e 465
16.8.1 SUMMIAIY ...ttt e e e e e e et e e e e e et e e e e e e eeeeeaeeeeeeeessaaasasasbsasaeeeeeeaaaaaeeeaesanaannnssne 465
16.8.2 F Y o1 i = Lo S0 =) PR URSP 465
16.8.3 RS T=T 0 =T o 1o SRR 465
16.8.4 I [0 ¢= 11T o PSS 467
16.8.5 =] o1 1= 3PP PSP 467
16.9 Variable ACHONS. ... ettt e e e e e e e e e e e e e e e eeeeeeenannes 467
16.9.1 101010 £ F=1 o2 PO PPP RPN 467
16.9.2 F Y o1 i = Lo 0 V01 = P 468
16.9.3 S T=T 0 0= a1 (o= P UPEERPRUR 468

XX Unified Modeling Language 2.5

16.9.4 1[0 = 11T PSS 469
16.9.5 = T 0] 0] L= 3R UUPRPPPPPRRPRRN 470
16.10 AcCept EVENT ACHIONS.eeiiie et e e e e e e e e e e e e eeeeeeeees 470
B0 O T W o 0= T Y2 TP PPPP 470
16.10.2 ADSIACT SYNTAX. .. i 470
LR TR TS 1= o 0 = o T T SRS 470
{0 02 S o -1 7] P PSP 472
TR O T =Yg o o] =SSR 472
16.11 SErUCIUrEd ACHIONS.eeeeiee e e e e e e e e e e e e e e e e eeeeeesnanes 473
1 20 P S 10 14 o1 4= Y2 OSSO PP 473
16.11.2 ADSITACT SYNTAX. .. it e e e e e e e e nnaeeas 474
TR R TS 1= o= 1 [RSP 474
LT 0 S o] = (o] PSSP 478
L S T b = o 1] o 1= TSR PPRP 478
A (oY= T g 710 T =T o[1 478
1T 2 T W 4 0= T Y 2 SRR 478
LT D N o 1] 1 - T B0 0 - RSP 478
TR 2 T 1Y o= 1 [PP 479
1 TR P22 o - 4 (o o PSSO 480
B T 5= T 4] o] 1= 3 U PUPPPUSPPN 482
LT T © 1 1= o (o 3O 484
B0 T T 1W T o 0= T Y2 PSP PRPP 484
16.13.2 ADSIACT SYNTAX. .. it 484
L TR TS 1= 4 = o T TSP 484
LT TR S o - 7] P RSP EPR 485
ST G T T =Yg o o] = SRS 485
16.14 Classifier DESCIIPONS.u i e e e e e e as 486
16.14.1 AcCepPtCallACHON [ClaSS]....ciiiiiiieeiiii ittt e e e e e e e e e e e e e e s e s aberbeaaeeeeees 486
16.14.2 ACCEPIEVENTACON [ClaSS]....coiiiiiiiiiii it 487
16.14.3 Action [ADSIrACt ClIasS]......coooiiiiiiiiiiiiiie et e e e e e e et s e e e e e aeaeeeeeeeeeenns 488
16.14.4 AcCtONINPULPIN [CIASS]...uuuiiiiiiiiiiie et e e e e e e e e e e e e e e e b b e aeeeees 490
16.14.5 AddStructuralFeatureValueAction [Class].........ccoiiuuiiiiiiiiiiiiie e 490
16.14.6 AddVariableValueAction [Class]........couuiuiiiiiiiiie e e 491
16.14.7 BroadcastSignalAction [Class]..........cuiiuiiiieiiiiiiiee et e e e e e s ee e e s anneeeeas 492
16.14.8 CallAction [ADSIFACt CIASS]......uuuuuriiiiiiiiiiie et e e e e e e e e e e e e e e eanaes 493
16.14.9 CallBehaviorAcCtion [ClassS]........ccuu ittt e e e e s b e e e e e aaes 494
16.14.10 CallOperatioNACHON [CIASS].... . e ittt e e e e e e ee e e e e e eaeaeeeeeaeaaennnnennes 495
LT e B O P T LT [0 =TT PRSP 496
16.14.12 ClearAssociationACLoN [Class]..........coiiiiiiiiiiiiieeeeee e e e ee e 497
16.14.13 ClearStructuralFeatureAction [Class]..........ooo o 497
16.14.14 ClearVariable ACtion [ClIassS].......uuuuuiuiiiiiii it s e e e e e aeaaeaeeenes 498
16.14.15 ConditioNalNOAE [ClasS].......uutiiiiiiiiiiie e e e e e s b e e e e e snbee e e e e e neees 498
16.14.16 CreateLinKACHON [ClasS].......icuuiiiiiiiiiiiiie ettt e e e s st ee e e s s nnbeeeeeeeans 500
16.14.17 CreateLinkODbJeCtACION [CIaSS].......ciiviiiiieiiiiiiiie et e e e e e e ennnraeee s 500
16.14.18 CreateODbJECIACHON [ClaSS]......iicuiiiieeiiiiiie ettt e e e e et e e e et eee e e e e snreeeaeeeanneeeas 501
16.14.19 DestroyLINKACHON [ClaSS].......eiiiiiiiiiiie i e 502
16.14.20 DestroyObjeCtACHON [ClassS]........cuiiiiiiiiiiie et 502
16.14.21 ExpansionKind [ENUMEration]..........oooreiiiiiiiii e s 503
16.14.22 EXPanSiONNOAE [ClASS].......cccciiiriiiiiiiiie e et e e e e e e e e e e e e e s et ra e e e e e eaaaaeeeeeesanaanns 503

Unified Modeling Language 2.5 XXi

16.14.23 EXpansionREGION [ClassS]......couiiiuiiiiiiiiiiiii e 504
16.14.24 INPULPIN [ClASS]... ittt et e e e e e e e e e e et e e e e e e eaeaaeeeeeeaaeenaabesbeeneeeeeaeas 504
16.14.25 InvocationAction [ADSIract Class]..........cccccuiiiiiiiiiiiiecee e 505
16.14.26 LinkACtION [ADSIracCt Class].......ccoo ot e e e et e e e e e e e e e e e as 505
16.14.27 LinkEndCreationData [Class].........iii oot e e e e e e e e eeeeeas 506
16.14.28 LIiNKENADALA [CIASS].....uuuuuriiiiiiiiiiiieie e e ettt e e e e e e e e e e s e e e e e e aaeeeeesseeennnnsresneees 507
16.14.29 LinkEndDestructionData [ClasS]........ccuuueiieiiiiiiiiie ettt e e seeeeee s 508
16.14.30 LOOPNOAE [CIASS].....coiiiiiiiiiiiiiiiie e e et ettt e e e e e e e e e e e e et e et ee e e bbb seeeeeaeaaeaeeeeesessssnannan 509
16.14.31 OpaqUEACHON [ClIASS]...cciiiiiiiieiiii it e e e e e e e e e e e e e e et raeaeeeeaeeas 512
16.14.32 OULPULPIN [ClaSS]....cciiuiiiiie e it ee ettt e e e e e et e e e e e et e e e e e s et beeeaesseabaeeeeesaraeeeaeeaans 513
16.14.33 Pin [ADSIrACE ClasS].. .. uieiiiiiiiiiiie ettt e bt e e e et e e e e st e e e e e e e anbeeeeeeeans 513
16.14.34 QUAIITIEIVAIUE [CIASS].. . eeieeiiiiiiie ettt e e e e et e e e s ettt e e e e s ent e e e e e ssbeeeeeesansteeeeeeaanes 514
16.14.35 RaiseEXCepPtioNACHON [ClasS]........ooiiiiiiiiiiee e 514
16.14.36 ReadEXtENtACHON [ClasS].......oiouiiiiiiiiie e 515
16.14.37 ReadlsClassifiedObjectAction [Class].......ccccouuuuieiiiiiiiiiee e 515
16.14.38 ReadLINKACHON [ClIASS]...uuuiiiiiiiiie ittt e e e e e e e e e e e e e e e e s e e s e aanernreeeeeees 516
16.14.39 ReadLinkObjectENdACHON [Class]........cciiiicuiiiiiieiieeeeee e e e e e 518
16.14.40 ReadLinkObjectEndQualifierAction [ClassS]...... . e eeiriiriiaeiieiiee e 519
16.14.41 ReadSelfACtioN [ClassS].........ccooiiiiiiiieiicce e e e e e e e e e e e 520
16.14.42 ReadStructuralFeature Action [ClassS]........c..ueiiiiiiiiiiee e 521
16.14.43 ReadVariable ACtion [ClasS]........cuuuiiiiiiiiiiii e e e e e e e e 521
16.14.44 ReclassifyObJeCtACHION [ClAaSS].......cciiiiiiiieiiiiiiiee et e e e e s aee e e e snnraeeee s 522
16.14.45 RedUCEACHON [ClAaSS]......ccoiiiiiite ettt e e e e e e e e e e e e r e e e e e aaeaaeaeeaaans 523
16.14.46 RemoveStructuralFeatureValueAction [CIass].........coouiiiiiiiiiiiiiiee e 524
16.14.47 RemoveVariableValueAction [Class]..........cuu i 525
16.14.48 REPIYACHON [CIASS]....uuuuuiiiiiiiiiiiieee ettt e saeeenasbnsaeseeees 525
16.14.49 SendObjJeCtACHON [ClasS].........ciiiiiiiiiitieeeee e e e e e e e e e e e e e r e e e e aaaaeeas 526
16.14.50 SendSignalAcCtioN [Class]......cccccuuuiiiiiiiiiiiieee et eaeeeeeeeaaaannns 527
LT o B 1= [0 1Y g Tor =Y N\ o Yo 1= = S 528
16.14.52 StartClassifierBehaviorAction [CIasS]........uuuuiiiiiiiiiiei i 528
16.14.53 StartObjectBehaviorAction [ClasS].........uuiiiiiiiiiiie e 529
16.14.54 StructuralFeatureAction [AbStract Class].........cooiiriiiiiiiiiiiii et eeeaaens 530
16.14.55 StructuredActivityNOdE [Class].........cuuiiiiiiiiiei it e e e s serere e e e e enbae e e e e e nnnnes 531
16.14.56 TestldentityACtioN [Class].........ou i e 533
16.14.57 UnmarshallACtion [ClassS]......cccouiuuiiiiiiiiie e 534
16.14.58 ValUEPIN [CIASS]....uuuuiiiiiiiiiiiiiie ettt e e e e et eeaasbabbeaeeeeeeeas 535
16.14.59 ValueSpecificationACtion [Class]..........ccocciiiiiiiiiiiii e 536
16.14.60 VariableAction [ADSIract Class].........ccuueiiiiiiiiiiee e 536
16.14.61 WriteLinKAction [ADSIract ClasS]..... . uuueeriiiiieiae it e e e e e e e e 537
16.14.62 WriteStructuralFeatureAction [Abstract Class]..........cccooviiiiiiiiiiiiiiiieeeeeeee e 537
16.14.63 WriteVariableAction [ADSract Class]...........cooiiiiiiiiiiiiieeeeee e a e 538
16.15 ASSOCIation DESCIPLIONS.ciiiiiiii e e e e e e e ea s 539
16.15.1 A_argument_invocationAction [ASSOCIatioN]...........cooieiiii e 539
16.15.2 A_association_clearAssociationAction [Association]............ccccviiiiiiiiiiiee e 539
16.15.3 A_behavior_callBehaviorAction [ASSOCIAtION]........ccuuiiiiiiiiiiie e 539
16.15.4 A_bodyOutput_clause [ASSOCIAtION]......couiiiiiiiiiiiii e e e e 540
16.15.5 A_bodyOutput_loopNode [ASSOCIAtION]..........uuiiiiiiiiiiie e e e 540
16.15.6 A_bodyPart_|oopNOde [ASSOCIAtION].........ueiiiiiiiiiiiie it 540
16.15.7 A_body_clause [ASSOCIAtION].........uuiiiiiiiie e 540
16.15.8 A_classifier_createObjectAction [ASSOCIAtioN]...........coeiiiiiiiiiie i 540
16.15.9 A _classifier_readExtentAction [AsSSociation]...........cccccuiiiiiiiiiiiiiie e 541
xxii Unified Modeling Language 2.5

16.15.10 A_classifier_readlsClassifiedObjectAction [Association].............coooiiiiiiiiiiiiee e, 541

16.15.11 A _clause_conditionalNode [ASSOCIatioN]...........uuiuieiiiiiiiii e 541
16.15.12 A _collection_reduceAction [ASSOCIAtioN]...........uciiiiiiiiii e 541
16.15.13 A_context_action [ASSOCIAtION].........coii i 541
16.15.14 A_decider_clause [ASSOCIAtION]........coiiiiiie e e e e 542
16.15.15 A_decider_loopNode [ASSOCIAtioN].........cccccuiiiiiiiiiiiii e e e 542
16.15.16 A_destroyAt_linkEndDestructionData [ASSOCIation]..........cccuueiiiiiiiiiiiii e 542
16.15.17 A_edge_inStructuredNode [ASSOCIatioN].........ccooiiiiiiii e 542
16.15.18 A _endData_createLinkAction [ASSOCIation]...........uuuuuiiiiiiiii it 542
16.15.19 A_endData_destroyLinkAction [ASSOCIAtioN]...........ueiiiiiiiiiiiiii e 543
16.15.20 A_endData_linkAction [ASSOCIAtION].......coiiiiiiiiiii e 543
16.15.21 A_end_linkEndData [ASSOCIAtioN].........coiiiiiiiiieiei e 543
16.15.22 A_end_readLinkObjectEndAction [ASSOCIAtioN]..........cccoeiiiiiiiiiiiieeeeeee e 543
16.15.23 A_exception_raiseExceptionAction [ASSOCIAtioN]..........cuuiiiiiiiiiii e 544
16.15.24 A_executableNode_sequenceNode [ASSOCIiation]...........oooiiiiiiiiiiiiiiieeee e 544
16.15.25 A first_testldentityAction [ASSOCIAtioN].........uuuiiiiiiiiiiieii e 544
16.15.26 A_fromAction_actionInputPin [ASSOCIAtioN]..........c..cuuviiiiiiiiiieeie e 544
16.15.27 A_inputElement_regionAsInput [ASSOCIatioN]........coorieiiiiiiiiii e 544
16.15.28 A _inputValue_linkAction [ASSOCIAtIoON]..........ccoiiiiiiiiiciee e 545
16.15.29 A_inputValue_opaqueAction [ASSOCIAtION]........cciiiiiuiiiiieiiiiiie e e e eeeeeeee s 545
16.15.30 A_input_action [ASSOCIAtION].........uuiiiiiiiiiiiie e e et e e e s e e e e 545
16.15.31 A _insertAt_addStructuralFeatureValueAction [Association]............ccccceeieeeiiiiiiiiiciiiiireeeeeeee. 545
16.15.32 A _insertAt_addVariableValueAction [Association].............ooovmiiiiiiiiiiiii e, 545
16.15.33 A_insertAt_linkEndCreationData [ASSOCIatioN].........cooiuiiiiiiiiiiie e 546
16.15.34 A_localPostcondition_action [ASSOCIAtION].........uuiiiiiiiiiiii e 546
16.15.35 A _localPrecondition_action [ASSOCIAtioN]..........cceiiiiiiiiie e 546
16.15.36 A _loopVariablelnput_loopNode [ASSOCIation]...........cuuuuiiiiiiiiiiie e e e 546
16.15.37 A_loopVariable _loopNode [ASSOCIAtioN].........coiiiiiiieiiiiiiiiieeeeee e 546
16.15.38 A_newClassifier_reclassifyObjectAction [ASSOCIation].........cccoviriiiiiiiiiiiiieeee e 547
16.15.39 A_node_inStructuredNode [ASSOCIAtioN]..........ccccuviiiiiiiiiiieice e 547
16.15.40 A_object_clearAssociationAction [ASSOCIAtION]........c.uuiiiiiiiiiiiiie e 547
16.15.41 A_object_readlsClassifiedObjectAction [Association]............ccoooiiiiiiiii e 547
16.15.42 A_object_readLinkObjectEndAction [ASSOCIAtioN]..........uevieiiiiiiiiie e 547
16.15.43 A_object_readLinkObjectEndQualifierAction [ASSOCIation].........c.cooviuiiiieiiiiiiiee e 548
16.15.44 A_object_reclassifyObjectAction [ASSOCIAtioN].........ccoiiiiiiiiiiiiiiiie e 548
16.15.45 A_object_startClassifierBehaviorAction [ASSOCIation]..........cooecuiiieiiiiiiiiie e 548
16.15.46 A_object_startObjectBehaviorAction [Association]............ccccccviiiiiiiiiiiiiee e 548
16.15.47 A_object_structuralFeatureAction [ASSOCIAtioN]...........eviiiiiiiiiii e 548
16.15.48 A_object_unmarshallAction [ASSOCIAtioN]..........uuriiiiiiiiieiiiiie e 549
16.15.49 A_oldClassifier_reclassifyObjectAction [Association]............ccccccciiiiiiiiiiiiee e, 549
16.15.50 A_onPort_invocationAction [ASSOCIAtION]......cciiiiieiiiiiiie e 549
16.15.51 A_operation_callOperationAction [ASSOCIatioN]........coeiiriiiiiiii e 549
16.15.52 A_outputElement_regionAsOutput [ASSOCIAtioN]........cooeiiiiiiiie e 549
16.15.53 A_outputValue_opaqueAction [ASSOCIAtioN]..........cceiiiiiiiiiii e 550
16.15.54 A_output_action [ASSOCIAtION].......ciiiiiiiiii e 550
16.15.55 A _predecessorClause_successorClause [Association].............coooociiiiiiiiiiiieiiiee s 550
16.15.56 A_qualifier_linkEndData [ASSOCIAtioN]...........coooiiiiiiiiieeeeee e 550
16.15.57 A_qualifier_qualifierValue [ASSOCIatioN]........coooiiiiiiiiie e 550
16.15.58 A_qualifier_readLinkObjectEndQualifierAction [Association]..........cccccvveeeiiiiiiiiiiciiieeeeeee 551
16.15.59 A _reducer_reduceAction [ASSOCIAtION].........ooeiiiiiiiiiiiieie e 551
16.15.60 A_removeAt_removeStructuralFeatureValueAction [Association]..........ccccceveeeiieieeiiiiiiiiiciinns 551

Unified Modeling Language 2.5 XXiii

16.15.61 A_removeAt_removeVariableValueAction [ASsociation]..........ccueeeiiiiiiiiiiiiiiiee e 551
16.15.62 A_replyToCall_replyAction [ASSOCIAtioN]...........uuuriiiiiiiiieeeeeeiie e 551
16.15.63 A _replyValue_replyAction [ASSOCIAtION].........coviiiiiiiiiiieie e e e e e e e e e e eeaaannes 552
16.15.64 A_request_sendObjectAction [ASSOCIAtioN].........coiiiiiiiiiiiiiii e 552
16.15.65 A_result_acceptEventAction [ASSOCIAtioN]....... ..o i 552
16.15.66 A_result_callAction [ASSOCIAtION].........ccoiiiiiiieeeeeee e 552
16.15.67 A_result_clearStructuralFeatureAction [ASSOCIAtioN]...........ccooiiiiiiiiiiiiiiee e 552
16.15.68 A _result_conditionalNode [ASSOCIatioN]...........uuuuiiiiiiiiiiiei e 553
16.15.69 A_result_createLinkObjectAction [ASSOCIAtION]........c.uueiiiiiiiiiiii e 553
16.15.70 A_result_createObjectAction [ASSOCIAtION]........c.uuiiiiiiiiiiii e 553
16.15.71 A_result_loopNode [ASSOCIAtION]......cccciiiiiiiieiii e 553
16.15.72 A _result_readExtentAction [ASSOCIAtioN]...........uuiiiiiiiiiii s 554
16.15.73 A_result_readlsClassifiedObjectAction [ASSOCIAtioN].........cccvivieeiiiiiiiiiiiiiieeeeeee e, 554
16.15.74 A_result_readLinkAction [ASSOCIAtION]..........eiiiiiiiiiiiie e 554
16.15.75 A_result_readLinkObjectEndAction [ASSOCIAtioN]..........eiiiiiiiiieiiiiii e 554
16.15.76 A_result_readLinkObjectEndQualifierAction [Association]...........ccceeveiiiiiiiiii i 554
16.15.77 A_result_readSelfAction [ASSOCIAtION].........uuiiiiiiiiieiie e 555
16.15.78 A_result_readStructuralFeatureAction [ASSOCIation]...........uueiiiiiiiiiiiii e 555
16.15.79 A _result_readVariableAction [ASSOCIatioN]...........uuueiiiiiiiiiiiicr e, 555
16.15.80 A_result_reduceAction [ASSOCIAtION]..........euiiiiiiiiiiie e 555
16.15.81 A_result_testldentityAction [ASSOCIAtION].......cooiuiiiiiiiiii e 555
16.15.82 A _result_unmarshallAction [ASSOCIAtioN]........ccccooiiiiiiiiiiiece e 556
16.15.83 A_result_valueSpecificationAction [Association]............cccuuviieiiiiiiiiii e, 556
16.15.84 A_result_writeStructuralFeatureAction [ASSOCIation]..........oooouiiiiiiiiiiii e, 556
16.15.85 A_returninformation_acceptCallAction [ASSOCIatioN].........cooocviiiiiiiiii e, 556
16.15.86 A_returninformation_replyAction [ASSOCIAtioON]...........ccooiiiiiiiiiiiieeee e 556
16.15.87 A_second_testldentityAction [ASSOCIAtioON]..........uciiiiiiiiii s 557
16.15.88 A_setupPart_100pNode [ASSOCIAtION]........uuuiiiiiiiiiiiieee e 557
16.15.89 A_signal_broadcastSignalAction [ASSOCIatioN]........ooueiiiiiiiiiiie e 557
16.15.90 A_signal_sendSignalAction [ASSOCIAtioN]..........uuiiiiiiiiiieiiiie e 557
16.15.91 A_structuralFeature_structuralFeatureAction [Association]..........ccccooiiiiieiiiiiiiie e 557
16.15.92 A_structuredNodelnput_structuredActivityNode [Association]..........ccccveeeiiiiiiiiiiiiiiiiiiieeeee. 558
16.15.93 A_structuredNodeOutput_structuredActivityNode [Association].........cccccveeeviciiieeeiiiiiiee e, 558
16.15.94 A_target_callOperationAction [ASSOCIAtION]......cccoiiiiiiiiiiiiii e 558
16.15.95 A_target_destroyObjectAction [ASSOCIAtION]........coiiiiiiiiiii e 558
16.15.96 A_target_sendObjectAction [ASSOCIAtION]..........cuuiiiiiiiiieeiiiiiie e e e e e seeeeae s 558
16.15.97 A_target_sendSignalAction [ASSOCIAtioN]...........ccccuiiiiiiiiiiiiieeee e 559
16.15.98 A_test_clause [ASSOCIAtION].....cciii ittt e e e e 559
16.15.99 A_test _loopNode [ASSOCIAtION].......ceeiiiiiiiie e e e e e 559
16.15.100 A _trigger_acceptEventAction [ASSOCIAtioN].........ccoiiiiii i 559
16.15.101 A_unmarshallType_unmarshallAction [Association].............ccoccciiiiiiiiiiiieeceee e 559
16.15.102 A_value_linkEndData [ASSOCIAtION]......cooiiiiiiieeeiiee e e 560
16.15.103 A _value_qualifierValue [ASSOCIAtioON]..........coooiiiiiiiieccee e eeanns 560
16.15.104 A_value_valuePin [ASSOCIAtION]......cciiiiiiiiiie i 560
16.15.105 A_value_valueSpecificationAction [ASSOCIAtioN].........ccuuiviiiiiiiiiii e 560
16.15.106 A_value_ writeStructuralFeatureAction [Association].............ccccociiiiiiiiiiiii e 560
16.15.107 A_value_writeVariableAction [ASSOCIAtioON]...........oooiiiiiiiiccie e 561
16.15.108 A_variable_scope [ASSOCIAtION]........ccoiiiiiiiiii e 561
16.15.109 A_variable_variable Action [ASSOCIAtION].......ccoiiiiiiiiiiiie e 561
7 11 =1 =T] - TP 563
XXiv Unified Modeling Language 2.5

L S 101191 40P P EPT PP 563

17.1.1 L@ YT TSSO 563
17.1.2 BaSiC trace MOGEL..........oiiiiiiiiiee e e 563
17.1.3 Partial ordering constraints on valid and invalid traces............cccceeeiiiiiiiiiiiiiceee e 564
17.1.4 Interaction Diagram Variants.............eooeiiiiiiiieie e 564
L 101 =1 = Tox i) 1= PRSP 564
17.2.1 SUMMIAIY ... eeeeieii ettt e e e e e e e e e e e e s et ea b e e aeeeeeeeeaaaeeeaeessaaassssasbaasaeeeeeaeaaaeeessesanaannssnes 564
17.2.2 ADSIFACT SYNTAX. .. e e e e e e aaeeas 565
17.2.3 RS T=T 0 =T o 1o 3PP ERERRURR 565
17.2.4 N[0 ¢= 11T] o T USSP 566
17.2.5 e 10T) [PRSP 568
A T I = 1T EEERRRRR 569
17.3.1 T8 L0100 = 2 PRSPPI 569
17.3.2 F N o1 1= Lo)] = SRS 570
17.3.3 RS T=T 0 =T o Lo 3PP 570
17.3.4 1[0 = 11T PSS 570
17.3.5 = T 0] 0] 1= 3 URPRPPPPPTRPRRN 571
174 IMESSAUES. ... iiiiii ittt oottt e e e e et e e e r e e e e e e e e e e e aa s 571
17.4.1 RS TU L1010 ¢ =1 o2 PPN 571
17.4.2 ADSIFACT SYNTAX. ..ot 572
17.4.3 SBIMANTICS. ...ttt e e e e 572
17.4.4 [\ o] = 1 1[o] o FO O TSP PP UP PP PPPPPPII 574
17.4.5 = 0] o 1= 3 PSSR 576
LS T © Lot Uy = Lo SRR 577
17.5.1 SUMMIAIY ... eeeeieiie e e ettt e et e e e e e e et e e e e s e et e e aeeeeeeeaaaaeeeeeeeaaa s sasssbsasaeeeeaeaaaaeeesaesanaannnssnes 577
17.5.2 ADSIFACT SYNTAX. .. e e e e e e aaeeas 578
17.5.3 RS T=T 0 =T o 1o 3PP ERERRURR 578
1754 N[0 ¢= 111 o T USSP 579
17.5.5 e 0T)[R 579
L ST =T | 1= £ P 579
17.6.1 T8 L0100 = 2 PRSP 579
17.6.2 F N o1 1= Lo)] = PR 580
17.6.3 RS T=T 0 =T o 1o PR 580
17.6.4 1[0 = 11T PSS 583
17.6.5 = T 0] 0] 1= 3R UUPRPPPPTRRPRIN 584
L A [0 =1 = Tox (o o T FT= U 588
17.7.1 S TU L1010 ¢ =1 o2 PP PPPPOTUPRRPP 588
17.7.2 ADSIFACT SYNTAX. ..ot 589
17.7.3 SBIMANTICS. ...ttt e e e e 589
17.7.4 [\ o] = 1 1[o] o FO O TP TP S PPPPPPP 589
17.7.5 = 0] o 1= PSSR 590
17.8 SEQUENCE DIagramS.ueiiiiiiiiiiiiieeee ettt e e e e e e e e e e e st e e e e e e e aaeeeeeas 593
17.8.1 Sequence Diagram NOTAtION.oiiiiii e e e e e e e e 593
17.8.2 Example SequenCe DIiagraml...........couoiiiiiiiiaiiiiie et et a e e 597
17.9 Communication Diagrams..............ooiiiiiiiiiiiiee e e e e e e e e e e e e e eeeaaaa—a, 597
17.9.1 Communication Diagram NOtatioN..........coooii i 597
17.9.2 Example Communication DIiagram..........cueiiieiiiiiiiie et 599
17.10 Interaction OVerview DIiagramsS............uuciiiiiiiiie i e e e 599

Unified Modeling Language 2.5 XXV

17.10.1 Interaction Overview Diagram NOtatioN............coooiiiiiiiiiii e 599
17.10.2 Examples of Interaction Overview Diagrams..............ccooiiiiiiiiiiiiiiiiiieeeeee e 601
1711 TIMING DIAQIamMS. ...ttt e aaannns 601
17111 Timing Diagram NOTAtiON..........ooiiiiiii e e e 602
17.11.2 Examples of TiMiNg DIagramsS.ocuuuiiiiiiiiiiiiee ittt e s aanneee e 603
17.12 Classifier DESCIIPONS.ui i e e e e e e e e e s 604
17.12.1 ActionExecutionSpecification [ClasS].......cuuiiiiiiieiiiiii e 604
17.12.2 BehaviorExecutionSpecification [Class].......cccuuuueiiiiiiiiieeei e 605
17.12.3 CombinedFragment [Class]........cocouuieiiiiiiieii et e e e e e e e e e e aaaaae e s 605
17.12.4 ConsiderlgnoreFragment [Class].........ccoooiiiuiiiiiiiiiiiii e 606
17.12.5 CoNtiNUALION [CIASS]....ceiiiiiiiiiiieiiie ettt e e e e e e e e e e e e e e nbeee e e e e nnneee 607
17.12.6 DestructionOccurrenceSpecification [Class]...........ccooviiiiiiiiiiiiiiicccce e 608
17.12.7 ExecutionOccurrenceSpecification [Class]........cccccuiriiiiiiiiiie e 609
17.12.8 ExecutionSpecification [ADStract Class].........coouiiiiiiiiiiiii e 609
L R B € - 1 (= O T PP PRPPR 610
17.12.10 GeneralOrdering [ClaSS].. .. uueiiuueiiie et et e s ettt e e s ettt e e e s ee e e e s snsaaeeaesansseeeeeeannseeeeens 613
L 2 B 1 1 (=T = Tod o) I [= T3 PO OU OO 613
17.12.12 InteractionConstraint [ClasS]..........uuii i e e s 614
17.12.13 InteractionFragment [ADstract Class].........ccooeeiiiiiiiiii e 615
17.12.14 InteractionOperand [Class]........cccccuuiriiiiiiiiie e e e e e e e e e e e e e reeeaaaaaaeeeas 616
17.12.15 InteractionOperatorKind [ENUMEration]...........cceiiiiiieeiiiiiiiicciieeeeee e 616
L 2 L T 1] (=T =T o] 1O T [= T SR 618
171217 LIfEliNg [ClaSS]....uuuuiiiiieiiiiiiie ettt s et e e e et e e e s et e e e s eass e e e e e s snsaaeeeesanssseeaesaannnneneens 620
T7.12.18 MESSAGE [ClaSS]. .o iiiiiii ettt ettt e e e ettt e e e e s ettt e e e e e sttt e e e e e eanbeeeeeesaanbeneeaeeannes 621
17.12.19 MessageENnd [ADSIract ClassS]........couiiiiiiiiiiiiiiiii e 624
17.12.20 MessageKind [EnNUMEration]..... ..o e e e e 625
17.12.21 MessageOccurrenceSpecification [ClasS].......c..uuiieiiiiiiiiieiiiiiie e 626
17.12.22 MessageSort [ENUMEration]...........ooii it 626
17.12.23 OccurrenceSpecification [Class]..........couiiiiiiiiiii e 627
17.12.24 PartDecompoSitioN [CIASS].......uuuuriiiiiiiiiiiieeei et e e e e e e e e s e eeeeaaeeeeeeeeanaannns 627
17.12.25 Statelnvariant [ClasS]......uuu i e e e e e e e e e e e e e s e b eeeee s 628
17.13 ASSOCIatioN DESCHPHONS. ...t e e e e e e e 629
17.13.1 A_action_actionExecutionSpecification [ASSOCIatioN]...........coeeiiiiiiiiiiiiiee e, 629
17.13.2 A_action_interaction [ASSOCIAtION].........ciiiiiiiiiiic e e e ———— 629
17.13.3 A_actualGate_interactionUse [ASSOCIAtioN]...........ccccuiiiiiiiiiiiiiicee e 629
17.13.4 A_argument_interactionUse [ASSOCIAtioN].........cueiiiiiiiiiiiiiiii e 629
17.13.5 A_argument_message [ASSOCIAtION]........uuu i 629
17.13.6 A_before toAfter [ASSOCIAtION]........coiiiiiiiiiee e 630
17.13.7 A_behavior_behaviorExecutionSpecification [Association]...........ccccceiiiiiiiiiii e 630
17.13.8 A_cfragmentGate_combinedFragment [ASSOCIAtioN]........c..ccvviiiiiiiiiiei i 630
17.13.9 A_connector_message [ASSOCIAtION].......cuuiiiiiiiiiiiiii e 630
17.13.10 A_covered_coveredBY [ASSOCIAtION]..........ouiiiiiiiiiiie i 630
17.13.11 A_covered_events [ASSOCIAtION].....c.coiiiiiiiii e 631
17.13.12 A_covered_statelnvariant [ASSOCIAtION].......cccooiiiiiiiiii e 631
17.13.13 A_decomposedAs_lifeline [ASSOCIatioN]............ccccuiiiiiiiiiiiiieec e 631
17.13.14 A_execution_executionOccurrenceSpecification [Association]..........ccccccveeeiiiiiiiii s 631
17.13.15 A_finish_executionSpecification [ASSOCIatioN]..........ooeeiiiiiiiiiii e 631
17.13.16 A_formalGate_interaction [ASSOCIAtION]..........cccoiiiiiiiieee e 632
17.13.17 A_fragment_enclosingInteraction [ASSOCIatioNn]...........ccuveiiiiiiiiiiie e 632
17.13.18 A_fragment_enclosingOperand [ASSOCIation]..........ccccuuiiiiiiiiiiiiee e 632
XXVi Unified Modeling Language 2.5

17.13.19 A_generalOrdering_interactionFragment [Association]...........cccceeiiiiiiii i, 632
17.13.20 A _guard_interactionOperand [ASSOCIAtION]...........cccoiiiiiiiiiiiee e 633
17.13.21 A _invariant_statelnvariant [ASSOCIiation]............uuuuiiiiiii s 633
17.13.22 A_lifeline_interaction [ASSOCIAtION]..........uuiiiiiiiiiiiiiie e 633
17.13.23 A_maxint_interactionConstraint [ASSOCIatioN].......cooiiiiiiiiiiiii e 633
17.13.24 A_message_considerlgnoreFragment [ASSOCIAtion]...........uueeiiiiiiiiieeiiiiiiiicreeeee e 633
17.13.25 A_message_interaction [ASSOCIAtioN].........cooiiiiiiiiiii i 634
17.13.26 A_message_messageEnd [ASSOCIAtION]..........uuuiiiiiiiiiiii e 634
17.13.27 A_minint_interactionConstraint [ASSOCIatioN]............coooiiiiiiiiiiiiieeeee e 634
17.13.28 A_operand_combinedFragment [ASSOCIAtION].........ccoiiiiiiiiiiiiiiii e 634
17.13.29 A_receiveEvent_endMessage [ASSOCIAtIoN].........ooouiiiiiiiiiii e 634
17.13.30 A _refersTo_interactionUse [ASSOCIAtioN]..........cccuuuiiiiiiiiiiiiiiieee e 635
17.13.31 A _represents_lifeline [ASSOCIAtioN].........cccuumiiiiiiiiiiiieee e 635
17.13.32 A_returnValueRecipient_interactionUse [ASSOCIatioN]...........oocuieiiiiiiiiiiiiiiiie e 635
17.13.33 A_returnValue_interactionUse [ASSOCIAtioN]..........uuuuiiiiiiiiiiieeieie e 635
17.13.34 A_selector_lifeline [ASSOCIAtIoN].........cccoiiiiiiieeeeee e 635
17.13.35 A_sendEvent_endMessage [ASSOCIAtioN]...........uuuiiiiiiiiiiieiiiie e 635
17.13.36 A_signature_message [ASSOCIAtION]..... ... i a e 636
17.13.37 A _start_executionSpecification [Association]............oooriiiiiiiiiiiii 636
17.13.38 A_toBefore_after [ASSOCIAtION]........coiiiiiiiiiiie e 636
S T E =T = 1 637
(RS T B U LT 0 T PSPPPPP 637
18.1.1 SUMMIAIY .. ee ettt e e e e e e e e e e e e s et ae b e e aeeeeeeeaaaaaeeeeessa s s sasasbaasaeeeeeaeaaaeeeesesanaannsene 637
18.1.2 F Y o1 i = Lo SV 01 = PRSPPI 637
18.1.3 RS T=T 0 =T o 1o 3SR 637
18.1.4 I (o] ¢= 11T o PSS 639
18.1.5 EXAMPIES. ..ttt ettt e e e e e e e e e 641
18.2 ClasSifier DESCHPLIONS.uuuiiii i e aaaa e e 645
18.2.1 o1 (o gl O F= 1= PO UT SO 645
18.2.2 EXEENA [ClaSS]...ciiieiiiiiiiieet ettt e e e e e e e e e e e e e e a e e e e e e eaaaaeeaaeeaaaaaananes 645
18.2.3 EXteNSIiONPOINE [CIaSS].....cciiiiiiiiiii et 646
18.2.4 el 0o [(O =T PRSPPI 646
18.2.5 USECASE [CIASS]...uuuuuutiiiiiiiiiiiie e ettt e e e e e e e e e et et e e e e eeeeeeeeeeeseeanasasbaeaeeeeeeens 647
18.3 ASSOCIAtioN DESCHPHONS.eiiiiiiiiiiiee e e e e e e e e 648
18.3.1 A_addition_include [ASSOCIAtION]..........uuiiiiiiie e 648
18.3.2 A_condition_extend [ASSOCIAtION]........coiiiiiii e 648
18.3.3 A_extend_extension [ASSOCIAtION].........ccciiiiiii e 649
18.3.4 A_extendedCase_extend [ASSOCIAtIoON]..........coooiiiiiiiiiiiieee e 649
18.3.5 A_extensionLocation_extension [ASSOCIAtioN].........ccccuiiiiiiiiiiiii e 649
18.3.6 A_extensionPoint_useCase [ASSOCIAtIoON]........oiiii i 649
18.3.7 A_include_includingCase [ASSOCIAtioN]...........ccoiiiiiiiieeeeee e 649
18.3.8 A_subject_useCase [ASSOCIAtION]........cuiiiiiiiiiie i s e e e e e e 650
19 DEPIOYMENTS. ...t e e e e e e as 651
LK TR B 10 T4 10 = Y SRR 651
19.2 DEPIOYMENTS. ...ttt ettt e e e e e e e e e et e e e et e e e e e e e e e e e aanne 651
19.2.1 S TU L1010 ¢ =1 o2 PP PPPPOTUPRRPP 651
19.2.2 ADSTFACT SYNTAX. ..ot 651
19.2.3 ST 0=) o= RS PRPSRN 651

Unified Modeling Language 2.5 XXVii

19.2.4 1[0 = 11T PSS 652
19.2.5 = T 0] 0] L= 3R UUPRPPPPPRRPRRN 652
L R T Y 4 1] - o £ TSP 654
19.3.1 S TU L1010 ¢ =1 o2 PP PPPPOTUPRRPP 654
19.3.2 ADSIFACE SYNTAX. ..o 654
19.3.3 ST 0=) o= RS PRPSRN 654
19.3.4 I\ o) =1 1o o PSSR 655
19.3.5 = 0] o 1= 3PP 655
LR TR N [To 1= PSPPSR 655
19.4.1 SUMMIAIY .. eeieiie ettt e e e e e e e e e e e e s et ea b e e aeeeeeeeaaaaeeeeeessaaassssssbaasaeeeeaeaaaaeeesaesanaannnssnes 655
19.4.2 F Y o1 1= To)] = R PRRT 656
19.4.3 RS T=T 0 =T o 1o 3PP ERERRURR 656
1944 N[0 ¢= 111 o T USSP 656
19.4.5 e 10T) [PPSR 657
19.5 Classifier DESCIHPLIONS.uuuiiiii e e e e e e e 658
19.5.1 YN (] = (o B [0= T RSOOSR 658
19.5.2 CommunicationPath [Class]..........coooiiiiiiiiieeeeeee e e e e e e e 659
19.5.3 DeployedArtifact [ADSract Class]........couiuiiiiiiiiiiie e 659
19.54 DePlOYMENT [CIASS].....eeeiieiiiiiiie et e e e e e e 659
19.5.5 DeploymentSpecification [Class]...........cooooiiiiiiiiiiiieieeeee e 660
19.5.6 DeploymentTarget [ADSIract Class].........cooeeiiiiiiiiiiiiieieeeeeee e a e e 661
19.5.7 TV o F= T SR 661
19.5.8 ExecutionENVIrONMENTt [CIaSS].... . er it e e e e e e e e e e e e 662
19.5.9 ManifeStation [ClasS].........cooiiiiiiiie e e e e e e e e e e aaaaa e e e e e e 662
TO.5.10 NOAE [ClASS]. .. uteeiieeiiiiiiii ettt e ettt e e e ettt e e e e e ettt e e e e e sanbbeeeeesanbneeeeesanbeneeaeeane 662
19.6 ASSOCIation DESCHIPLIONS. ... i i e e e e 663
19.6.1 A_configuration_deployment [ASSOCIAtIoON]......ccoiiiiiiiiiiiie e 663
19.6.2 A_deployedArtifact_deploymentForArtifact [Association]............coooiiiiiiiiiiiiiiee e, 663
19.6.3 A_deployedElement_deploymentTarget [ASSOCIation]..........cccouiiiiiiiiiiiiiiiieiieee e 663
19.6.4 A_deployment_location [ASSOCIAtION].........coiiiiiii e 663
19.6.5 A_manifestation_artifact [ASSOCIAtioN]...........eeeiiiiiiiiiiiiiiiiee e 664
19.6.6 A_nestedArtifact_artifact [ASSOCIAtION].......coooiiiiiiii 664
19.6.7 A_nestedNode_node [ASSOCIAtION].........cooiiiiiiiiiii e 664
19.6.8 A_ownedAttribute_artifact [ASSOCIAtIoN]........eeeiiiiiiiiiiiii i 664
19.6.9 A_ownedOperation_artifact [ASSOCIAtION].......ceiviiiiiiiiiiiicccee e 664
19.6.10 A_utilizedElement_manifestation [Association]...........ccccuuiii e 665
20 INfOrMAtiONFIOWS.......eeiiiieee e e e e e e e e s e e e e e e e e e nnnneees 667
D24 0 g A [o] o 4 F= 1 o T [0 SR 667
20.1.1 RS T0 L1010 0= o2 PP PPPPOTPRRRR 667
201.2 ADSIFACT SYNTAX. ..o 667
20.1.3 ST 0=) o= 3RS PRRRR 667
20.1.4 [N\ [o] ¢= 11 o PP TP OPP PP 668
20.1.5 = 0] o 1= 3PP 669
20.2 Classifier DESCIIPIONS.uiiiiiiii ettt e aaannns 670
20.21 INFOrMAtIONFIOW [ClASS]....uveiiiiiiieiee e e e e e e e e e e e e e e e aeaeeees 670
20.2.2 INfFOrMAtioNIEEM [CIASS].....uururiiiiiiiiii e e e e e e e e e e et e e e e e e e e e e e s s aennnnrenes 671
20.3 AsSOCIation DESCHIPLIONS.cciiiiiic e e e 672
20.31 A_conveyed_conveyingFlow [ASSOCIAtION].....ccouiiiii i 672
XXViii Unified Modeling Language 2.5

20.3.2 A_informationSource_informationFlow [ASSOCIatioNn]...........coiiiiiiiiiiiiiieee e 672

20.3.3 A_informationTarget_informationFlow [AsSOCIiation].............eeeeiiiiiieiiiiiiiiiiiiiieeee e, 673
20.3.4 A_realization_abstraction_flow [Association]...........cccccuviiiiiiiiiiii e 673
20.3.5 A_realizingActivityEdge_informationFlow [ASSOCiation]............ceovviiiiiiiiiiiiiiiieeeeeeeeeeee, 673
20.3.6 A_realizingConnector_informationFlow [ASSOCiation]...........oooriiiiiiiiiii e, 673
20.3.7 A_realizingMessage_informationFlow [ASSOCIatioN]............ccoeiiiiiiiiiiiiieeeee e, 673
20.3.8 A_represented_representation [ASSOCIAtIoON].........ccooiiiiiiieiiiiiie e 674
20 PrIMITIVE TYPES. ..ttt e e e et e e e e e e e e e e s 675
P24 It B T2 ¢ 3= T oY PPREEPRRR 675
2 S 1= 0 =T o1 (o= U 675
23 G T (o] €= 11T o PP 675
D I S €= 4] 0] =S 675
22 Standard Profile.........cooo o 677
D22 TS 1V 211 02 =1 o PPPPPRPRI 677
2 |V [T [677
22.3 Standard SterEOtYPES.ccceiiiiiiiiiiicc ettt e e e et a e e e e e e e e e e e e e e e e annn 677
F gL L= N I = To [=T o T 681
Annex B: UML Diagram INterchange............oooooiiiiiiiiii i 685
B.1 T [0 4= YRR 685
B € 1Y 1T oSO 686
B.2.1 RS T0 0 E=T 7R 686
B.2.2 UML Diagrams and Diagram EIemENtS..........coooiiiiiiiiiiieee e 686
B.2.3 UML Shapes and EAQES........cooiiiiiiiiiiiiiieiee ettt ettt e e e e e e e e e 687
B.2.4 = o= LSRR 687
B.2.5 Compartmentable ShAPES...........ooooi i 689
B.2.6 Stereotype APPLICAtIONS.coo i 689
B.2.7 UL StYIES. .t itiiieee ettt ettt e e e e ettt e e e s eat et e e e e sateeeeeeesnsaaeeaeesasssaeeaesanstaeeeeeeasraeeeenans 691
0] {0 o1 (1] YOS 691
B.3.1 SUMMIAIY ...ttt e e e e e e e e e e et et aaaeeeeeeeeaeaeeeeeeesaaasasasbaasaeeeeeeaaaaeeeeaesaaaannnsenes 691
B.3.2 YU e (=R =T [=g S PP PPTP 691
B.3.3 ClasSifier SNAPES. et e e e e e e e e e aaaaae e s 693
B.3.4 Multiplicity and Association End Labels.........cccoooiiiiiiiiiieeeee e 694
B.3.5 Association, Connector, and LiNK Shapes............coooiiiiiiiiiiiieeeeee e 695
T = Y = 1Yo R 695
B.4.1 S TU L1010 0 F=1 2RO PPPOPPPPRPPN 695
B.4.2 [2T=T o= AV o gl I =T =T o < TP 695
B.4.3 ACLiVity DIagram LaDEIS.........ooiiiiiiii e 699
B.4.4 StAIE SNAPES. ... e ———————— 700
B.4.5 a1 (=T e=Ted o] o I = o] P PUSRRTTPR 701
B.5 INfOrmMation FIOWS.........uueiiiiii ettt e e e e e e e e e e e e e eeeeeenees 701
B.6 UML Notations and UML DI Representations.............cccouiiiiiiiiiiiii e, 702
B.7 Classifier DESCIIPLIONS.oiiiiiiiiccee e e e e e e 722
B.7.1 UMLACLiVityDIiagram [ClasS].....cceeeieiiaaaeeiiieiii ettt e e e e e e e e e e e e e e e nnneenes 722
B.7.2 UMLASsOCiationENALADEl [ClasS].....cccuiuuiiiiieiiiiiiiie et 722

Unified Modeling Language 2.5 XXix

B.7.3

B.7.4

B.7.5

B.7.6

B.7.7

B.7.8

B.7.9

B.7.10
B.7.11
B.7.12
B.7.13
B.7.14
B.7.15
B.7.16
B.7.17
B.7.18
B.7.19
B.7.20
B.7.21
B.7.22
B.7.23
B.7.24
B.7.25
B.7.26
B.7.27
B.7.28
B.7.29
B.7.30
B.7.31
B.7.32
B.7.33
B.7.34
B.7.35
B.7.36
B.7.37

B.8
B.8.1
B.8.2
B.8.3
B.8.4
B.8.5
B.8.6
B.8.7
B.8.8
B.8.9
B.8.10
B.8.11
B.8.12
B.8.13
B.8.14
B.8.15

XXX

UMLAssociationOrConnectorOrLinkShape [Class].........ccouiiiiiiiiiiiiee e 723
UMLAssociationOrConnectorOrLinkShapeKind [Enumeration]............cccccvvieieeiiiiiiiiiiiin, 724
UMLBehaviorDiagram [ADSIract ClasS].......uuuuiiiiiiieeiiii it a e 724
UMLCIasSDIagram [Class]......euaaaaieeiiiieieiee ettt e e e e e e e e e e e e e e e e e eeeeeeaeas 724
UMLCIaSSIfIerShape [Class].......ciioeciiiiieiieiei et e e e e e e e e e e e e eeeeeeeaaaeeeens 725
UMLCOMPAMENT [CIASS]......cieeiuiiiiitiiiiei it e e e e e e e e e e e e s e e s e e e e e eaaaaaaaeaeas 725
UMLCompartmentableShape [Class].........coui i 726
UMLComponentDiagram [ClasS]... .. . e ettt e e e ee e e e e aaeaeeeeeean 726
UMLCompositeStructureDiagram [Class]..........cccuuiiieiiiiiiiire e siiee e 726
UMLDeploymentDiagram [ClasS]........uueeieiiiiiiiieeiiieeie ettt e e sneaeeee s 727
UMLDiagram [ADSIract ClassS].......coouiuuiiiiiiiiiiiiie et 727
UMLDiagramElement [ADSTract Class]........c.cceiiuiiiieiiiiiiiie e 728
UMLDiagramWithAssociations [Abstract Class]..........uuueeeiiiiiiiiiiiiiiiiiiieeeeee e, 729
L0 | o [o T (O =T SRR 729
UMLInteractionDiagram [ClasS]......couueiee i e e e e e e e e e e e e e e e 729
UMLInteractionDiagramKind [Enumeration]...........oouvimiiiiiiiii i 730
UMLInteractionTableLabel [CIAasS].......uuuuiiiiiiiieeiiiiie et e e e e e e e 730
UMLInteractionTableLabelKind [Enumeration]......... ... 731
UMLKeYWOrdLabel [ClasS]......cieeueeeiitiieitiee e ettt ettt e e e e e e e e e e e e e st eeeeeeeaaaaaaeaaeas 731
L0 = o= I [@ =TT PR 732
UMLMultiplicityLabel [ClassS]......cccciiiiriieeeeiciiieee ettt ettt e e e et e e e e e eaaaeeeaeans 732
UMLNaMELADEI [CIASS].......coioiiiiiiiiiiieeee et e e e e e e et e e e e e e aaaaeeeaanan 732
UMLNavigabilityNotationKind [Enumeration]............ccooooi e 733
UMLODjectDIiagram [ClassS]......c.ceuouuieeeeeiiiiiee ettt e e e sb e e e s ssnneeeeeeeannee 733
UMLPackageDiagram [ClasS].........u ittt e e e e e 733
UMLProfileDiagram [CIAsS]........ccccouuiiiiiiiieiiie ettt e e e e e e e e s e e e e e e e aaaaaeeeas 734
UMLREdefiINESLAbEl [CIASS]....uuiiiiiiiiieeieiiie ettt e e e e e e e e e e e s e e s sennnrnnes 734
L1V RS o =T o = @ =7 SR 734
UMLStateMachineDiagram [ClassS].. . .. uuuuemeiiiiiiaaaaaiiee e e e e e e e e aaaae s 735
UMLSHAteShape [ClasS].....cccoiiiiiiiitite ettt e e e e e e e e e e e s s e e e e e e aaaaaaeeas 735
UMLStereotypePropertyValueLabel [Class]...........couiiiiiiiiiiiiiiee e 736
UMLStructureDiagram [ADStract Class].........uuuuueiiiiiiiiiiaaaiee e 737
L0] Y L= [= T3 SRR 737
UMLTypedElementLabel [Class]........couuuueiiiiiiiiei et e 737
UMLUSeCaseDiagram [ClasS].......oiuuiiiiaiiieiiee ettt ettt e e e et e e e e s snbaeeeeeeaaes 738
ASSOCIAtIoN DESCHIPLIONS.t e e 738
A_UMLActivityDiagram_modelElement_umlDiagramElement [Association]..................ccc...... 738
A_UMLAssociationEndLabel_modelElement_umIDiagramElement [Association]................... 738
A_UMLBehaviorDiagram_modelElement_umlDiagramElement [Association]...............ccc..ce... 738
A_UMLClassifierShape_modelElement_umiDiagramElement [Association]...................c........ 739
A_UMLCompartment_elementinCompartment_owningCompartment [Association]................ 739
A_UMLCompartmentableShape_compartmentedShape_shape [Association]........................ 739
A_UMLDiagramElement_localStyle_styledElement [Association]..............cooviiiiiiiiild 739
A_UMLDiagramElement_modelElement_umiDiagramElement [Association].......................... 739
A_UMLDiagramElement_ownedElement_owningElement [Association]...............cccccvviveneeen. 739
A_UMLDiagramElement_sharedStyle_styledElement [Association].............cooooiiiiiiiiiiiiiennnn. 740
A_UMLDiagram_heading_headedDiagram [ASSOCIation]...........cceeuiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeen 740
A_UMLEdge_source_sourceEdge [ASSOCIatioN].........coivuuiiiiiiiiiiiiiee i 740
A_UMLEdge_target_targetEdge [ASSOCIation]..........cuueiiiiiiiiiiiie e 740
A_UMLlInteractionDiagram_modelElement_umIDiagramElement [Association]...................... 740
A_UMLMultiplicityElement_modelElement_umIDiagramElement [Association]....................... 740

Unified Modeling Language 2.5

B.8.16 A_UMLNameLabel_modelElement_umIDiagramElement [Association]....................... 740
B.8.17 A_UMLRedefines_modelElement_umiDiagramElement [Association]...............ccceeeeiiiiiiinnnn... 741
B.8.18 A_UMLStateMachine_modelElement_umlIDiagramElement [Association]...................ccccuuns 741
B.8.19 A_UMLStateShape _modelElement_umlDiagramElement [Association]..............cccccoeieeeeen... 741
B.8.20 A_UMLStereotypePropertyValueLabel modelElement_umlIDiagramElement [Association]....741
B.8.21 A_UMLStereotypePropertyValueLabel_stereotypedElement_labelShowingStereotypeValue
7 AXS1=To o3 =1 1o] o | SRS 741
ANNEX C: KEYWOITS. ...ttt ettt e e e e e e e et e e e e e e e e e e e nnbbeneeeaaaeeeaans 743
Annex D: Tabular Notation for Sequence Diagrams.............ccccccoeeiiiiiiiiiiiiciiiiieeeeeeeee 747
D.1 = 0 0]) [PRSPPI 748
Annex E: XMI Serialization and Schema..............ooooiiiii e 751
E.1 101101 g = PP PPPPPRRPR 751
E.2 XMI Serialization of the UML 2 metamodel.............cccooooriiiiiiiiiiiiei e, 751
E.3 XMl Serialization of the PrimitiveTypes model library.............cccooiiii el 752
E.4 XMI Serialization of the StandardProfile.............ccoooiiiii e, 752
E.5 XMI Serialization of the UMLDI.............uuiiiiiiiiee e 752

Unified Modeling Language 2.5 XXXi

Figure 6.1
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17
Figure 9.18
Figure 9.19
Figure 9.20
Figure 9.21

XXXii

Table of Figures

Semantic Areas Of UML. et e e e e e e e e e e e e e 14
ROO. . ettt bttt e e e e eae 21
(070] 0010 41=T 01 Qg T0] =1 (o o TR SO 22
TOMIPIALES.ot e e e e e e e e e e ————————— 23
Template DINAINGS. e e e e e e e e e e e e e e e ee s 23
N E= T TS o= (o PSP 27
Template package with string parameters............oocuuiiiiiii e 31
Example of element iMport...... ... 31
Example of element import with aliasing...........cccccviiiiiiiiiiiii e 32
Examples of public and private package imports............cueeiiiiiiiiiie e 32
Abstract syntax of types and multiplicity elements.............coooi 33
Multiplicity within a textual Specification................cooiiiiiiiiiee e 35
Multiplicity as an adornment to @ Symbol.............ooueieiiiiiiii s 35
Abstract Syntax of CONSIraINTS.eiiiiiii e 36
Constraint in @ NOte SYMDOL..........e e 37
Constraint attached to an attribute............coo i 37
{XOI} CONSITAINT. ...t e et e e e et e e e e e b e e e e e e nnees 37
Abstract syntax of dEPENAENCIES.coiiuiiiii i e 38
Notation for a Dependency between two elements..........ccccoociiiiiiiiiiiiie e 39
An example of an «Instantiate» Dependency...........cccooiiiiiiiiiiiiii e 39
An example of @ «USE» DEPENUENCY.........eeiiiiiiiiiiee et e et e e e e eree e e e e erre e e e e e snreeas 39
An example of a realization DEPENAENCY...........cccoiiiiiiiiieeeeeee e 40
LITEIAIS. ... e e e e e s s 69
D q 0 == [o 1 TSR 71
B g TSIR= 1 Lo I 0T = 1 o PSSR 73
1] (= V= = PO PP OPP PR PPPPPRPP 76
Example of DurationConstraints and TimeConstraints..........c.ccoccviieiiiiiii e 77
L@ =171 =T OSSR 97
Generalization notation showing different target styles............ccccoviiiiiiicii e, 101
Example of Substitution Notation...............cueiiii i 101
Classifier TEMPIAtES.cooi ettt e e e eeeeeaaes 102
Template Class and BouNd CIass............uuueeiiiiiiiiiiiie ittt 104
ANONYMOUS BOUNA CIASS.......uuuiiiiiiiiiiiiei et e e e e e e e e e e e e e e eaans 104
Template Class with constrained Class parameter............occueeieiiiiiiiie i 104
Lo T T I O F= T PSSP 105
FRAIUIES......cei e 105
L 0] 0 =15 (=T T USRI 109
Examples of attributes. e 113
Association-like notation for attributes............coo 114
L@ oT=T =1 i o] o <SP EPR 114
GENEraliZAtION SEES......uuiiiiiiiiiiiiei e a e e e e e e 117
GeneralizationSets designated by NAME..........c..evii i 118
GeneralizationSets designated by shared target............ccccveiiiiiiiiiii e, 118
GeneralizationSet designated by dashed line spanning Generalization arrows..................... 119
GeneralizationSet constraint notation with shared target style..............ccccooiiii 119
GeneralizationSet constraint notation with dashed line style..................coooiiiiiiiiiicee. 120
Power type notation with shared target style..............cooorric 120
Power type notation with dashed line Style.............oooiiiiiii e 120

Unified Modeling Language 2.5

Figure 9.22
Figure 9.23
Figure 9.24
Figure 9.25
Figure 9.26
Figure 9.27
Figure 9.28
Figure 9.29
Figure 9.30
Figure 9.31
Figure 9.32
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9

Figure 10.10
Figure 10.11
Figure 10.12
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8

Figure 11.9

Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 11.14
Figure 11.15
Figure 11.16
Figure 11.17
Figure 11.18
Figure 11.19
Figure 11.20
Figure 11.21
Figure 11.22
Figure 11.23
Figure 11.24
Figure 11.25

Unified Modeling Language 2.5

GeneralizationSet notation OPIONS..........cooiiiiiii e 121
GeneralizationSets and CONSTraINTS...........oooiiiiiiiii e 121
POWET tyPE EXAMPIE......ceeeiiieece e e e e e e e e e e e e e e e ————— 122
MoOre POWET tYPE ©XAMPIES. ..cooiiiiiee ettt e e e et e e e e e e e e e e e e e e e e e e nnnnennes 123
More than 0NE POWEITYPE.coo it e e e e e e e e e eeeeas 124
1] o= o= T PR 124
Specification of an Instance of StriNG..........cooiiii i 127
SIOtS WIth VaAIUES. ...ttt e e e e e e e e e e e e e nenneeeee 127
InstanceSpecifications representing two objects connected by a link.............ccccceeeiiiiinennn. 127
InstanceValue represented textually............ccooiiiiiiiiiiii 127
InstanceValue represented graphiCally............c..ooiiiiiiiiiii e 127
= L= 1 Y/ 01 P UEURPURUR 165
PrimitiveType NOtatioN........cccoi i 166
DataType NOTALION.ooii et e e e e e st ee e e e e 166
Enumeration NOTatION.........oooi e 167
T To 4 = PP PPUPPPRPR 167
ReCeption NOTAtiION. ... e e e e e e e e e e e e 168
11 (=T =T USSR 169
ISensor is a provided Interface of ProximitySensor..........ccccuuiiiiiiiieeeeeee 170
ISensor, a provided Interface of ProximitySensor, is shown as inherited by

CaAPACHIVESENSON. ... ettt e e sttt e e e e e e e e nneee s 171
ISensor is a required Interface of TheftAlarm...............coooiiiiiiieeee 171
Alternative notation for required and provided Interface..........ccccccccccooiiiiiiiiiiiiiiiiieeeeeeeeeee, 171
A set of collaborating INterfaces. ... 171
SErUCIUrEd ClasSifiers.ot e e e e e e e e e e e e e e e e e annnes 181
Parts @nd FOIES........oooii e e e e e e e e e e e 184
Parts and roles With POIS...........uuiiii e 184
Alternative notations for connecting parts and roles with Ports.............ccooooiiiiiin. 185
Associations compared With CONNECLOrS....... ..o 185
"Star" ConNECIOr PAtlErN.. ... e e e e e 186
"Array" ConNECLOr PAEIN. ... e e 186

An assembly Connector maps a simple Port of a Component to a matching simple Port

Of @NOther COMPONENL...........uuiiiiiiiiiiie et e e e e e e e e e e e e e e e e eannns 187
An n-ary Connector that assembles four simple Ports using channeled ball-and-socket
L0} =1 (o o PR 187
Encapsulated CIasSifiers..........cccuuuuiiiiiiiiiiieeee e 188
POt NOTALION. ...ttt e e e e e e e e 190
Behavior Port NOtatioN........ ... e 190
Port notation showing multiple provided Interfaces............ccccoui e 191
o Ty =) €= o 0] o] L= T 191
L0 T RSP 192
Class NOtation VariantS.oiiiiii oot e e e e e eeeeas 194
Class notation: attributes and Operations grouped according to visibility.............................. 194
11T O = T SO 194
(070] a1 a1=Tor (o] £-3K= 1 To I = o £ SO 195
Connectors and Parts in a structure diagram using multiplicities..........cc.ccccccvcveiiiicieee e 195
AN INStance Of the Car Class.........c.oiiuiiiiie i a e e e enneeas 195
InstanceSpecification indicating @ CONSIIUCION...........c.uviiiiiiii e 196
A constructor for the Car Class..........oooii i e e 196
Showing that the extended Class is @ Metaclass.............ceeeviiiieiiiiiiiiiiiiieeee e, 196
ASSOCIATIONS. ...ttt e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e naarane 197
XXXiii

Figure 11.26
Figure 11.27
Figure 11.28
Figure 11.29
Figure 11.30
Figure 11.31
Figure 11.32
Figure 11.33
Figure 11.34
Figure 11.35

Figure 11.36
Figure 11.37
Figure 11.38
Figure 11.39
Figure 11.40
Figure 11.41
Figure 11.42
Figure 11.43
Figure 11.44
Figure 11.45
Figure 11.46

Figure 11.47
Figure 11.48

Figure 11.49
Figure 11.50
Figure 11.51
Figure 11.52
Figure 11.53
Figure 11.54
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10
Figure 12.11
Figure 12.12
Figure 12.13
Figure 12.14
Figure 12.15
Figure 12.16
Figure 12.17
Figure 12.18
Figure 12.19

XXXiV

Graphic notation indicating exactly one Association end owned by the Association.............. 200
Binary and ternary ASSOCIAtIONS.ooeviiiiiiiiiiiie e ——————— 202
Association ends with various adornmENtSs.............ccueiiiiiiiiiiiei e 202
Examples of navigable association-owned ends.............ooccuiiiiiiiiii 203
Examples of Class-0Wwned €ndS.........coooieiei e 204
Example of attribute notation for navigable end owned by an end Class.................cccccuuune 204
Derived SUPEISELS (UNION)......ccoii ittt et e e et e e e et e e e e e e snnee e e e e e anneee 204
Composite aggregation is depicted as a black diamond...............ooooii, 205
Composite aggregation sharing @ Source SEgMENt............cceoviiiiiiieiiiiiiiee e e e 205
Example AssociationClass Job, which is defined between the two Classes Person and
LO70] 201 07T 0|28 PRSI 205
Example AssociationClass using diamond Symbol............ccccoocuiiiiiiiiiiiie e 206
Qualified @SSOCIAtIONS........ccicuiiiiiiii et te e st e et e e e erae e e anaeeeenes 206
(O70] 0] oTe] aT=T o) - TP PPPPP TIPSR 207
Example of an overview diagram showing Components and their general Dependencies....209
A Component with two provided and three required Interfaces..........cccccooeeeeviiiiiiiieieeeennnnen, 209
Black box notation showing a listing of provided and required interfaces...............ccccevveeee.... 210
Optional “white-box” representation of a Component.............cccoviiiiiiiiiiiiiiiiiiieeeee e 210
Explicit representation of provided and required Interfaces using Dependency notation....... 210
A representation of the realization of a complex Component............cccoociiiieiiii e, 211
An alternative nested representation of a complex Component..........ccccoooceieiiiie e, 211
Example model of a Component, its provided and required Interfaces, and wiring

through DEPENAENCIES.oeiiiiiiiee et e e e e e e e e e e e e eee e 212
Internal structure of @ COMPONENT............oiiiiiii e 212
Delegation Connectors connect externally provided Interfaces to the parts that realize

Lo g (=0 U 1T =0 £ U= o o USRS 213
L0701 F= Lo To] =1 110] 1 - TP PP PPPPP 213
The internal structure of the Observer Collaboration................ooooiiiiiiiii e 215
Alternative notation for the parts of the Observer Collaboration...............cccccceeiiiiiiii. 216
The Sale Collaboration.ccoiiiiiiii e 216
The BrokeredSale Collaboration............ccoeiiiiiicciiiiiieeeieeee e e e e e e e e e eanees 216
A subset of the BrokeredSale Collaboration using «occurrence» and Dependency arrows. .217
= Ted €= To [PPSR 239
lllustration of the Meaning of Package Merge............coocuuiiiiiiiiiiiie e 240
Conceptual View of the Package Merge SemantiCs...........ccccooiuiiiiiiiiiiiiiie e 241
Notation for Package MEIGE.coooi ittt e e e 247
Examples of a Package With MEmMDErS............cooiiiiiiiiiiiii e 247
Simple Example of Package Merge.........c.uuiiiiiiiiiiiiiiee e 248
Simple Example of Transformed Packages Following the Merges...........cccccciiiiieiiiinineen. 248
Introducing Additional Package MErges...........ooeuuiiuiiiiiiiie e e e e e e e eeeeaaeens 249
Result of the Additional Package MErgES...........cooocuiiiiiiiiiiieieee e 249
Three Models Representing Parts of @ System..........cciiii 249
Two Views of One System Collected in a Container Model............ccccccooiiiiiiiiiiiii 250
e o) 1 L= PO 251
Using the HomeExample Profile to Extend a Model.............occooiiiiiiiiiiee e 255
Specification of an Available Metaclass..............cuuveeeiiiiiiiii e 257
MOF Model Equivalent to Extending "Interface" by the "Home" Stereotype............ccccceeenne. 259
Example of Multiple Metaclass EXtENSION. ... 259
MOF Model Equivalent to Multiple Metaclass EXteNSIioN............ccccoviieiiiiniini i 260
The Notation for an EXTENSION........coooiiiiiii e 260
Example of USING @n EXIENSION..........cccoiiiiiiiiceeeeeee e e e e e e e e e e e enenes 262

Unified Modeling Language 2.5

Figure 12.20
Figure 12.21
Figure 12.22
Figure 12.23
Figure 12.24
Figure 12.25
Figure 12.26
Figure 12.27
Figure 12.28
Figure 12.29
Figure 12.30
Figure 12.31
Figure 12.32

Figure 12.33

Figure 13.1
Figure 13.2
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5
Figure 14.6
Figure 14.7
Figure 14.8
Figure 14.9
Figure 14.10
Figure 14.11
Figure 14.12
Figure 14.13
Figure 14.14
Figure 14.15
Figure 14.16
Figure 14.17
Figure 14.18
Figure 14.19
Figure 14.20
Figure 14.21
Figure 14.22
Figure 14.23
Figure 14.24
Figure 14.25
Figure 14.26
Figure 14.27
Figure 14.28
Figure 14.29
Figure 14.30
Figure 14.31
Figure 14.32

Unified Modeling Language 2.5

Example of a Required EXTENSION..........coooiiiiiiiiii e 262
Defining @ Simple EJB Profile...........ooooiiiiiiiieeeee et 263
Importing a Package from a Profile.............ooooiiiiie e 263
Profiles Applied t0 @ PacCKage.........ccccueiiiieeeeie e 264
DefiNiNg @ STErEOLYPE.coii e 264
Presentation Options for an Extended Class............cooooiiiiiiiiiiiiiiiiieeeeeeee e 264
An Instance Diagram when Defining a Stereotype............oooi i 264
Defining Multiple Stereotypes on Multiple Stereotypes..........cooo oo, 265
0] Lo = TS (=Y (=T 0) 4] o1V SRS 265
Showing Values of Stereotypes and a Simple Instance Specification..........ccccccceeevveiiiiiinnnns 265
Using Stereotypes and Showing ValUES...........oouuiiiiiiiiiiiii e 265
Other Notational Forms for Depicting Stereotype Values...........cccooeveiiiiiiiiie 266
Example of a Profile defining Classes and binary composite and non-composite

=TT o7 =1 oo - S 266

Diagram example of applying a profile defining Classes and Associations and of
creating instances of such Classes. Tools can provide a notation similar to that of

object diagrams for instances of Profile-defined Classes, DataTypes and Associations........ 269
LY g E NV o) SR 284
=T o) PO 289
Behavior StateMacChines.uuiiiiiiiiiieie e e 304
Compound transition @XamPIe...........cooiiiiiiiiiiiiie e 316
Notation for a composite State with Regions.............cooviiiiiiiiiiiiiiie e 317
Y= -3 0] =1 1] o TSRS 317
State With @ NAME 1aD......... e ——————— 318
State With ComMPartMENtS........o..eeiii e 318
Composite State with two States..........ccccciiiiiii e 320
Composite State with a hidden decomposition indicator icon................ccocccciiiiiiieeieieeeeee, 320
Composite State With REGIONS...........eiiiiiii e 320
Composite State with two Regions and entry, exit, and do Behaviors..................cccc 321
Submaching State EXamMPIE..........uuiiiiiiiiee e e e e 322
StateMachine with an exit point as part of the StateMachine graph.......................... 323
StateMachine with an exit point on the border...............ooiiiiiiii e, 323
Submachine Sate that uses an exit Point.............cooooiiiiiiiiiiiiee e 324
State list NOtation OPLION.........ooi i 324
Diagram equivalent to Figure 14.15 without using statelists.............cccccoiiie, 325
FiNalState NOtAtioN. e e e e e e e a e e 325
INitial PSEUAOSIALE. ... 325
ShalloWHIStory PSEUAOSAtE.cooiiiiiii e 325
deepHistory PSeUdOSTAte.ouuiiiii 325
entryPoint PSEUAOSTIALE.coo i ————— 326
eXitPOINt PSEUAOSTALE.coiiiiiiiiie e 326
entryPoint and exitPoints on a composite State............ccociiiiii 326
junction Pseudostate with incoming and outgoing Transitions..............cccccieiiiniiicie 327
ChOICE PSEUAOSIALES. ... e e e e e as 327
terminate PSEUAOSIALE..........uiiiiiiiiiiiie e e 327
fork and jOIN PSEUAOSIALES.oiiiiiiiiiiie e e e e as 328
Entry point ConnectionPointReference notation..............cccco i 328
Exit point ConnectionPointReference notation...............cccooiii 328
Alternative entry point ConnectionPointReference notation.............ccccooiiiicen, 329
Alternative exit point ConnectionPointReference notation.................ccccovveeeiiiiiii, 329
Symbols for Signal reception, Sending, and Actions on a Transition...................cccceeeeeeeeennns 331

XXXV

Figure 14.33
Figure 14.34
Figure 14.35
Figure 14.36
Figure 14.37
Figure 14.38
Figure 14.39
Figure 14.40
Figure 14.41
Figure 14.42
Figure 14.43
Figure 14.44
Figure 14.45
Figure 14.46
Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 15.7

Figure 15.8

Figure 15.9

Figure 15.10
Figure 15.11
Figure 15.12
Figure 15.13
Figure 15.14
Figure 15.15
Figure 15.16
Figure 15.17
Figure 15.18
Figure 15.19
Figure 15.20
Figure 15.21
Figure 15.22
Figure 15.23
Figure 15.24
Figure 15.25
Figure 15.26
Figure 15.27
Figure 15.28
Figure 15.29
Figure 15.30
Figure 15.31
Figure 15.32
Figure 15.33
Figure 15.34
Figure 15.35
Figure 15.36
Figure 15.37

XXXVi

Deferred Trigger NOLAtION.eiii i 332

[Tor=| I I =T 0111 o] o 1T PP PP 333
EXternal TranSitioNS.........cooi i e s 333
StateMachine diagram representing a telephone............cccooii 334
StateMachine redefinition............. .. e 335
A general StateMacChine.............oooi i —————————— 337
An extended StateMacChine............ccouiiiiii e ——————————— 337
X [o [T a T I I =10 71 1T} o - USSP 338
ProtoColStatEMAaCHINES.ccoiiiiiiiie et e e 339
An example of a ProtocolTransition associated with the operation "m1".............................. 341
Example of several ProtocolTransitions associated with the same operation (m1)............... 341
ProtocolStateMaching eXample.............uueeiiiiiiiiiiiiii e 342
Notation for a State with an invariant..............ccooiiiii e 343
ProtocolTransition NOtAtION. i e e e e e e e e e e 343
217 =SSR 372
ACHVILY NOTALION.ot e e e e et s e e e e e e e e e eeeeeeaearana 377
ACHIVILY Class NOTALION. e e e e e e e 378
ACIVItYNOAE NOLATION. ... 378
ACHIVItYEAGE NOTAtION. ...t e e e e e e e 378
ActivityEdge conNeCtor NOTAtION.oooiiiiiiii e 378
ACIVItYEAGE NOTALION. ...t et e e 379
(070)0) 0] | =l To 1V s To) =1 i o] o PR 379
(@ o] =T ox (o (011 A T] ¢= 11T o 1= S PRRR 379
Specifying selection behavior on an ObJeCtFIOW..............ooiiiiiiiiiiiii e 379
Eliding objects flowing on the €dge...........oooiiiiiiii e 380
Activity node example (where the arrowed lines are the only non-activity node symbols).....380
ACHVItYEAQGE EXAMPIES. ... r e e e e e e e e e e e e e e et aaaaaaaaaaaan 380
ODJECFIOW ©XAMPIE..... .t e e e e e e e aneeas 381
Eliding objects flowing on the €dge...........cooiiiiiiiiii e 381
Specifying selection and transformation Behaviors on an ObjectFlow.............cccccccceeeeiiinne. 381
Linking a class diagram to an object NOde.............oooiiiiiiiiiiiiii e 382
Specifying multicast and multireceive on the edge..........oooiiiiiiiiiiiii e 382
ActivityEdge connector @XampPle............eeiiiiiiiiiiiii e 382
EQUIVAIENT MOEL......c e a e nneeeae s 382
ActivityEdge Weight @Xamples.... ... 383
Example of an activity with input parameter..............cccoi i 383
Part selection WOrkflow €Xample...........coooiiiiiiiiiiiiiiieeeeee e 384
Trouble ticket WOrkflow eXample.........oooiiiiiii i 384
Activity with attributes and Operations..............ooouiiiiiiiii 385
L070] 011 o] I N oo 1= J PP PP PP PPPPPI 385
INItTAINOAE NOTALION. ... e 388
[TaF=11N (oo (=30 o) -1 4o o TSR 389
ForkNode and JoiNNOde NOtatioN..............eiiiiiiiiii e 389
J{oT1 41T oT=Tol gTo] ¢= 11 o] o XSSP 389
Combined JoinNode/ FOrkNode Notation..............eeeiviiiiiiee i 389
MergeNOde NOLALION. e e e e e e e e e e e e enenes 390
DeciSIONNOAE NOTALION.eeiiiiiiiieee et e e e e e e e e e e e e e e nnneeees 390
Combined MergeNode/DecisionNode Notation.............cooieiiiiiiiiiiiiie e 390
INItIAINOAE EXAMPIE. ..ottt e e et e e e s abaeeee e e 390
o (N (oo [N =) =T o 1] o] [391
B [o]\ ToTe [N =Y e a] o 1= TS 391

Unified Modeling Language 2.5

Figure 15.38
Figure 15.39
Figure 15.40
Figure 15.41
Figure 15.42
Figure 15.43
Figure 15.44
Figure 15.45
Figure 15.46
Figure 15.47
Figure 15.48
Figure 15.49
Figure 15.50
Figure 15.51
Figure 15.52
Figure 15.53
Figure 15.54
Figure 15.55
Figure 15.56
Figure 15.57
Figure 15.58
Figure 15.59
Figure 15.60
Figure 15.61
Figure 15.62
Figure 15.63
Figure 15.64
Figure 15.65
Figure 15.66
Figure 15.67
Figure 15.68
Figure 15.69
Figure 15.70
Figure 15.71
Figure 15.72
Figure 15.73
Figure 16.1

Figure 16.2

Figure 16.3

Figure 16.4

Figure 16.5

Figure 16.6

Figure 16.7

Figure 16.8

Figure 16.9

Figure 16.10
Figure 16.11
Figure 16.12
Figure 16.13
Figure 16.14
Figure 16.15

Unified Modeling Language 2.5

JOINSPEC EXAMIPIE. ...ttt e e ettt e e e e ab bt e e e e s abbe e e e e e aanbeneeeeeann 391
MeErgeNOdE EXAMPIE.ccoi it e e s e e e e e e e e e e e e e e e e e et aeaas 391
DeCiSIONNOGE EXAMPIE..... it e e e e e e e e e et e e e e eaes e e e eeas 392
DecisionNode example with decCiSiONINPUL...........oooiiii i 392
ActivityFinaINOdE @XamIPIE.........oiiiiieie e 392
ActiVityFiNalNOAEe €XamMPIE......ccoo i e e e ——————— 392
ACLiVityFINaINOAE €XaMPIE........euiiiiiiiiiiiie e e e 393
FIOWFINAINOAE €XAMPIE......eeeieieii et e e e e e e e e e e e e e e e e eeaeaeaaaaas 393
FlowFinalNode and ActivityFinalNode example..........c.c..uuiiiiii e 393
ControlNode examples (with accompanying actions and control flows).............cccevvviiiiiinnns 394
(@] o] =Ted g [o = T RSP R 394
(@01 =To1 1\ [oTo [l aTo] ¢= 1110] o 1T USRS 397
ObjectNOdE anNOtAtiONS.........c..uuuiiiiiiiieieieceee e e e e e e e e e 398
Specifying selection behavior on an ObjectNOde..............cooiiiiiiiiiiii e 398
Notation for stream and exception parameters.............cccuiiiiiiiie e 398
Presentation option for flows between pins and parameter nodes..........ccccceveveeeeeeeieiiiiicccnns 399
Optional CentralBufferNode notation..............cccuiiiiiiiiiiiiiic e 399
DataStoreNOde NOtAtION. e e e e e e e e e e e e e e enneenes 399
Example of ActivityParameterNodes for regular and exception Parameters.......................... 399
Example of ActivityParameterNodes for streaming Parameters............cccccccvvvvviiiiiinnnnnnnn.... 400
CentralBufferNode eXample...........ooo i 400
DataStoreNOde EXAMPIE.........cceieiiieeeeeeee et aaa e 400
EXECULADIE NOTES.ttt e e e e e e e e e e e e e e e e e e annes 401
(= CCTe18] c= 1] =1\ (oTo L= g o] =1 i o T o SRR 402
ExceptionHandler NOtation..............ueii e 403
Alternative ExceptionHandler Notation................cooo i 403
ExceptionHandler @Xample...........oooo oo ————— 403
F e 11147 €] (o100 1 PP PPRP 404
ActivityPartition NOAtIONS. ... 406
ActivityPartition NOtatioNS...........ooeiiieie e 407
Interruptable ACtiVItYREGION.ooi e 407
InterruptableActivityRegion alternative notation................oooiiii e 407
ActivityPartitions using swimlane notation..................iie e 408
ActivityPartitions using annotation.............cooiiiiiiiii e 408
ActivityPartitions using multidimensional swimlane notation...............cccoccoeiiiii e 409
InterruptableActivityRegion eXample.............cooiiiiiiiii e 409
A CTIONS ettt e e e e e oo e e e e et e e e e e e e e e e e e e a e e e eeees 440
1o) o SR 444
Local pre- and post-CONAItIONS..........coiiieeeee e e e 444
PiN NOTALIONS.eeee it e e e e e e e e e e e e e 444
Pin notations, With @rMOWS............ooi i 445
Standalone Pin NOtatioNS. ... e 445
EXamPIEs Of ACHIONS.... .o 445
Example of action using a tool-specific concrete syntax..........ccceeeeiiiiiiiiii i 445
Example of an action with local pre- and post-conditions.............ccoccveiiiiiiiiic i 446
PN EXAMIPIES. .. et e e e e e e e e ——————————— 446
Specifying selection behavior on an ObJECtFIOW............c..eeiiiiiiiiiiiie e 447
Example abstract syntax model showing the use of ActionInputPins.............cccccciiiiinis 447
TNV o= i 0 Yo T o - 448
CalliNg @ BENAVIOT.........cc ittt e e e e e e e e e e e e e e e e e e aaaeeeeaeaaaannns 452
CalliNg AN ACHVILY....ceee et e e e e e e e e e e s e e e a e e e e e e e eaaaaeeeeaeaaanans 452

XXXVii

Figure 16.16
Figure 16.17
Figure 16.18
Figure 16.19
Figure 16.20
Figure 16.21
Figure 16.22
Figure 16.23
Figure 16.24
Figure 16.25
Figure 16.26
Figure 16.27
Figure 16.28
Figure 16.29
Figure 16.30
Figure 16.31
Figure 16.32
Figure 16.33
Figure 16.34
Figure 16.35
Figure 16.36
Figure 16.37
Figure 16.38
Figure 16.39
Figure 16.40
Figure 16.41
Figure 16.42
Figure 16.43
Figure 16.44
Figure 16.45
Figure 16.46
Figure 16.47
Figure 16.48
Figure 16.49
Figure 16.50
Figure 16.51
Figure 16.52
Figure 16.53
Figure 16.54
Figure 16.55
Figure 16.56
Figure 17.1

Figure 17.2

Figure 17.3

Figure 17.4

Figure 17.5

Figure 17.6

Figure 17.7

Figure 17.8

Figure 17.9

Figure 17.10

XXXViii

O 1o To I=Ta I @ o= = 11[o] o TR PP PRRPRRRN 452
Calling an Operation, showing the OWNer NAME...............ccvevieiiiiiiieee e 452
SeNAING @ SIGNAL.....ci i aaaaaa e e e e e e e 453
Exception Pin @annotations............oooriiiiii i 453
Effect Pin @annotations. e 453
Stream Pin annotations..........oooi e 453
Stream Pin annotations, with filled arrows and rectangles...........cccccccieeeeiiiiiiieccceee, 454
Alternative input/outputs using ParameterSet notation................cccco e 454
INVOKING 8N ACHIVITY ...t e e e e e e e e e e e e eeeeas 454
SeNAING SIGNAIS.......eeiiiiiiie e nres 455
Streaming Pin @XamMPIES........ooo i 455
EXCeption Pin @XamPIES.......cooo i ————————— 455
Pin example With €ffECES..........ooo i 455
Alternative input/outputs using ParameterSets............cooo i 455
(@] o] =Ted 97 Yex 1] o1 TP PEPR 456
ValueSpecificationAction NOTAtION.............ooooiiiiiiie e 458
ValueSpecCifiCatioNACHIONS. ...t e e e e e e e e 459
[T S =t o 1 7= - TSRS 459
o o] = 3PS 461
LiNK ODJECE ACHIONS.ttt e et e e e s e e e s e nneeeeens 464
Structural FEature ACLIONS..........coo i e e e e e e e s e e aae s 465
Variable ACHONS. ...ttt et e e e e e e e e e e e e e e e e eeaaeas 468
Presentation option for AddVariableValueAction................ccccouiiiiiiiiiiiieeceeee 469
ACCEPT EVENT ACHONS. ...t e e e 470
AcceptEVentACtion NOTAtIONS.........ooi i 472
Implicitly enabled ACCEPIEVENTACHON.........cceiiiii e 473
Explicitly enabled ACCEPtEVENTACHON.coiiii i 473
Repetitive tiIMe @VENT.... ...t e e e e e e e e 473
UNMarshallACHION. ...t e aaannnns 473
Y 0o (U= Yo e 1] 13 PSP 474
Notation for StructuredActivityNOdE.coooiiiiiiiii e 478
EXPansion REGIONS. ... ittt e e e e e e e e e e e e an 478
EXPanSion REGION.t e e e e e e e e e e e e e e e 481
Shorthand notation for expansion region containing single node................cccoooii 481
Full form of previous shorthand Notation................cceeii i 481
Notation for expansion region with one behavior invocation..............ccccccoei i 481
Expansion region with two inputs and one output.............coooiiiiiiccccce e 482
EXPaNSION REGION.ottt e e e sttt e e e e an b e e e e e e abbeeeeaeaans 483
Examples of expansion region shorthand.............coooiiiiiiii e 483
Shorthand notation for eXpansion regioN............cccuuiiiiiiiiiiieee e e 484
(@ 1T o 1] L3P ERR 484
11 0= =T o) o 13RS 565
Overlapping ExecutionSpecifiCations............ooo i 567
An example of an Interaction in the form of a Sequence Diagram............cccccoviiieieiiiiiieenenn. 568
OCCUITeNCESPECITICALION.ciiiiiiiiiii e 568
Sequence Diagram with time and timing CONCEPLS.........ccvviiiiiiiiiiiiie e 569
Y] o PSR 570
1= S= To = T PP PR 572
DestructionOccurrenceSpecification Symbol...........coocueiiiiiii e 576
(@ o o104 (=0T TP TURSR 578
Example showing GeneralOrdering in a sequence diagram...........ccccuveeeeeeeeeeeeeeeeeiceccciniinnns 579

Unified Modeling Language 2.5

Figure 17.11
Figure 17.12
Figure 17.13
Figure 17.14
Figure 17.15
Figure 17.16
Figure 17.17
Figure 17.18
Figure 17.19
Figure 17.20
Figure 17.21
Figure 17.22
Figure 17.23

Figure 17.24
Figure 17.25
Figure 17.26
Figure 17.27
Figure 17.28
Figure 17.29
Figure 17.30
Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5
Figure 18.6
Figure 18.7
Figure 18.8
Figure 18.9
Figure 18.10
Figure 18.11
Figure 18.12
Figure 19.1
Figure 19.2

Figure 19.3

Figure 19.4
Figure 19.5

Figure 19.6
Figure 19.7
Figure 19.8
Figure 19.9
Figure 19.10
Figure 19.11
Figure 19.12

Figure 19.13
Figure 19.14

Unified Modeling Language 2.5

= Lo 1T o €T PRI 580
CrtiCal REGION.ttt e s e s e eanseabeeaneees 585
- Loop CombinedFragment............coooiiieeeeeee e 586
CombiINEdFragmENnt.........ooo i e e 586
L@ a1 (110 F=1 1o o RS 587
Continuation INtErPretatioN..............eii i e e e e e e e e e e e e e 587
Ignore, consider, assert with Statelnvariants............ccccccevee i 588
T (=T = T3 o] 1O =T3P ERRRRR 589
INEErACHIONUSE.ottt e e e e e e e e e e e e e e e e e 590
InteractionUse With Value retUIN..........cceiiiiiieeee e e 591
PartDecomposition - the decomposed part...........c..eeiiiiiiiiiii e 591
PartDecomposition - the decomMpPOSItioN............ccooiiiiiiiiiiiee e 591
Sequence Diagrams where two Lifelines refer to the same set of Parts (and
INEINAl STIUCIUIE)....ceiie e e 592
Describing Collaborations and their binding.............ooooii 593
Overview of Metamodel elements of a Sequence Diagram...............cccoeeviiiiiiiiiiiiiieeeeeeee e, 597
CommuNiCatioN IAgIam..........oooi i e e e e e e e e e e aaaaaaaaas 599
Interaction Overview Diagram representing a High Level Interaction diagram...................... 601
A Lifeline for a discrete ODJECT..... ..o 603
Compact Lifeline with States..........cooo i 604
Timing Diagram with more than one Lifeline and with Messages.............cccccool 604
LT 0= 1T USRS 637
Class diagram of a Package owning a set of UseCases, Actors, and a Subsystem.............. 641
EXaMPIE EXIENG. ... e e e e e e 641
EXaMPIE INCIUAE. ..ottt e e s e e s as 642
UseCase using Classifier rectangle notation................ceeevviiiiiiie e 642
Actor notation USING SHCK-MaAN...........uiiiiiiii e e e 642
Actor notation using Class rectangle........ ..o 642
ACtOr NOLALION USING ICOM. ...ttt 642
Notation for UseCase owned by ClasSifier..........ccouiiiieiiiiiiiiiieeee e 643
Example ATM system with UseCases and ACLOrS...........ccooiiiiiieiiiiiiiee e 643
Example UseCases owned by Packages...........oooiiiiiiiiiiiiiiiiee e 644
Example UseCase with associated StateMachine.................cccoooiiii s 644
(D =T o] (o)1 1T o (3 PP 651
A visual representation of the deployment location of artifacts, including a dependency
between them, inside a DeployedTarget graphicC..........c.oooeiioiiiiiiiiiiiiie e 652
Alternative deployment representation of using a dependency called «deploy» used
when DeployedAtrtifacts are visually outside their DeployedTarget graphics......................... 652
Textual list based representation of DeployedArtifacts.........ccccceeeiiiiiiiiii e, 653
DeploymentSpecification for an artifact. On the left, a type-level specification, and on
the right, an instance-level specification.............ccuuvviiiiiiiii e 653
DeploymentSpecifications related to the DeployedArtifacts that they parameterize.............. 653
A DeploymentSpecification for a DeployedArtifact ... 654
N 1 = Lo £ TP PSURRRRRR 654
AN AIfACE INSTANCE....ceiiieie e e aaaa s 655
A Manifestation relationship between an Artifact and a Component.................ccccceeiiinnnnn. 655
N[00 [= 3 TR 656
Notation for a Device containing an ExecutionEnvironment and connected to another
Device by a CommunicationPath lINK............coooiiiiii e 657
Notation for @ EXeCUtiONENVIFONMENT..........ooiiiiiiiiii et 657
AN NSTANCE OF @ NOE......oiiiiiiiiiii e e e s e e e s neeeeeas 657
XXXiX

Figure 19.15 CommunicationPath between AppServer with deployed Artifacts and a DBServer................ 657
Figure 19.16 Deployed component Artifacts on @ NOde..............uuiiiiiiiiiiiic e, 657
Figure 20.1 INfOrMation FIOWS.........coooiiiiiiii et e e e e e e e e e e e et e e e e e eeaeaeeeeaaaan 667
Figure 20.2 Example of InformationFlows conveying Informationltems...............cccooiiniccee, 669
Figure 20.3 Information Item represented as a Classifier..........ccooouiiiiiiii 669
Figure 20.4 Examples of «representation» NOtation..............ccceeeeiiiiiiiiiiiiiee e 669
Figure 20.5 Informationltems attached to CoNNECIOrS............coiiiiiiiiiii e 669
Figure 20.6 Informationltems attached to ASSOCIAtiONS..........cooi i 670
FIGUre 2711 PrimItIVe Ty DES. .ottt ettt e e e e e e e e e e e e e bt e et e e e e eaaaaeeeeasaaaannnrnnes 675
Figure 21.2 An Integer used as a type for an attribute, with a default value...............ccccccoiiin, 675
Figure 21.3 A Boolean used as a type for an attribute, with a default value.................ccccocooiiiiiiiii 676
Figure 21.4 A String used as a type for an attribute, with a default value..............ccccoociiiiiii e, 676
Figure 21.5 An UnlimitedNatural used as an upper bound for a multiplicity................ccccoviiieien. 676
Figure 21.6 Two attributes with type Real...........ooooiiiiii e 676
Figure 22.1 Model of StandardProfile...............eoii i 677
Figure A.1 LU 1Y/ I =T = 1 o U 681
Figure A.2 Class diagram of PACKAGE P...........uuiiiiiiiiiiiiii et aa e 681
Figure A.3 Two diagrams Of PACKAGES.coiiiiiiiiii e 682
Figure A.4 A class diagram and a composite structure diagram..............ccoooiiiiiiiee 682
Figure A.5 The taxonomy of structure and behavior diagrams..............cccooiiiiiiiiie e 683
Figure B.1 UML Diagram Interchange ArchiteCture............coooiiiiiiiiiii e 685
Figure B.2 UML Diagrams and Diagram Elements...........oooi e 686
Figure B.3 UML Shapes and EAQES.........cooieiiiiiiiieeiiiiiiee e sttt e e e e sttt e e e e ettt e e e s eentaeeeeessntaeeaeesanraeeeeeeanns 687
Figure B.4 0= o= £ U PRRP 687
Figure B.5 UML Compartmentable Shapes...........coo i 689
Figure B.6 Stereotype Application Labels............cc..uuiiiiiiiiiiii e 689
Figure B.7 1Y S 4 [P PEPURPRTT 691
Figure B.8 STTUCKUIE DIAGIAMS. ..ccei ittt e e e e bt e e e e bt e e e e e e abbe e e e e e e nneeas 691
Figure B.9 ClasSIfier SNAPES.ciiii e 693
Figure B.10 Multiplicity and Association End Labels..............coooiiiiiiiiiiiiiieeeeee e 694
Figure B.11 Association, Connector, and Link Shapes..........ccccviieiiiiiiiiiiiieeeeeee e 695
Figure B.12 Behavior DIagramS.ottt e e e e e e e e e e e e e et e e e e e e aaaaaeaeeaeaaaannnns 695
o U = T B Y =Y (Y] = o =Y SRR 700
Figure B.14 Interaction Shapes..........ooiiiiiiiiiiii et e e e s ee e e e anes 701
Figure D.1 Sequence diagram enhanced with identification of the Event occurrences........................... 748
Figure D.2 Sequence diagram with guards, parallel composition and alternatives............ccccccceevvivveennn. 749

xI

Unified Modeling Language 2.5

Table 7.1

Table 9.1

Table 17.1
Table 17.2
Table 17.3
Table 17.4
Table 17.5

Table 17.6
Table 21.1
Table 22.1
Table B.1
Table B.2
Table C.1
Table D.1
Table D.2

Table of Tables

Collection types for MUltipliCityElements..........cc.ueeiiiiii e 34
GeneralizationSet CONSIraINtS..........cuiiiiiiiii e 119
Graphic Nodes Included in Sequence Diagrams............occueiiieiiiiiiiiee e 594
Graphic Paths Included in Sequence Diagrams..........ccccuuiiiiiiiiieiieeae e 596
Graphic Nodes Included in Communication Diagrams............ccceeeeiviiireeeiiiiieee e esiiee e 598
Graphic Paths Included in Communications Diagrams...........cccoocueeeieniiiiiiieeniiiieeee e 598
Graphic nodes included in Interaction Overview Diagrams in addition to those borrowed

from ACHIVIEY DIAgramS.coii ittt e e s e e e e e e e e e e e et e e e e e e nnaeeaeeeanrees 600
Graphic nodes and paths included in timing diagrams...........cccccccccoooiiiiiiiiiiiiiieeeeeee e, 602
PrimitiveTYPE dOM@INS. ... et e e et e e e s e rabeeeeeeeanes 675
Description of the Stereotypes in the UML StandardProfile..............ooooiiiiiiii, 678
1Y] T T o1 OO 702
1Y I o [[OSSP 716
KBYWOITS. ...ttt e e e e ettt e e e e o bbbt e e e e e aab b et e e e e aaabbe e e e e e anbeeeeeeeaan 744
Interaction Table describing Figure D. e 748
Interaction Table for FIQUIE D.2.........coo i e e 749

Unified Modeling Language 2.5 xli

1 Scope

This specification defines the Unified Modeling Language (UML), revision 2. The objective of UML is to provide
system architects, software engineers, and software developers with tools for analysis, design, and implementation of
software-based systems as well as for modeling business and similar processes.

The initial versions of UML (UML 1) originated with three leading object-oriented methods (Booch, OMT, and OOSE),
and incorporated a number of best practices from modeling language design, object-oriented programming, and
architectural description languages. Relative to UML 1, this revision of UML has been enhanced with significantly
more precise definitions of its abstract syntax rules and semantics, a more modular language structure, and a greatly
improved capability for modeling large-scale systems.

One of the primary goals of UML is to advance the state of the industry by enabling object visual modeling tool
interoperability. However, to enable meaningful exchange of model information between tools, agreement on semantics
and syntax is required. UML meets the following requirements:

¢ A formal definition of a common MOF-based metamodel that specifies the abstract syntax of the UML. The
abstract syntax defines the set of UML modeling concepts, their attributes and their relationships, as well as the
rules for combining these concepts to construct partial or complete UML models.

¢ Adetailed explanation of the semantics of each UML modeling concept. The semantics define, in a
technology-independent manner, how the UML concepts are to be realized by computers.

e A specification of the human-readable notation elements for representing the individual UML modeling
concepts as well as rules for combining them into a variety of different diagram types corresponding to
different aspects of modeled systems.

Unified Modeling Language 2.5 1

2

Conformance

There are five distinct types of conformance. These are listed below. Unless otherwise stated these types of
conformance are independent.

1

Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface
and/or API that enables instances of concrete UML metaclasses to be created, read, updated, and deleted. The
tool must also provide a way to validate the well-formedness of models that corresponds to the constraints
defined in the UML metamodel.

Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface
and/or API that enables instances of UML notation to be created, read, updated, and deleted. Note that a
conforming tool may provide the ability to create, read, update and delete additional diagrams and notational
elements that are not defined in UML.

Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMI for all valid UML models, including models with profiles defined and/or applied. Model
interchange conformance implies abstract syntax conformance. A conforming UML 2.5 tool shall be able to
load and save XMI in UML 2.4.1 format as well as UML 2.5 format (see Annex E).

Diagram interchange conformance. A tool demonstrating diagram interchange conformance can import and
export conformant DI (see Annex B) for all valid UML models with diagrams, including models with profiles
defined and/or applied. Diagram interchange conformance implies both concrete syntax conformance and
model interchange conformance.

Semantic conformance. A tool demonstrating semantic conformance provides a demonstrable way to interpret
UML semantics, e.g., code generation, model execution, or semantic model analysis. The normative
specification for UML semantics includes clause 6.3 in addition to the Semantics subdivisions of clauses 7-22.
Semantic conformance implies Abstract Syntax conformance.

Where the UML specification provides options for a conforming tool, these are explicitly stated in the specification. In a
number of other cases, certain aspects of the semantics are listed as "undefined" or “intentionally not specified” or “not
specified”, allowing for domain- or application-specific customizations. Only customizations that do not contradict the
provisions of this specification will be deemed to conform to it. However, models whose meaning is based on such
customizations can only be interchanged without loss with tools that support the same or compatible customizations.

This specification comprises this document together with XMI serialization contained in machine-consumable files as
listed on the cover page. If there are any conflicts between this document and the machine-consumable files, the
machine-consumable files take precedence.

Unified Modeling Language 2.5 3

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, Sixth Edition 2011
¢ OMG Object Constraint Language (OCL) 2.3.1 Specification: http://www.omg.org/spec/OCL/2.3.1

¢ OMG Meta Object Facility (MOF) Core 2.5 Specification: http://www.omg.org/spec/MOF/2.5

e OMG XML Metadata Interchange (XMI) 2.5 Specification: http://www.omg.org/spec/XMI/2.5

e OMG Diagram Definition (DD) 1.1 Specification: http://www.omg.org/spec/DD/1.1

Unified Modeling Language 2.5

http://www.omg.org/spec/DD/1.0.1
http://www.omg.org/spec/XMI/2.5
http://www.omg.org/spec/MOF/2.5
http://www.omg.org/spec/OCL/2.3.1

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

Unified Modeling Language 2.5

5 Notational Conventions

5.1 Key words for Requirement Statements

The words SHALL, SHALL NOT, SHOULD, SHOULD NOT, MAY, NEED NOT, CAN and CANNOT in this
specification shall be interpreted according to Annex H of ISO/IEC Directives, Part 2, Rules for the structure and
drafting of International Standards, Sixth Edition 2011.

5.2 Annotations on Example Diagrams

Some of the diagram examples in this specification include explanatory annotations, which should not be confused as
being part of the formal UML graphical notation.

In these cases, the explanatory text originates outside the UML diagram boundary, and has an arrow pointing at the
feature of the diagram which is being explained by the annotation. The color rendition of this spec shows these
annotations in red.

Unified Modeling Language 2.5

6 Additional Information

6.1 Specification Simplification

This specification has been extensively re-written from its previous version to make it easier to read by removing
redundancy and increasing clarity. In particular, the following major changes have been made since UML 2.4.1:

e The UML Infrastructure no longer forms part of the UML specification. The entire UML specification is
constituted in this document.

¢ Package Merge is not used within the specification. Every metaclass is specified completely in one clause.

e The specification is organized to reduce forward references as much as possible. This means that topics such as
Templates which are pervasive in their effects appear early in the specification.

* Every clause has a section of documentation generated from the metamodel that contains all of the metaclasses
with their properties, and all of the metaassociations with their properties. All cross-references in this generated
documentation include hyperlinks to their targets.

e The compliance levels LO, L1, L2, and L3 have been eliminated, because they were not found to be useful in
practice. A tool either complies with the whole of UML or it does not. A tool may partially comply with UML
by implementing a subset of its metamodel, notation, and semantics, in which case the vendor should declare
which subset it implements.

However, the metamodel itself remains unchanged from UML 2.4.1 superstructure, with a few exceptions:

¢ The metamodel has been partitioned into packages, corresponding to the clause structure of this specification.
All of these packages are owned by a top-level package named UML; they are also imported into UML so that
metaclasses may be referred to by their unqualified name in UML.

e Many OCL constraints have been corrected or added where they were absent. In order to do this, some names
of association-owned properties and the corresponding associations have been changed in order to avoid
ambiguity in OCL expressions.

e A small number of lower multiplicities have been relaxed from 1 to 0, in order to represent default values that
cannot be formally represented using MOF. In these cases the absence of a value signifies the presence of a
default value. These cases could not be represented at all in earlier versions of UML. They all occur in Clause
15: Activities and are made explicit in the text there.

e The property LoopNode::loopVariable has been made composite, in order to enable interchange of loop variables,
which was not possible in a standard way in UML 2.4.1.

¢ NamedElement::clientDependency has been made derived.

e {ordered} has been added to or removed from some properties in order to make the semantics consistent.

Unified Modeling Language 2.5 11

6.2 Architectural Alignment

The OMG’s Model Driven Architecture (MDA) initiative is a conceptual architecture for a set of industry-wide
technology specifications that support a model-driven approach to software development. Although MDA is not itself a
technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven
technology specifications. UML, MOF, and related specifications play important roles in MDA by providing the
languages for creating and transforming models.

The abstract syntax of UML is specified using a UML model called the UML mefamodel. This metamodel uses
constructs from a constrained subset of UML that is identified in the MOF 2 specification and used for constructing
metamodels. Classes in a metamodel are called metaclasses. So, for example, the UML metaclass Element is an abstract
class in the UML metamodel: which also means that it can be viewed from the MOF perspective as an instance of the
metaclass Class, whose isAbstract property has the value true. Another such instance is the UML metaclass Comment,
which has an attribute named body, which can in turn be viewed from the MOF perspective as an instance of the
metaclass Property whose name property has the value “body”.

The fact that UML is defined using itself is no more surprising than the fact that many programming languages have
compilers written in the language itself, or that recursive functions (such as the factorial function) can be defined using
themselves. Certain conditions are required to ensure that the resulting definition is well-formed and unique; there is no
formal proof that UML satisfies these conditions, but the existence of numerous interoperable implementations of UML
offer substantial confidence that it does.

Defining UML using this constrained subset of itself ensures that UML models can be held in a MOF 2 repository
where they can be manipulated using MOF features, and interchanged using XMI in accordance with the MOF 2 XMI
Mapping Specification.

Since version 2.4.1 a MOF 2.x metamodel, including the UML 2.x metamodel, is a valid UML 2.x model. This was a
substantial simplification and alignment compared to earlier versions. It is expected that future versions of MOF and
UML will continue to be aligned in this manner.

Further discussion of metamodels and the relationship between UML and MOF may be found in the MOF 2 Core
specification.

6.3 On the Semantics of UML

6.3.1 Models and What They Model

A model is always a model of something. The thing being modeled can generically be considered a system within some
domain of discourse. The model then makes some statements of interest about that system, abstracting from all the
details of the system that could possibly be described, from a certain point of view and for a certain purpose. For an
existing system, the model may represent an analysis of the properties and behavior of the system. For a planned
system, the model may represent a specification of how the system is to be constructed and behave.

A UML model consists of three major categories of model elements, each of which may be used to make statements
about different kinds of individual things within the system being modeled (termed simply “individuals” in the
following). These categories are:

* Classifiers. A classifier describes a set of objects. An object is an individual with a state and relationships to
other objects. The state of an object identifies the values for that object of properties of the classifier of the
object. (In some cases, a classifier itself may also be considered an individual; for example, see the discussion
of static structural features in sub clause 9.4.3.)

e Events. An event describes a set of possible occurrences. An occurrence is something that happens that has
some consequence with regard to the system.

e Behaviors. A behavior describes a set of possible executions. An execution is a performance of a set of actions
(potentially over some period of time) that may generate and respond to occurrences of events, including

12 Unified Modeling Language 2.5

accessing and changing the state of objects. (As described in sub clause 13.2, behaviors are themselves
modeled in UML as kinds of classifiers, so that executions are essentially modeled as objects. However, for
the purposes of the present discussion, it is clearer to consider behaviors and executions to be in a separate
semantic category than classifiers and objects.)

UML models do not contain objects, occurrences, or executions, because such individuals are part of the domain being
modeled, not the content of the models themselves. UML does have modeling constructs for directly modeling
individuals: instance specifications, occurrence specifications, and execution specifications for modeling objects,
occurrences, and executions, respectively, within a particular context. However, these are again just model elements,
making statements about the individuals being modeled. As for any model, such statements can be incomplete,
imprecise, and abstract, according to the purpose of the model, and may turn out to be wrong (or even be asserted as
counterfactual). The individuals being modeled, on the other hand, are always complete, precise, and concrete within
their domain.

The execution of behaviors within a modeled system may result in the creation and destruction of objects within that
system. The system may also reference other objects in the domain of discourse that are external to the system.
Generally, the distinction of whether an object is internal or external is not important to the formal semantics of
behaviors that access those objects. However, in certain cases — in particular, static properties (see sub clause 9.5) and
classifier extents (see sub clause 16.4 on read extent actions) — the system may be considered to provide an execution
scope that explicitly delineates those objects existing within the system (“within the execution scope”) from those
outside. The concept of an execution scope is not further defined within UML semantics, because exactly to what it
corresponds varies depending on the domain of discourse. For example, for a model of factory processes, the execution
scope may encompass the execution of those processes within a single factory, while, for a model of a software
program, the execution scope will correspond to a single execution of that program.

6.3.2 Semantic Areas

Clause 2 makes the distinction of the conformance of a tool to the (concrete and abstract) syntax of UML from
conformance to its semantics.

The syntax of UML has to do with how UML models may be constructed, represented and interchanged. The UML
specification defines the syntax of UML, both abstractly and concretely. However, the syntax of UML is specified
within the framework of MOF, and the meaning of syntactic models for the purposes of tool conformance are given in
the MOF Core specification and related XMI and Diagram Interchange specifications.

In contrast, the semantics of UML itself have to do with the standard meaning of the statements made by a UML model
about the system being modeled. This is sometimes referred to as the “run-time” semantics of UML, especially in the
context of UML models of executable software or other enactable processes. However, not all UML models are
executable in this sense and not all UML semantics relate to “running” software or other processes.

Instead, consider the general division of UML modeling constructs into two semantic categories:

e Structural Semantics defines the meaning of UML structural model elements about individuals in the domain
being modeled, which may be true at some specific point in time. (Note that this category is sometimes called
“static semantics”. However, in programming language definition, the term “static semantics” is generally used
to mean context-sensitive name resolution and type constraints beyond the base context-free syntax of the
language, which corresponds to well-formedness constraints in the UML abstract syntax specification. In order
to avoid confusion, the term “structural semantics” is used here instead.)

* Behavioral Semantics defines the meaning of UML behavioral model elements that make statements about
how individuals in the domain being modeled change over time. (This is sometimes also called “dynamic

semantics.”)

Figure 6.1 shows a more detailed delineation of the semantic areas of UML within these categories and the notional
layering of these areas.

Unified Modeling Language 2.5 13

Use Cases Deployments Information Flows

Supplemental
Modeling

State Machines Activities Interactions

Actions

Behavioral
Modeling

Common Behavior

Values Classifiers Packages

Structural
Modeling

Common Structure

Figure 6.1 Semantic Areas of UML

The structural semantics of UML provides the foundation for the behavioral semantics of UML. This reflects the
conception of behavioral semantics in terms of changes in the system state specified through structural modeling.
Structural modeling constructs in UML are built on a common base of fundamental concepts such as type, namespace,
relationship and dependency (see Clause 7). Specific modeling constructs then include a number of different kinds of
classifiers: data types, classes, signals, interfaces, and components (see Clauses 9 through 11), corresponding constructs
for modeling values and instances (see Clause 8), and constructs for packaging and profiling (see Clause 12).

The base behavioral semantics of UML builds on this structural foundation to provide a basic framework for the
execution of behaviors (see Clause 13). This common behavioral semantics also addresses the communication that may
result between structural objects with associated behavior. Note that this framework only deals with event-driven, or
discrete, behaviors. However, UML semantics do not dictate the amount of time between events (unless this is
specifically modeled using timing constraints, see sub clause 8.5). Thus, the intervals between certain events can be
considered to be as small as needed by the application; for example, when simulating continuous behaviors.

Actions are the fundamental units of behavior in UML, used to define fine-grained behaviors (see Clause 16). Their
resolution and expressive power are comparable to the executable instructions in traditional programming languages.
Actions are available for use with any of the higher-level formalisms to be used for describing detailed behaviors. Such
higher-level behavioral constructs in UML are state machines, activities and interactions (see Clauses 14, 15 and 17,
respectively).

In addition, there are some supplemental modeling constructs that have both structural and behavioral aspects. These
include use cases, deployments and information flows (see Clauses 18, 19 and 20, respectively).

14 Unified Modeling Language 2.5

file:///Users/ajw/Documents/OMG/C:%5CUsers%5Cstcook%5CDocuments%5COMG%5CUML-Spec-Simplification%5Ctrunk%5CModels%5CMetamodel%5CSpecification%5CUML_20

6.3.3 Stable and Transient Behavioral Semantics

Though structural semantics, as defined in sub clause 6.3.2, has to do with modeling things at a specific point in time,
the structural modeling constructs in UML still include the ability to model certain behavioral aspects of otherwise
primarily structural elements. For example, a classifier may have behavioral features that can be invoked to request
some behavior from the classifier. Or a class may be modeled as being active, meaning that an instance of the class has
some autonomous behavior.

The behavioral characteristics of primarily structural modeling constructs make high-level statements about the
behavior of a system that may generally be verified when the system is in a stable state at some specific point in time.
However, they do not define how the system actually got into that state from a previous state, just that some behavior
must have happened to cause this change. The detailed definition of transient behavior over time requires the use of
behavioral modeling constructs.

In many cases, a structural element in a UML model will have related behavioral elements that define the detailed
behavior to realize the high-level behavior identified for the structural element. For example, an operation owned by a
class may have a related method that defines its detailed behavior. Or an active class may have a classifier behavior that
details its autonomous behavior. In these cases, it is the responsibility of the modeler to ensure that the detailed transient
behavior specified using the behavioral modeling elements actually results in the high-level stable behavior specified
for the corresponding structural elements. (A tool may assist the modeler in this responsibility, but a conforming UML
tool is not required to do so.)

The following are some areas in which this semantic distinction is particularly important in UML.

e Operation behaviors. An operation is a behavioral feature of a class that may be directly invoked on instances
of that class (see sub clause 9.6). The definition of an operation includes the types of input and output
parameters of the operation and may also include pre- and postconditions on the state of the system being
modeled before and after invocation of the operation. The semantics of such a model are that, if the operation
is invoked with inputs of the given types and in a state in which the precondition holds, then, when the invoked
behavior of the operation completes, it will have produced outputs of the given types and the postcondition will
hold in the resulting system state. An operation may also have a method, which is a detailed definition of its
required behavior (see sub clause 13.2). It is a modeler responsibility to ensure that the detailed behavior
modeled by the method of the operation meets the behavioral requirements given by the pre- and
postconditions of the operation. Note, however, that the postcondition is not required to hold during the
transient execution of the method behavior, but only at the stable point of the completion of execution of that
behavior. A class may also have invariant conditions that must be true before and after the execution of the
operation but may be violated during the course of the execution of the operation method.

e Property default values. The semantics of properties specify that, when a property with a default value is
instantiated, in the absence of some specific setting for the property, the default value is evaluated to provide
the initial values of the property (see sub clause 9.5). Thus, when instantiating a classifier, all its attributes (i.e.,
properties of the classifier) with default values should be properly initialized once any behavior required to
instantiate the classifier completes. However, a create object action is specified to create an object with its
attributes initially having no initial values, whether or not those attributes have default values in the classifier
of the object (see sub clause 16.4.3). Therefore, when modeling the detailed behavior of the instantiation of a
classifier, it is a modeler responsibility to ensure that the modeled behavior carries out the proper initialization
of any attributes with default values once the object is created. (This is often done by encapsulating the
instantiation behavior for a class in a constructor operation — see sub clause 11.4 — in which case the
initialization of the attributes becomes an implicit postcondition for the constructor.)

e Active class behaviors. The semantics of active classes specify that, when such a class is instantiated, the new
object commences execution of its behavior as a direct consequence of its creation (see sub clause 11.4).
However, a create object action is specified to create an object without commencing the execution of any
associated behaviors (see sub clause 16.4.3). Instead, it is necessary to use a start object behavior action to
execute those behaviors (see sub clause 16.3.3). Therefore, when modeling the detailed behavior of the
instantiation of a classifier, it is a modeler responsibility to ensure that the modeled behavior properly starts the

Unified Modeling Language 2.5 15

classifier behavior of an instance of an active class, after that instance is created. (This behavior may also be
encapsulated in a constructor operation for the class.)

6.4 How to Read this Specification

6.4.1 Specification Format

The rest of this document contains the technical content of this specification.

The concepts of UML are grouped into clauses. A clause typically covers a specific modeling formalism. For instance,
all concepts related to state machine modeling are gathered in the State Machines clause and all concepts related to
activities modeling are in the Activities clause.

The clauses in the specification as a whole are presented in an order that minimizes forward references. Clauses 7 — 12
are primarily concerned with the modeling of structure. Clauses 13 — 17 are primarily concerned with the modeling of
behavior. Clauses 18 — 20 cover supplementary concepts including UseCases, Deployments, and InformationFlows.
Clauses 21 and 22 specify primitive types and the standard profile.

Annex A discusses UML Diagrams. Annex B specifies a model for the interchange of UML diagrams: this is a new part
of the specification that was absent from earlier versions of UML. Annex C specifies keywords; Annex D specifies
some alternative tabular notations; Annex E specifies the format for XMI serialization.

Although the clauses are organized in a logical manner and can be read sequentially, this is a reference specification and
is intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

Within each clause, there is first a brief informal description of the concepts described in that clause. The clause is then
split into sub clauses, each describing a coherent set of concepts that constitute a portion of the formalism specified by
the clause. Each sub clause is then split into Abstract Syntax, Semantics, Notation, and Examples.

The Abstract Syntax subdivision contains one or more diagrams that define that capability in terms of a MOF model
(i.e., the UML metamodel) with each modeling concept represented by an instance of a metaclass or association. These
diagrams are designed to provide information about a related set of concepts. Within such a diagram, all of the
metaclasses described in that clause are depicted with their attribute compartments, while metaclasses whose definition
appears in another clause are depicted with just their headers and no compartments.

The following stylistic conventions are applied in the Semantics, Notation, and Examples subdivisions:

¢ Headings without numbers are used to break up the sections into meaningful chunks. These headings are
organized by coherent chunks of tightly-coupled semantics. Often these headings will turn out to be pluralized
metaclass names (e.g., Comments); they might equally represent particular semantic themes (e.g., Run-to-
Completion).

e Ttalics are used for emphasis.

¢ Names of metaclasses in the text are capitalized but otherwise used as if they are nouns in English, e.g., “Every
Element has the inherent capability of owning other Elements,” pluralizing where necessary.

* Names of properties in the text are styled as 8-point Arial, and used as if they are English nouns pluralizing
where necessary, e.g., “the ownedAttributes of the Classifier.”

The Semantics subdivision specifies the semantics of all of the concepts described in the sub clause.

The Notation subdivision specifies the notation corresponding to all of the concepts defined in the sub clause. Only
concepts that can appear in diagrams will have a notation specified. For textual notations a variant of the Backus-Naur
Form (BNF) is often used to specify the legal formats. The conventions of this BNF are:

16 Unified Modeling Language 2.5

¢ All non-terminals are in italics and enclosed between angle brackets (e.g., <non-terminal>).

¢ All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., ‘or’).

¢ Non-terminal production rule definitions are signified with the ‘::= operator.

e Repetition of an item is signified by an asterisk placed after that item: “*’.

e Alternative choices in a production are separated by the ‘|’ symbol (e.g., <alternative-A> | <alternative-B>).
e Items that are optional are enclosed in square brackets (e.g., [<item-x>]).

* Where items need to be grouped they are enclosed in simple parenthesis; for example:
(<item-1> | <item-2>) *
signifies a sequence of one or more items, each of which is <item-1> or <item-2>.

NOTE. As for all UML surface syntax, UML textual notations are generally for presentation. There is no requirement
that such notations be unambiguously parsable — for example, a modeler may use arbitrary characters like “/”” and “:”
in a property name, even though these are used as special punctuation in the BNF for property textual notation. This
may be confusing to some readers, since BNF is commonly used to specify parsable programming language text.

The Examples subdivision gives examples intended to illustrate the concepts in the sub clause.

NOTE. All examples in this specification are provided for the purposes of illustrating syntax and semantics of UML
modeling constructs and do not assert or claim facts about the world.

Diagrams appearing in the Notation and Examples subdivisions have been produced by a variety of tools, and may
differ in stylistic details such as fonts, line thicknesses, size of arrowheads, etc. Such differences are not material to the
specification.

Statements in the Notation subdivision assume that diagrams are to be rendered in black on a white background.
Conforming tools may adopt other color schemes, in which case the word “black” shall be interpreted as “solid”,
“white” shall be interpreted as “un-filled”, and “gray” shall be interpreted as “a distinguishable color between solid and
un-filled”.

Finally in each clause are machine-generated sub clauses called Classifier Descriptions and Association Descriptions,
containing a complete description for all of the classifiers and associations in the metamodel. In Classifier Descriptions,
each classifier (Class, Abstract Class, or Enumeration) is documented under the following headings:

e Name [Type]

e Description: a summary of the role played by the classifier in the metamodel.
e Diagrams: a list of links to diagrams in which the classifier appears.

e Generalizations: a list of links to generalizing classifiers, if any.

e Specializations: a list of links to specializing classifiers, if any.

e Attributes: each specified by its name, type, and multiplicity, and any additional properties such as {readOnly}.
If no multiplicity is listed, it defaults to 1..1. This is followed by a textual description of the purpose and
meaning of the attribute. If an attribute is derived, the name will be preceded by a forward slash. Where an
attribute is derived, the logic of the derivation is in most cases shown using OCL.

Unified Modeling Language 2.5 17

Association Ends: each specified by its name, type, and multiplicity, any additional properties such as {union},
and a link to its opposite end. If the association end subsets or redefines others, this is shown in the additional
properties as {subsets <end>} or {redefines <end>}, where <end> is a link to the applicable end. This is
followed by a textual description of the purpose and meaning of the association end. If an association end is
derived, the name will be preceded by a forward slash. If the association end is a composition, this is indicated
by a small black diamond adjacent to the name of the end.

Derivation: where an Attribute or Association End is marked as derived and is not a derived union, the
derivation is specified by an Operation with the same name and type as the derived Attribute or Association
End.

Operations: each specified by its signature, a textual description of the logic of the operation, and a
specification of the logic of the operation in OCL. Note that in some cases the OCL is absent. Note also that
the body: of each operation is shown as an expression <expr> having the result type of the Operation. In the
XML, this is serialized as a bodyCondition of the form result = (<expr>).

Constraints: each specified by its name, a textual description of the logic of the constraint, and a specification
of the logic of the constraint in OCL. Note that in some cases the OCL is absent.

In Association Descriptions , each association is documented under the following headings:

6.4.2

Name [Type].

Diagrams: a list of links to diagrams in which the association appears.
Generalizations: a list of links to generalizing associations, if any.
Specializations: a list of links to specializing associations, if any.

Member Ends: links to each end of the association; this appears if neither of the ends is owned by the
association itself.

Owned Ends: documentation for each association end owned by the association itself, each specified by its
name, type and multiplicity, any additional properties such as {union}, and a link to its opposite end. If the
association end subsets or redefines others, this is shown in the additional properties as {subsets <end>} or
{redefines <end>}, where <end> is a link to the applicable end. If an association end is derived, the name will
be preceded by a forward slash.

Diagram Format

The following conventions are adopted for all metamodel diagrams throughout this specification.

18

A metaclass may appear on many diagrams, but takes a primary role on only one diagram, which is the diagram
adjacent to where the semantics of the metaclass are described. A metaclass in a primary role is shown with its
attribute compartment expanded; a metaclass in a secondary role is shown as just its header rectangle.

Dot notation is used to denote association end ownership, where the dot shows that the Class at the other end of the
line owns the Property whose type is the Class touched by the dot. See 11.5.4 for details of Association notation
and 11.5.5 for examples.

Arrow notation is used to denote association end navigability. By definition, all class-owned association ends are
navigable. By convention, all association-owned ends in the metamodel are not navigable.

Unified Modeling Language 2.5

¢ An association with neither end marked by navigability arrows means that the association is navigable in both
directions.

* Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

¢ The constraint {subsets endA} means that the association end to which this constraint is applied subsets
the association end endA.

e The constraint {redefines endA} means that the association end to which this constraint is applied
redefines the association end endA.

e If no multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

e If an association end is unlabeled, the default name for that end is the name of the class to which the end is
attached, modified such that the first letter is a lowercase letter. Note that, by convention, non-navigable association
ends are often left unlabeled although all association ends have a name which is documented in the Association
Description section of each clause.

* Associations that are not explicitly named, are given names that are constructed according to the following
production rule:
"4 " <association-end-namel> " " <association-end-name2>

where <association-end-namel> is the name of the first association end and <association-end-name2> is the name
of the second association end.

6.5 Acknowledgements

6.5.1 Primary Authors

The following people wrote this specification, incorporating the work of authors of earlier versions of UML:

Conrad Bock, Steve Cook (lead), Pete Rivett, Tom Rutt, Ed Seidewitz, Bran Selic, Doug Tolbert

6.5.2 Technical Support

The following people provided technical support for this specification, including writing tools to generate portions of
the document and to validate the OCL:

Peter Denno, Maged Elaasar, Nicolas Rouquette, Ed Willink

6.5.3 Reviewers

In addition to the authors and technical supporters, the following people provided invaluable contributions by reviewing
some or all of the specification in detail:

Omar Bahy Badreddin, Neil Capey, Michael Jesse Chonoles (lead), Adriano Comai, Lenny Delligatti, Sanford
Friedenthal, Dave Hawkins, Darren Kumasawa, Jim Logan, Sam Mancarella, Milagros Nguyen, Axel Scheithauer, John
Watson, Marc-Florian Wendland, Ed Willink.

Unified Modeling Language 2.5 19

6.5.4 Submitters

The following companies were submitters of this specification: 88solutions, Adaptive, Deere&Company, Fujitsu,
International Business Machines, Microsoft Corporation, Model Driven Solutions, No Magic Inc, Sparx Systems and
Unisys.

20 Unified Modeling Language 2.5

7 Common Structure

71

Summary

This clause specifies the basic modeling concepts underlying all structural modeling in UML. Many of the metaclasses
defined here are abstract, providing the base for specialized, concrete classes defined in subsequent clauses. However,

in order to provide examples of how these basic concepts are applied in UML, it is necessary to use these concrete
modeling constructs, even though they are specified in later clauses. Appropriate forward references are provided as

necessary.
7.2 Root
7.21 Summary

The root concepts of Element and Relationship provide the basis for all other modeling concepts in UML.

7.2.2

Abstract Syntax

{readOnly, union, subsets
relatedElement}

+ /source

+ annotatedElement

1.

B ——
1..% Element *
{readOnly, union, subsets {subsets owner}
relatedElement} + owningElement
+ /target -
1.*
{readOnly, union}
{readOnly, union} + /owner
+ JrelatedElement 0.1

{readOnly, union}

T *
+ /ownedElement
{readOnly, union}

{subsets ownedElement}
+ ownedComment

+ /relationship

Relationship

Comment

+ comment

*

+ /directedRelationshif

{readOnly, union, subsets relationship}

+ body : String [0..1] | *

{readOnly, union, subsets relationship}

X

DirectedRelationship

+ /directedRelationshif

Figure 7.1 Root

X

Unified Modeling Language 2.5

21

7.2.3 Semantics

7.2.31 Elements

An Element is a constituent of a model. Descendants of Element provide semantics appropriate to the concept they
represent.

Every Element has the inherent capability of owning other Elements. When an Element is removed from a model, all its
ownedElements are also necessarily removed from the model. The abstract syntax for each kind of Element specifies
what other kind of Elements it may own. Every Element in a model must be owned by exactly one other Element of that
model, with the exception of the top-level Packages of the model (see also Clause 12 on Packages).

7.2.3.2 Comments

Every kind of Element may own Comments. The ownedComments for an Element add no semantics but may represent
information useful to the reader of the model.

7.23.3 Relationships

A Relationship is an Element that specifies some kind of relationship between other Elements. Descendants of
Relationship provide semantics appropriate to the concept they represent.

A DirectedRelationship represents a Relationship between a collection of source model elements and a collection of
target model elements. A DirectedRelationship is said to be directed from the source elements fo the target elements.

7.2.4 Notation

There is no general notation for Element, Relationships, and DirectedRelationships. The descendants of these classes
define their own notation. For Relationships, in most cases the notation is a variation on a line drawn between the
relatedElements. For DirectedRelationships, the line is usually directed in some way from the source(s) to the target(s).

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The connection to each annotatedElement is shown by a separate dashed
line. The dashed line connecting the note symbol to the annotatedElement(s) may be suppressed if it is clear from the
context, or not important in this diagram.

7.2.5 Examples

This class was added
by Alan Wright after
mesting with the
mission planning team.

—=| Account

Figure 7.2 Comment notation

7.3 Templates

7.31 Summary

Templates are model Elements that are parameterized by other model Elements. This sub clause specifies the general
concepts applicable to all kinds of templates. Further details of specific kinds of templates allowed in UML are
discussed in later sub clauses, including Classifier templates (see sub clause 9.3), Operation templates (see sub clause
9.6) and Package templates (see sub clause 12.2).

22 Unified Modeling Language 2.5

7.3.2 Abstract Syntax

/\

{subsets ownedElement}

{subsets owner}
+ template Te Element

1

T Signature + ownedTemplateSignature
— 1 0.1

+ templateSignature

{subsets templateSignature,

subsets owner} 1
+ signature

{ordered, subsets ownedElemen
subsets parameter} N {ordered}
+ ownedParameter | * 1%\ parameter
{subsets templateParameter,
TemplateParameter subsets owner}
+ owningTemplateParameter
@ gTemp

{subsets ownedElement,
subsets parameteredElement) | _P2rameterableElement
+ ownedParameteredElement

0.1

0.1
+ templateParameter

+ parameteredElement

0.1

1

templateParameter}
+ templateParameter

+ templateParameter + default
*
0.1
{subsets owner, redefines {subsets ownedElement,
subsets default}

+ ownedDefault

0.1

0.1

Figure 7.3 Templates

+ templateParameterSubstitution
TemplateParameterSubstitution

\V

/\

1+ formal
TemplateParameter [0< ¥
+ actual + templateParameterSubstitution
ParameterableElement 1 *

{subsets ownedElement,
subsets actual}
+ ownedActual

*

0..1

+ owningTemplateParameterSubstitution
{subsets owner, redefines
% | + parameterSubstitution

{subsets ownedElement}

templateParameterSubstitution}

{subsets source,
subsets owner}

{subsets ownedElement, subsets
directedRelationship}

{subsets owner}
+ templateBinding

| P— — — |.¢ + boundElement + templateBinding TemplateBinding
1 *
{subsets target} {subsets directedRelationship}
+ signature + templateBinding
*

| TemplateSignature |°< 1

Figure 7.4 Template bindings

Unified Modeling Language 2.5

DirectedRelationship

23

7.3.3 Semantics

7.3.31 Templates

A TemplateableElement is an Element that can optionally be defined as a template and bound to other templates. A
template is a TemplateableElement that is parameterized using a TemplateSignature. Such a template can be used to
generate other model Elements using TemplateBinding relationships.

A template cannot be used in the same manner as a non-template Element of the same kind (e.g., a template Class
cannot be used as the type of a TypedElement). The template Element can only be used to generate bound Elements or
as part of the specification of another template (e.g., a template Class may specialize another template Class).

The TemplateSignature of a template defines a set of TemplateParameters that may be bound to actual model Elements
in a bound element for the template. A bound element is a TemplateableElement that has one or more such
TemplateBindings.

A completely bound element is a bound element all of whose TemplateBindings bind all the TemplateParameter of the
template being bound. A completely bound element is an ordinary element and can be used in the same manner as a
non-bound (and non-template) element of the same kind. For example, a completely bound element of a Class template
may be used as the type of a Typed Element.

A partially bound element is a bound element at least one of whose TemplateBindings does not bind a
TemplateParameter of the template being bound. A partially bound element is still considered to be a template,
parameterized by the remaining TemplateParameters left unbound by its TemplateBindings.

7.3.3.2 Template Signatures

The TemplateParameters for a TemplateSignature specify the formal parameters that will be substituted by actual
parameters (or the default) in a binding. A TemplateParameter is defined in terms of a ParameterableElement contained
within the template that owns the TemplateSignature of which the TemplateParameter is a part. Such an element is said
to be exposed by the TemplateParameter.

An exposed ParameterableElement may be owned, directly or indirectly, by the template or it may be owned by the
TemplateParameter itself, in situations in which the element does not otherwise have an ownership association within
the template model. In either case, the ParameterableElement is meaningful only within the context of the template—it
will be effectively replaced by an actual Element in the context of a binding. Thus, a ParameterableElement exposed by
a TemplateParameter cannot be referenced outside its owning template or other templates that have access to the
internals of the original template (e.g., if the template is specialized). Subclasses of TemplateSignature can also add
additional rules that constrain what sort of ParameterableElement can be used for a TemplateParameter in the context of
a particular kind of template.

A TemplateParameter may also reference a ParameterableElement as the default for this formal parameter in any
TemplateBinding that does not provide an explicit TemplateParameterSubstitution for the parameter. Similarly to an
exposed ParameterableElement, a default ParameterableElement may be owned either directly by the template or by the
TemplateParameter itself. The TemplateParameter may own this default ParameterableElement even in situations where
the exposed ParameterableElement is not owned by the TemplateParameter.

7.3.3.3 Template Bindings

A TemplateBinding is a relationship between a TemplateableElement and a template that specifies the substitutions of
actual ParameterableElements for the formal TemplateParameters of the template. A TemplateParameterSubstitution
specifies the actual parameter to be substituted for a formal TemplateParameter within the context of a TemplateBinding.
If no actual parameter is specified in this binding for a formal parameter, then the default ParameterableElement for that
formal TemplateParameter (if specified) is used.

A bound element may have multiple bindings, possibly to the same template. In addition, the bound element may
contain elements other than the bindings. The details of how the expansions of multiple bindings, and any other
Elements owned by the bound element, are combined together to fully specify the bound element are specific to the
subclasses of TemplateableElement. The general principle is that one evaluates the bindings in isolation to produce

24 Unified Modeling Language 2.5

intermediate results (one for each binding), which are then merged to produce the final result. It is the way the merging
is done that is specific to each kind of TemplateableElement.

A TemplateableElement may contain both a TemplateSignature and TemplateBindings. Thus a TemplateableElement
may be both a template and a bound element.

A conforming tool may require that all formal TemplateParameters must be bound as part of a TemplateBinding
(complete binding) or may allow just a subset of the formal TemplateParameters to be bound (partial binding). In the
case of complete binding, the bound element may have its own TemplateSignature, and the TemplateParameters from
this can be provided as actual parameters of the TemplateBinding. In the case of partial binding, the unbound formal
TemplateParameters act as formal TemplateParameters of the bound element, which is thus still a template.

NOTE. A TemplateParameter with a default can never be unbound, as it has an implicit binding to the default, even if an
explicit TemplateParameterSubstitution is not given for it.

7.3.34 Bound Element Semantics

ATemplateBinding implies that the bound element has the same well-formedness constraints and semantics as if the
contents of the template owning the target TemplateSignature were copied into the bound element, substituting any
ParameterableElements exposed as formal TemplateParameters by the corresponding ParameterableElements specified
as actual template parameters in the TemplateBinding. However, a bound element does not explicitly contain the model
Elements implied by expanding the templates to which it binds. Nevertheless, it is possible to define an expanded
bound element that results from actually applying the TemplateParameterSubstitution for a bound element to the target
templates.

Formally, an expanded bound element for a bound element with a single TemplateBinding and no Elements other than
from that binding is constructed as follows:

1 Copy the template associated with the TemplateSignature that is the target of the TemplateBinding. For the
present purposes, a copy of a model Element is an instance of the same metaclass as the original model
Element, with:

a Values for all composite properties (owned attributes and owned association ends) that are copies (in
the same sense) of the corresponding values from the original Element.

b Values for all non-composite properties that are the same as the corresponding values from the
original Element, except that references to Elements owned (directly or indirectly) by the original
Element are replaced with references to the copies of those Elements created as specified above and
references to the original Element itself are replaced by references to the copy.

2 If'the copy specializes any Elements that are templates, then redirect the Generalization relationships to
equivalent bound elements for the general elements, using the same TemplateBinding. If the copy is an
Operation that has an associated method that is also a template, then replace that method with an equivalent
bound element using the same template binding.

NOTE. It is necessary for the method of a template Operation to also be a template, presumably with
TemplateParameters corresponding to those of the Operation. In particular, Operation TemplateParameters are
typically used to parameterize the types of Operation Parameters, but the method of an Operation does not
directly reference the Parameters of the Operation that specifies it. Rather, the method has its own
ownedParameter list, which should match that of the Operation (see sub clause 13.2). The types of the method
Parameters thus need to be separately templated to match the template parameterization of the Operation.

3 For each Element owned directly or indirectly by the copy, replace any reference to the parameteredElement of
a TemplateParameter of the copy with a reference to the actual Element associated with the parameter in the
TemplateBinding. If an actual Element has a TemplateBinding itself, then reference the equivalent bound
element.

4 Remove all TemplateParameters that are referenced in the TemplateBinding from the TemplateSignature of the
copy. If this would remove all TemplateParameters from the TemplateSignature, then remove the
TemplateSignature entirely.

Unified Modeling Language 2.5 25

If a bound element has more than one TemplateBinding, then a specific expanded bound element can be defined based
on each TemplateBinding. The overall expanded bound element is then constructed by merging all the
TemplateBinding-specific expanded bound elements with any other Elements contained by the original bound element.
As noted previously, how this merging is performed depends on the kind of TemplateableElement being bound.

Including a bound element in a model does not automatically require that the corresponding expanded bound element be
included in the model. However, if the expanded bound element constructed as given above violates any well-
formedness constraints, then the original bound element is also considered to not be well formed.

On the other hand, if the bound element is for a Namespace template, then it may be necessary to be able to refer to
members of the bound element considered as a Namespace itself. For example, for a bound element of a Class template,
it may be necessary to reference Operations of that Class, e.g., from a CallOperationAction.

NOTE. Referencing the Operation from the template is not sufficient, as each bound element of the template Class is to
be considered to have its own effective copy of the Operations of the template.

In order to accommodate a situation like this, it is allowable to include in a model the expanded bound element for a
bound element in addition to the bound element itself. In this case, the expanded bound element must have a realization
dependency (see sub clause 7.7) to the bound element that it is expanding. The expanded bound element must be
constructed (either manually by the modeler or automatically by a tool) according to the rules given above. References
then made as usual from other model elements to visible members of the expanded bound element are considered to be
semantically equivalent to effective references made to the corresponding implicit members of the original bound
element. Any relationships made directly to the expanded bound element are semantically equivalent to relationships
made to the bound element itself.

7.3.4 Notation

If a TemplateableElement has TemplateParameters, a small dashed rectangle is superimposed on the symbol for the
TemplateableElement, typically on the upper right-hand corner of the notation (if possible). The dashed rectangle
contains a list of the formal TemplateParameters. The parameter list must not be empty, although it may be suppressed
in the presentation. Any other compartments in the notation of the TemplateableElement appear as normal.

The formal TemplateParameter list may be shown as a comma-separated list, or it may be one formal
TemplateParameter per line. The general notation for a TemplateParameter is a string displayed within the
TemplateParameter list for the template:

<template-parameter> ::= <template-param-name> [‘:’ <parameter-kind> | [‘=" <default>
p y4 p v4 y4

where <parameter-kind> is the name of the metaclass for the exposed element. The syntax of <template-param-name>
and <default> depend on the kind of ParameteredElement for this TemplateParameter.

A bound element has the same graphical notation as other Elements of that kind. A TemplateBinding is shown as a
dashed arrow with the tail on the bound element and the arrowhead on the template and the keyword «bind». The
binding information may be displayed as a comma-separated list of template parameter substitutions:

<template-param-substitution> ::= <template-param-name> ‘->’<actual-template-parameter>

where the syntax of <template-param-name> is the name or qualifiedName of the parameteredElement of the formal
TemplateParameter and the kind of <actual-template-parameter> depends upon the kind of ParameteredElement for
that TemplateParameter.

An alternative presentation for the bindings for a bound element is to include the binding information within the
notation for the bound element. The name of the bound element is extended to contain binding expressions with the
following syntax:

[<element-name> ‘:’] <binding-expression> [*,’ <binding-expression>]*

<binding-expression> ::= <template-element-name> ‘<‘ <template-param-substitution> [, <template-param-
substitution] * >’

26 Unified Modeling Language 2.5

and <template-param-substitution™> is defined as above.

7.4 Namespaces

7.41 Summary

A Namespace is an Element in a model that contains a set of NamedElements that can be identified by name. Packages
(see Clause 12) are Namespaces whose specific purpose is to contain other NamedElements in order to organize a
model, but many other kinds of model Elements are also Namespaces, including Classifiers (see sub clause 9.2), which
contain named Features and nested Classifiers, and BehavioralFeatures (see sub clause 9.4), which contain named
Parameters.

7.4.2 Abstract Syntax

A N
{readOnly, union, subsets member, izg':;:‘ﬁ:;"g:ﬁ
subsets ownedElement} public
+ /ownedMember NamedElemem {subsets owner} {subsets ownedElement} private
* e Swing [0..1] + namedElement + nameExpression PVO‘keCtEd
- - il i package
* | + /qualifiedName : String [0..1] {readOnly} 0.1 0..1 @
+ visibility : VisibilityKind [0..1.
+ /member
{readOnly, union}
{readOnly, subsets member
+ /memberNamespace Namespace * + /importedMember PackageableElement |
{readOnly, union} * + namespace % + visibility : VisibilityKind [0..1] = public {redefines visibility}
! + importedElement
subsets memberNamespace 1
{ pace} {subsets target}
0.1
{subsets directedRelationship]
+/ nalmespace {subsets ownedElement, subsets *| + import
{readOnly, union, subsets directedRelationship}
memberNamespace, 1 + elementImport ElementImpor
subsets owner} + alias : String [0..1]
+ importingNamespace % [+ visibility : VisibilityKind = public
{subsets source,
subsets owner}
{subsets source, {subsets ownedElement, subsets
subsets owner} directedRelationship}
+ importingNamespace + packageImportJ PackageImpori |
1 *
+ packageImport
{subsets directedRelationship}
subsets target
{subsets namespace} {subsets ownedMember} E. importedécﬁage
+ context + ownedRule
9 Constraint | | Package |
0..1
Figure 7.5 Namespaces
743 Semantics
7.4.31 Namespaces

A Namespace provides a container for NamedElements, which are called its ownedMembers. A Namespace may also
import NamedElements from other Namespaces, in which case these, along with the ownedMembers, are members of the
importing Namespace. If a member of a Namespace with the name N is a NamedElement with the name x, then the
member can be referred to by a qualified name of the form N::x.

Unified Modeling Language 2.5 27

When a distinction is necessary, a simple name that is not qualified with Namespace names may be referred to as an
unqualified name. Within a Namespace, unqualified names may be used to refer to the members of that Namespace and
to outer names that are not hidden. An outer name is the name of a NamedElement that may be referenced using an
unqualified name in an immediately enclosing Namespace. An outer name is hidden unless it is distinguishable from all
members of the inner Namespace. (See the discussion on distinguishability below under “Named Elements”.)

As a Namespace is itself a NamedElement, the fully qualified name of a NamedElement may include multiple
Namespace names, such as N1.::N2::x.

The ownedRule Constraints for a Namespace represent well-formedness rules for the constrained elements (see sub
clause 7.6 on Constraints). These constraints are evaluated when determining if the constrained elements are well-
formed.

7.4.3.2 Named Elements

A NamedElement is an Element in a model that may have a name. The name may be used for identification of the
NamedElement within Namespaces where its name is accessible.

NOTE. The name of a NamedElement is optional, which provides for the possibility of the absence of a name (which is
different from the empty name).

NamedElements may appear within a Namespace according to rules that specify how one NamedElement is
distinguishable from another. The default rule is that two members are distinguishable if they have different names or if
they have the same names, but their metaclasses are different and neither is a (direct or indirect) subclass of the other.
This rule may be overridden for particular cases, such as Operations that are distinguished by their signature (see sub
clause 9.6).

The visibility of a NamedElement provides a means to constrain the usage of the Element, either in Namespaces or in
access to the Element. It is intended for use in conjunction with import, generalization, and access mechanisms.

A NamedElement may, in addition to having an explicit name, be associated with a StringExpression (see sub clause
8.3) that may be used to specify a calculated name for the NamedElement. In a template (see sub clause 7.3), a
NamedElement may have an associated StringExpression whose subexpressions may be ParameteredElements exposed
by TemplateParameters. When the template is bound, the exposed subexpressions are substituted with the actuals
substituted for the TemplateParameters. The value of the StringExpression is then a string resulting from concatenating
the values of the subexpression, which then provides the name of the NamedElement.

A NamedElement may have both a name and a nameExpression associated with it. In this case, the name can be used as an
alias for the NamedElement, which may be used, for example, in referencing the element in a Constraint expression.
(This avoids the need to use StringExpressions in textual surface notation, which is often cumbersome, although it does
not preclude it.)

7.4.3.3 Packageable Elements and Imports

A PackageableElement is a NamedElement that may be owned directly by a Package (see Clause 12 on Packages). Any
such element may serve as a TemplateParameter (see sub clause 7.3 on Templates).

An ElementImport is a DirectedRelationship between an importing Namespace and a PackageableElement. It adds the
name of the PackageableElement to the importing Namespace. The visibility of the ElementImport may be either the
same or more restricted than that of the imported element.

In case of a name clash with an outer name (an element that is defined in an enclosing Namespace that is available using
its unqualified name in enclosed Namespaces) in the importing Namespace, the outer name is hidden by an
ElementImport, and the unqualified name refers to the imported element. The outer name can be accessed using its
qualified name.

A Packagelmport is a DirectedRelationship between an importing Namespace and a Package, indicating that the
importing Namespace adds the names of the members of the Package to its own Namespace. Conceptually, a Package
import is equivalent to having an ElementImport to each individual member of the imported Namespace, unless there is

28 Unified Modeling Language 2.5

a separately-defined ElementImport. If there is an ElementImport for an Element, then this takes precedence over a
potential import of the same Element via a Packagelmport.

If indistinguishable Elements would be imported into a Namespace as a consequence of ElementImports or
Packagelmports, the Elements are not added to the importing Namespace and the names of those Elements must be
qualified in order to be used in that Namespace. If the name of an imported Element is indistinguishable from an
Element owned by the importing Namespace, that Element is not added to the importing Namespace and the name of
that Element must be qualified in order to be used.

An Element that is publicly imported is a public member of the importing Namespace. This means that, if the
Namespace is a Package, a Packagelmport of it by another Namespace will result in the further import of those publicly
imported members into the other Namespace, in addition to the public ownedMembers of the Package.

NOTE. A Namespace may not import itself, nor may it import any of its own ownedMembers. This means that it is not
possible for a NamedElement to acquire an alias in its owning Namespace.

7.4.4 Notation

7441 Namespaces
There is no general notation for Namespaces. Specific kinds of Namespace have their own specific notation.

Conforming tools may optionally allow the “circle-plus” notation defined in sub clause 12.2.4 to show Package
membership to also be used to show membership in other kinds of Namespaces (for example, to show nestedClassifiers
and ownedBehaviors of Classes).

744.2 Name Expressions

The nameExpression associated with a NamedElement can be shown in two ways, depending on whether an alias is
required or not. Both notations are illustrated in Figure 7.6.

* No alias: The StringExpression appears as the name of the model Element.

e With alias: Both the StringExpression and the alias are shown wherever the name usually appears. The alias is
given first and the StringExpression underneath.

In both cases the StringExpression appears between “$” signs. The specification of Expressions in UML supports the
use of alternative string expression languages in the abstract syntax—they have to have String as their type and can be
some structure of operator Expressions with operands. The notation for this is discussed in sub clause 8.3 on Expressions.
In the context of templates, subexpressions of a StringExpression (usually LiteralStrings) that are parametered in a
template are shown between angle brackets.

7443 Imports

A Packagelmport or ElementImport is shown using a dashed arrow with an open arrowhead from the importing
Namespace to the imported Package or Element. The keyword «import» is shown near the dashed arrow if the visibility
is public; otherwise, the keyword «access» is shown to indicate private visibility. The alias may be shown after or below
the keyword «import». If the imported element for an Elementlmport is a Package, the keyword may optionally be
preceded by “element”, i.e., «element importy.

As an alternative to the dashed arrow, it is possible to show a Packagelmport or ElementImport by having a text that
uniquely identifies the imported Package or Element within curly brackets either below or after the name of the
Namespace. The textual syntax for a Packagelmport is:

a0

Yimport * <qualified-name> *}’| ‘{access *<qualified-name>

The textual syntax for an ElementImport is:

‘

V| {element access *<qualified-name>

0

‘Yelement import’ <qualified-name>

Unified Modeling Language 2.5 29

Optionally, the alias, if any, may be shown as well:

‘{element import *<qualified-name> ‘as ’<alias> ‘}’| ‘{element access ’<qualified-name> ‘as’ <alias> ‘}’

7.4.5 Examples

7.4.51 Name Expressions

Figure 7.6 shows a ResourceAllocation Package template where the first two formal TemplateParameters are
StringExpression parameters. These formal TemplateParameters are used within the Package template to name some of
the Classes and Association ends. The figure also shows a bound Package (named TrainingAdmin) that has two
bindings to this ResourceAllocation template. The first binding substitutes the string “Instructor” for Resource, the
string “Qualification” for ResourceKind, and the Class TrainingAdminSystem for System. The second binding
substitutes the string “Facility” for Resource, the string “FacilitySpecification” for ResourceKind, and the Class
TrainingAdminSystem is again substituted for System.

The result of the binding includes Classes Instructor, Qualification, and InstructorAllocation as well as Classes Facility,
FacilitySpecification, and FacilityAllocation. The associations are similarly replicated.

NOTE. Request will have two attributes derived from the single “the<ResourceKind>" attribute (shown here by an
arrow), namely theQualification and theFacilitySpecification.

30 Unified Modeling Language 2.5

ResourceAllocation Resource: StringExpression,
ResourceKind: StringExpression,
System
Sa<Resource>$
* |
v allocation
resource Allocation $a<Resource>Allocation$
<Resource> — . SR ———
$ $ 1 $<Resource>Allocation$ *
resource | *
i timeSlot s
TimeSlot N ystem
1 request
kind | 1 \4
Sthe<ResourceKind>$ request
$<ResourceKind>$ |<€ : Request € "
x A Sa<ResourceKind>$
A} 4
S s
N s
N s
N e
\\\ s
«bind» \\ // «bind»
Resource -> "Instructor”, \\\ /// Resource -> "Facility",
ResourceKind -> "Qualification”, AN pid ResourceKind -> "FacilitySpecification"”,
System -> TrainingAdminSystem \\\ /// System -> TrainingAdminSystem

TrainingAdmin

Figure 7.6 Template package with string parameters

7.4.5.2 Imports

The ElementImport shown in Figure 7.7 allows Elements in the Package Program to refer by name to the DataType
Time in Types without qualification. However, they still need to refer explicitly to Types::Integer, as this Element is not
imported. The DataType String is imported into the Program Package but it is not publicly visible as a member of
Program outside of that Package, and it cannot be further imported from the Program Package by other Namespaces.

Types

sdatatypes
- String

caccesss 7
edatatypes
Integer
- datatypes
Pragram |f——————————e}-= 2 __.| wdaiaty]
rogram oo Time

Figure 7.7 Example of element import

Unified Modeling Language 2.5

31

In Figure 7.8, the ElementImport is combined with aliasing, meaning that the DataType Types::Real will be referred to
by name as Double in the package Shapes.

Types Shapes

simports
«datatypes Double Circle

Real radius : Double

Figure 7.8 Example of element import with aliasing

In Figure 7.9, a number of Packagelmports are shown. The public members of Types are imported into ShoppingCart
and then further imported into WebShop. However, the members of Auxiliary are only privately imported by
ShoppingCart and cannot be referenced using unqualified names from WebShop.

]
Auxiliary 1:__.31.;?:. — —
— _]ShoppingCart €= *=2¥2-4 WebShop
Types |g="wmpots

Figure 7.9 Examples of public and private package imports

7.5 Types and Multiplicity

7.51 Summary

Types and multiplicity are used in the declaration of Elements that contain values, in order to constrain the kind and
number of values that may be contained.

32 Unified Modeling Language 2.5

7.5.2 Abstract Syntax

NamedElement | PackageableElement

TypedElement |+ typedElement + type Type
* 0..1

/\
{subsets owner} {subsets ownedElement}
MultiplicityElemen P + owningLowel + IowerVaIue\J ValueSpecification
+ isOrdered : Boolean = fal 0.1 0.1
N '/Slgxgufe i nglrea” = true {subsets owner} {subsets ownedElement}
+ Jupper : UnlimitedNatural + owningUpper + upperValue
0.1 0.1

Figure 7.10 Abstract syntax of types and multiplicity elements

7.5.3 Semantics

7.5.31 Types and Typed Elements

A Type specifies a set of allowed values known as the instances of the Type. Depending on the kind of Type, instances
of the Type may be created or destroyed over time. However, the rules for what constitutes an instance of the Type
remain fixed by the definition of that Type. All Types in UML are Classifiers (see Clause 9).

A TypedElement is a NamedElement that, in some way, represents particular values. Depending on the kind of
TypedElement, the actual values that it represents may change over time. Examples of kinds of TypedElement include
ValueSpecification, which directly specifies a collection of values (see Clause 8), and StructuralFeature, which
represents values held as part of the structure of the instances of the Classifier that owns it (see sub clause 9.4).

If a TypedElement has an associated Type, then any value represented by the TypedElement (at any point in time) shall
be an instance of the given Type. A TypeElement with no associated Type may represent any value.

7.5.3.2 Multiplicities

A MultiplicityElement is an Element that may be instantiated in some way to represent a collection of values.

Depending on the kind of MultiplicityElement, the values in the collection may change over time. Examples of kinds of
MultiplicityElement include StructuralFeature, which has values in the context of an instance of the Classifier that owns
it (see sub clause 9.4) and Variable, which has values in the context of the execution of an Activity (see sub clause 15.2).

The cardinality of a collection is the number of values contained in that collection. The multiplicity of a
MultiplicityElement specifies valid cardinalities of the collection it represents. The multiplicity is a constraint on the
cardinality, which shall not be less than the lower bound and not greater than the upper bound specified for the
multiplicity (unless the multiplicity is unlimited, in which case there is no constraint on the upper bound).

The lower and upper bounds for the multiplicity of a MultiplicityElement are specified by ValueSpecifications (see
Clause 8), which must evaluate to an Integer value for the lowerBound and an UnlimitedNatural value for the

Unified Modeling Language 2.5 33

upperBound (see Clause 21 on Primitive Types). A MultiplicityElement is unlimited if its upperBound has the
UnlimitedNatural value of unlimited (“*””). A MultiplicityElement is multivalued if it has an upperBound greater than 1
(including unbounded). A MultiplicityElement that is not multivalued can represent at most a single value.

A MultiplicityElement can define a multiplicity both of whose bounds are zero. This restricts the allowed cardinality to
be 0; that is, it requires that an instantiation of this element contain no values. This is useful in the context of
Generalizations (see sub clause 9.2) to constrain the cardinalities of a more general Classifier. It applies to (but is not
limited to) redefining properties existing in more general Classifiers.

If the MultiplicityElement is specified as ordered (i.e., isOrdered is true), then the collection of values in an instantiation
of this Element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the
collection of values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e., isOrdered is false), then no assumptions can be made about the
order of the values in an instantiation of this Element.

If the MultiplicityElement is specified as unique (i.e., isUnique is true), then the collection of values in an instantiation of
this Element must be unique. That is, no two values in the collection may be equal, where equality of objects (instances
of Classes) is based on object identity while equality of data values (instances of DataTypes) and Signal instances is
based on value (see also sub clauses 10.2, 10.3, and 11.4 on DataTypes, Signals and Classes, respectively). If a
MultiplicityElement is not multivalued, then the value for isUnique has no semantic effect.

Taken together, the isOrdered and isUnique properties can be used to specify that the collection of values in an
instantiation of a MultiplicityElement is of one of four types. Table 7.1shows the traditional names given to each of
these collection types.

Table 7.1 Collection types for MultiplicityElements

isOrdered isUnique Collection Type
false true Set
true true OrderedSet
false false Bag
true false Sequence

7.5.4 Notation

7541 Multiplicity Element

The specific notation for a MultiplicityElement is defined for each concrete kind of MultiplicityElement. In general, the
notation will include a multiplicity specification, which is shown as a text string containing the bounds of the
multiplicity and a notation for showing the optional ordering and uniqueness specifications.

The multiplicity bounds may be shown in the format:

<lower-bound> ".." <upper-bound>

where <lower-bound> is a ValueSpecification of type Integer and <upper-bound> is a ValueSpecification of type
UnlimitedNatural. The star character (*) is used as part of a multiplicity specification to represent an unlimited upper

bound.

If the multiplicity is associated with a MultiplicityElement whose notation is a text string (such as an attribute), the

multiplicity string is placed within square brackets ([]) as part of that text string.

If the multiplicity is associated with a MultiplicityElement that appears as a symbol (such as an Association end), the
multiplicity string is displayed without square brackets and may be placed near the symbol for the element.

34

Unified Modeling Language 2.5

If the lower bound is equal to the upper bound, then an alternate notation is to use a string containing just the upper
bound. For example, “1” is semantically equivalent to “1..1” multiplicity. A multiplicity with zero as the lower bound
and an unspecified upper bound may use the alternative notation containing a single star “*” instead of “0..*”
multiplicity.

The specific notation for the ordering and uniqueness specifications may vary depending on the specific kind of
MultiplicityElement. A general notation is to use a textual annotation containing “ordered” or “unordered” to define the
ordering, and “unique” or “nonunique” to define the uniqueness.

The following BNF defines the general syntax for a multiplicity string, including support order and uniqueness
designators:

<multiplicity> ::= <multiplicity-range> [[{* <order-designator> [‘,” <uniqueness-designator>] ‘}’] |
[{ <uniqueness-designator> [,” <order-designator>] }’] |

<multiplicity-range> ::= [<lower> "..”] <upper>

<lower> ::= <value-specification>

<upper> ::= <value-specification>
<order-designator> ::= ‘ordered’| ‘unordered’
<uniqueness-designator> ::= ‘unique’| ‘nonunique’

See also Clause 8 on the textual notation for ValueSpecifications.

7.5.5 Examples

Figure 7.11 shows two multiplicity strings as part of attribute specifications within a class symbol.

Customer

purchase : Purchase [*] {ordered, unique}
account : Account [0..5] {unique}

Figure 7.11 Multiplicity within a textual specification

Figure 7.12 shows two multiplicity strings as part of the specification of two association ends.

purchase account
Purchase [= - Customer - Account
. {ora_e.ed {unique}
unique} 0.5

Figure 7.12 Multiplicity as an adornment to a symbol

7.6 Constraints

7.6.1 Summary
A Constraint is an assertion that indicates a restriction that must be satisfied by any valid realization of the model

containing the Constraint. A Constraint is attached to a set of constrainedElements, and it represents additional semantic
information about those Elements.

Unified Modeling Language 2.5 35

7.6.2 Abstract Syntax

/\
{ordered}
Constraint + constraint + constrainedElement
% Element
* *
{subsets namespace} {subsets ownedMember}
|:|'¢ + context + ownedRule
0..1 *
{subsets owner} {subsets ownedElement}
+ owningConstraint + specification
> /‘l‘l ification
0..1 1

Figure 7.13 Abstract Syntax of Constraints

7.6.3 Semantics

The specification of a Constraint is given by a ValueSpecification (see Clause 8) of type Boolean. The computation of
the specification may reference the constrainedElements of the Constraint and also the context of the Constraint. In
addition, the context of the Constraint may be used as the Namespace for interpreting names used in the specification
(for example, in OCL “self” is used to refer to the context element).

In general there are many possible kinds of owners for a Constraint. The only restriction is that the owning Element must
have access to the constrainedElements. The owner of the Constraint determines when the Constraint specification is
evaluated. For example, a Constraint that is a precondition of an Operation is evaluated at the start of the invocation of
the Operation, while a Constraint that is a postcondition is evaluated at the conclusion of the invocation (see sub clause
9.6 on Operations).

A Constraint is evaluated by evaluating its specification. If the specification evaluates to true, then the Constraint is
satisfied at that time. If the specification evaluates to false, then the Constraint is not satisfied, and the realization of the
model in which the evaluation occurs is not valid.

7.6.4 Notation

Certain kinds of Constraints are predefined in UML, others may be user-defined. The specification of a user-defined
Constraint is often expressed as a text string in some language, whose syntax and interpretation is as defined by that
language. In some situations, a formal language (such as OCL) or a programming language (such as Java) may be
appropriate, in other situations natural language may be used. Such a specification may be represented as an
OpaqueExpression with the appropriate language and body (see sub clause 8.3). The Constraint may then be notated
textually within braces ({}) according to the following BNF:

‘

<constraint> ::= {* [<name> *:’] <boolean-expression> ‘}’

where <name> is the name of the Constraint and <boolean-expression> is the appropriate textual notation for the
Constraint specification.

Most generally, the constraint string is placed in a note symbol and attached to each of the symbols for the
constrainedElements by dashed lines. (See Figure 7.14 for an example.)

For a Constraint that applies to a single constrainedElement (such as a single Class or Association), the constraint string
may be directly placed near the symbol for the constrainedElement, preferably near the name, if any. A tool shall make it
possible to determine the constrainedElement.

For an Element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the Element
text string. The Element so annotated is then the single constrainedElement of the Constraint. (Figure 7.15 shows a
Constraint string that follows an attribute within a Class symbol.)

36 Unified Modeling Language 2.5

For a Constraint that applies to two Elements (such as two Classes or two Associations), the Constraint may be shown
as a dashed line between the Elements labeled by the constraint string. (See Figure 7.16 for an example.)

If the Constraint is shown as a dashed line between two Elements, then an arrowhead may be placed on one end. The
direction of the arrow is relevant information within the Constraint. The Element at the tail of the arrow is mapped to
the first position and the element at the head of the arrow is mapped to the second position in the constrainedElement
collection.

For three or more paths of the same kind (such as Generalization paths or Association paths), the constraint string may
be attached to a dashed line crossing all of the paths.

7.6.5 Examples

Figure 7.14 shows an example of a Constraint in a note symbol.

0.1) Doss

employee employer
Person Company
" 0.1

self employer = self boss.employer}

{self boss-=isEmpiy(} or ﬁ

Figure 7.14 Constraint in a note symbol

Figure 7.15 shows a constraint string attached to an attribute.

Stack

size: Integer {size >= 0}

push()
pop()

Figure 7.15 Constraint attached to an attribute

Figure 7.16 shows an {xor} constraint between two associations.

Person

Account

- Corporation

Figure 7.16 {xor} constraint

Unified Modeling Language 2.5 37

7.7 Dependencies

7.71 Summary

A Dependency signifies a supplier/client relationship between model elements where the modification of a supplier may
impact the client model elements.

7.7.2 Abstract Syntax

DirectedRelationship | PackageableEle

{subsets directedRelationship}

{subsets target}
+ supplier + supplierDependenc
NamedElement IK] *pp PP P Z Dependency
1.7 *
+ client + /clientDependency
{subsets source} i o
{subsets directedRelationship}

{subsets ownedElement} {subsets owner}

+ mappin + abstraction :
OpagueExpression |¢ . 1pp g P Abstracti Usage

0.1

Realization

Figure 7.17 Abstract syntax of dependencies

7.7.3 Semantics

7.7.31 Dependency

A Dependency implies that the semantics of the clients are not complete without the suppliers. The presence of
Dependency relationships in a model does not have any runtime semantic implications. The semantics are all given in
terms of the NamedElements that participate in the relationship, not in terms of their instances.

7.73.2 Usage

A Usage is a Dependency in which one NamedElement requires another NamedElement (or set of NamedElements) for
its full implementation or operation. The Usage does not specify how the client uses the supplier other than the fact that
the supplier is used by the definition or implementation of the client.

7.7.3.3 Abstraction

An Abstraction is a Dependency that relates two NamedElements or sets of NamedElements that represent the same
concept at different levels of abstraction or from different viewpoints. The relationship may be defined as a mapping
between the suppliers and the clients. Depending on the specific stereotype of Abstraction, the mapping may be formal or
informal, and it may be unidirectional or bidirectional. Abstraction has predefined stereotypes (such as «Derivey,
«Refiney, and «Tracey) that are defined in the Standard Profile (see Clause 22). If an Abstraction has more than one
client, the supplier maps into the set of clients as a group. For example, an analysis-level Class might be split into several
design-level Classes. The situation is similar if there is more than one supplier.

38 Unified Modeling Language 2.5

7.7.3.4 Realization

Realization is a specialized Abstraction dependency between two sets of NamedElements, one representing a
specification (the supplier) and the other representing an implementation of that specification (the client). Realization can
be used to model stepwise refinement, optimizations, transformations, templates, model synthesis, framework
composition, etc. A Realization signifies that the set of clients is an implementation of the set of suppliers, which serves
as the specification. The meaning of “implementation” is not strictly defined, but rather implies a more refined or
elaborate form in respect to a certain modeling context. It is possible to specify a mapping between the specification and
implementation elements, although this is not necessarily computable.

7.7.4 Notation

A Dependency is shown as a dashed arrow between two model Elements. The model Element at the tail of the arrow
(the client) depends on the model Element at the arrowhead (the supplier). The arrow may be labeled with an optional
keyword or stereotype and an optional name (see Figure 7.18).

«keywordOrStereotypeName»

dependencyName
NamedElement-1 9| NamedElement-2

Figure 7.18 Notation for a Dependency between two elements

It is possible to have a set of Elements for the client or supplier. In this case, one or more arrows with their tails on the
clients are connected to the tails of one or more arrows with their heads on the suppliers. A small dot can be placed on the
junction if desired. A note on the Dependency should be attached at the junction point.

A Usage is shown as a Dependency with a «use» keyword attached to it.

An Abstraction is shown as a Dependency with an «abstraction» keyword or the specific predefined stereotype attached
to it.

A Realization is shown as a dashed line with a triangular arrowhead at the end that corresponds to the realized Element.
7.7.5 Examples
In Figure 7.19, the CarFactory Class has a Dependency on the Car Class. In this case, the Dependency is a Usage with

the standard stereotype «Instantiate» applied, indicating that an instance of the CarFactory Class creates instances of the
Car Class.

«Instantiate»
CarFactory > Car

Figure 7.19 An example of an «Instantiate» Dependency

In Figure 7.20, an Order Class requires the Line Item Class for its full implementation.

wuser Line
Item

Figure 7.20 An example of a «use» Dependency

Unified Modeling Language 2.5 39

Figure 7.21 illustrates an example in which the Business class is realized by a combination of Owner and Employee
classes.

Business

Owner Employee

Figure 7.21 An example of a realization Dependency

7.8 Classifier Descriptions

7.81 Abstraction [Class]

7.81.1 Description

An Abstraction is a Relationship that relates two Elements or sets of Elements that represent the same concept at
different levels of abstraction or from different viewpoints.

7.8.1.2 Diagrams

Dependencies, Artifacts

7.81.3 Generalizations
Dependency
7.81.4 Specializations

Realization, Manifestation

7.8.1.5 Association Ends

* ¢ mapping : OpaqueExpression [0..1]{subsets Element::ownedElement} (opposite

A_mapping_abstraction::abstraction)
An OpaqueExpression that states the abstraction relationship between the supplier(s) and the client(s). In some

cases, such as derivation, it is usually formal and unidirectional; in other cases, such as trace, it is usually
informal and bidirectional. The mapping expression is optional and may be omitted if the precise relationship
between the Elements is not specified.

7.8.2 Comment [Class]

7.8.21 Description

A Comment is a textual annotation that can be attached to a set of Elements.

7.8.2.2 Diagrams

40 Unified Modeling Language 2.5

7.8.2.3

7.8.2.4

7.8.2.5

7.8.3

7.8.3.1

A Constraint is a condition or restriction expressed in natural language text or in a machine readable language for the

Generalizations

Element

Attributes

body : String [0..1]
Specifies a string that is the comment.

Association Ends

annotatedElement : Element [0..*] (opposite A_annotatedElement comment::comment)
References the Element(s) being commented.

Constraint [Class]

Description

purpose of declaring some of the semantics of an Element or set of Elements.

7.8.3.2

7.8.3.3

7.8.3.4

7.8.3.5

7.8.3.6

Diagrams

Namespaces, Constraints, Intervals, Use Cases, Behavior State Machines, Protocol State Machines,
Interactions, Fragments, Behaviors, Features, Operations, Actions

Generalizations

PackageableElement
Specializations

IntervalConstraint, InteractionConstraint

Association Ends

constrainedElement : Element [0..*]{ordered} (opposite A_constrainedElement constraint::constraint)
The ordered set of Elements referenced by this Constraint.

context : Namespace [0..1]{subsets NamedElement::namespace} (opposite Namespace::ownedRule)
Specifies the Namespace that owns the Constraint.

¢ specification : ValueSpecification [1..1]{subsets Element::ownedElement} (opposite

A_specification owningConstraint::owningConstraint)
A condition that must be true when evaluated in order for the Constraint to be satisfied.

Constraints

boolean value
The ValueSpecification for a Constraint must evaluate to a Boolean value.

Cannot be expressed in OCL

Unified Modeling Language 2.5

41

* no_side effects
Evaluating the ValueSpecification for a Constraint must not have side effects.

Cannot be expressed in OCL

e not _apply to self
A Constraint cannot be applied to itself.

inv: not constrai nedEl ement - >i ncl udes(sel f)

784 Dependency [Class]

7.8.41 Description

A Dependency is a Relationship that signifies that a single model Element or a set of model Elements requires other
model Elements for their specification or implementation. This means that the complete semantics of the client
Element(s) are either semantically or structurally dependent on the definition of the supplier Element(s).

7.8.4.2 Diagrams

Dependencies, Collaborations, Deployments
7.8.4.3 Generalizations

DirectedRelationship, PackageableElement
7.8.4.4 Specializations

Abstraction, Usage, Deployment

7.8.4.5 Association Ends

® client : NamedElement [1..*]{subsets DirectedRelationship::source} (opposite

NamedFElement::clientDependency)
The Element(s) dependent on the supplier Element(s). In some cases (such as a trace Abstraction) the

assignment of direction (that is, the designation of the client Element) is at the discretion of the modeler and is
a stipulation.

* supplier : NamedElement [1..*]{subsets DirectedRelationship::target} (opposite

A_supplier_supplierDependency::supplierDependency)
The Element(s) on which the client Element(s) depend in some respect. The modeler may stipulate a sense of

Dependency direction suitable for their domain.

7.8.5 DirectedRelationship [Abstract Class]

7.8.5.1 Description

A DirectedRelationship represents a relationship between a collection of source model Elements and a collection of
target model Elements.

7.8.5.2 Diagrams

Root, Template Bindings, Namespaces, Dependencies, Use Cases, Packages, Profiles, Information Flows,
Classifiers

42 Unified Modeling Language 2.5

7.8.5.3 Generalizations
Relationship
7.8.5.4 Specializations

Dependency, ElementIlmport, Packagelmport, TemplateBinding, Extend, Include, ProtocolConformance,
PackageMerge, ProfileApplication, InformationFlow, Generalization

7.8.5.5 Association Ends

* /source : Element [1..*]{union, subsets Relationship::relatedElement} (opposite

A_source directedRelationship::directedRelationship)
Specifies the source Element(s) of the DirectedRelationship.

® /target : Element [1..*]{union, subsets Relationship::relatedElement} (opposite

A_target directedRelationship::directedRelationship)
Specifies the target Element(s) of the DirectedRelationship.

7.8.6 Element [Abstract Class]

7.8.6.1 Description

An Element is a constituent of a model. As such, it has the capability of owning other Elements.

7.8.6.2 Diagrams

Root, Template Bindings, Templates, Namespaces, Types, Constraints, Activity Groups, Executable Nodes,

Profiles, Instances, Link End Data, Structured Actions

7.8.6.3 Specializations

Comment, MultiplicityElement, NamedElement, ParameterableElement, Relationship, TemplateableElement,

TemplateParameter, TemplateParameterSubstitution, TemplateSignature, ExceptionHandler, Image, Slot,
Clause, LinkEndData, QualifierValue

7.8.6.4 Association Ends

* ¢ ownedComment : Comment [0..*]{subsets Element::ownedElement} (opposite

A_ownedComment owningElement::owningElement)
The Comments owned by this Element.

* ¢ /ownedElement : Element [0..*]{union} (opposite Element::owner)
The Elements owned by this Element.

* /owner : Element [0..1]{union} (opposite Element::ownedElement)
The Element that owns this Element.

7.8.6.5 Operations

* allOwnedElements() : Element [0..*]
The query allOwnedElements() gives all of the direct and indirect ownedElements of an Element.

body: ownedEl enment - >uni on(ownedEl enent - >col l ect (e | e.al | OmedEl ements()))->asSet ()

Unified Modeling Language 2.5

43

7.8.6.6

7.8.7

7.8.7.1

mustBeOwned() : Boolean

The query mustBeOwned() indicates whether Elements of this type must have an owner. Subclasses of
Element that do not require an owner must override this operation.

body: true

Constraints

has_owner
Elements that must be owned must have an owner.

inv: nustBeOwmed() inplies owner->not Enpty()

not_own_self
An element may not directly or indirectly own itself.

inv: not all OwedEl enents()->i ncludes(self)
Elementimport [Class]

Description

An ElementImport identifies a NamedElement in a Namespace other than the one that owns that NamedElement and
allows the NamedElement to be referenced using an unqualified name in the Namespace owning the ElementImport.

7.8.7.2

7.8.7.3

7.8.7.4

7.8.7.5

44

Diagrams

Namespaces, Profiles

Generalizations

DirectedRelationship

Attributes

alias : String [0..1]

Specifies the name that should be added to the importing Namespace in lieu of the name of the imported
PackagableElement. The alias must not clash with any other member in the importing Namespace. By default,
no alias is used.

visibility : VisibilityKind [1..1] = public

Specifies the visibility of the imported PackageableElement within the importingNamespace, i.e., whether the
importedElement will in turn be visible to other Namespaces. If the ElementImport is public, the
importedElement will be visible outside the importingNamespace while, if the ElementImport is private, it will
not.

Association Ends

importedElement : PackageableElement [1..1]{subsets DirectedRelationship::target} (opposite

A_importedElement import::import)
Specifies the PackageableElement whose name is to be added to a Namespace.

importingNamespace : Namespace [1..1]{subsets DirectedRelationship::source, subsets Element::owner}

(opposite Namespace::elementlmport)
Specifies the Namespace that imports a PackageableElement from another Namespace.

Unified Modeling Language 2.5

7.8.7.6

7.8.7.7

7.8.8

7.8.8.1

Operations

getName() : String
The query getName() returns the name under which the imported PackageableElement will be known in the
importing namespace.

body: if alias->notEnpty() then
alias

el se
i nport edEl enent . nanme

endi f

Constraints

imported _element is_public
An importedElement has either public visibility or no visibility at all.

inv: inportedEl ement.visibility <> null inplies inportedEl enment.visibility =
\/S|b|I|tyK|nd public

visibility public or private
The visibility of an ElementImport is either public or private.

inv: visibility = VisibilityKind::public or visibility = VisibilityKind::private
MultiplicityElement [Abstract Class]

Description

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A MultiplicityElement embeds this information to specify the allowable
cardinalities for an instantiation of the Element.

7.8.8.2

7.8.8.3

7.8.8.4

7.8.8.5

Diagrams

Types, Activities, Structured Classifiers, Features, Actions
Generalizations

Element
Specializations

Variable, ConnectorEnd, Parameter, StructuralFeature, Pin

Attributes

isOrdered : Boolean [1..1] = false
For a multivalued multiplicity, this attribute specifies whether the values in an instantiation of this
MultiplicityElement are sequentially ordered.

isUnique : Boolean [1..1] = true
For a multivalued multiplicity, this attribute specifies whether the values in an instantiation of this
MultiplicityElement are unique.

/lower : Integer [1..1]
The lower bound of the multiplicity interval.

Unified Modeling Language 2.5 45

* /upper : UnlimitedNatural [1..1]
The upper bound of the multiplicity interval.

7.8.8.6 Association Ends

* ¢ lowerValue : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite
A_lowerValue owningl ower::owningl ower)
The specification of the lower bound for this multiplicity.

® ¢ upperValue : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite

A_upperValue owningUpper::owningUpper)
The specification of the upper bound for this multiplicity.

7.8.8.7 Operations

* compatibleWith(other : MultiplicityElement) : Boolean
The operation compatibleWith takes another multiplicity as input. It returns true if the other multiplicity is
wider than, or the same as, self.

body: (other.|owerBound() <= self.lowerBound()) and ((other.upperBound() = *) or
(sel f.upperBound() <= other. upperBound()))

* includesMultiplicity(M : MultiplicityElement) : Boolean
The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the
specified multiplicity.

pre: self.upperBound()->notEnpty() and sel f.| ower Bound()->not Enpty() and M upper Bound() -
>not Empty() and M | ower Bound() - >not Enpt y()
body: (self.lowerBound() <= M I owerBound()) and (self.upperBound() >= M upperBound())

* is(lowerbound : Integer, upperbound : UnlimitedNatural) : Boolean
The operation is determines if the upper and lower bound of the ranges are the ones given.

body: | owerbound = sel f.lowerBound() and upperbound = sel f. upper Bound()

* isMultivalued() : Boolean
The query isMultivalued() checks whether this multiplicity has an upper bound greater than one.

pre: upperBound()->not Enpty()
body: upperBound() > 1

* lower() : Integer [0..1]
The derived lower attribute must equal the lowerBound.

body: | ower Bound()

* lowerBound() : Integer [1..1]
The query lowerBound() returns the lower bound of the multiplicity as an integer, which is the integerValue of
lowerValue, if this is given, and 1 otherwise.

body: if (IowerValue=null or |owerValue.integerValue()=null) then 1 else
| ower Val ue. i nt eger Val ue() endif

e upper() : UnlimitedNatural [0..1]
The derived upper attribute must equal the upperBound.

46 Unified Modeling Language 2.5

body: upper Bound()

e upperBound() : UnlimitedNatural [1..1]
The query upperBound() returns the upper bound of the multiplicity for a bounded multiplicity as an unlimited
natural, which is the unlimitedNatural Value of upperValue, if given, and 1, otherwise.

body: if (upperVal ue=null or upperVal ue.unlimtedValue()=null) then 1 else
upper Val ue. unl i m tedVal ue() endif

7.8.8.8 Constraints

e upper _ge lower
The upper bound must be greater than or equal to the lower bound.

inv: upperBound() >= | ower Bound()

* lower ge 0
The lower bound must be a non-negative integer literal.

inv: |owerBound() >= 0

e value specification no_side effects
If a non-literal ValueSpecification is used for lowerValue or upperValue, then evaluating that specification
must not have side effects.

Cannot be expressed in OCL

e value specification constant
If a non-literal ValueSpecification is used for lowerValue or upperValue, then that specification must be a
constant expression.

Cannot be expressed in OCL

* lower is_ integer
If it is not empty, then lowerValue must have an Integer value.

inv: lowerValue <> null inplies |owerValue.integerValue() <> null

e upper_is_unlimitedNatural
If it is not empty, then upperValue must have an UnlimitedNatural value.

inv: upperValue <> null inplies upperValue.unlimtedValue() <> null

7.8.9 NamedElement [Abstract Class]

7.8.9.1 Description

A NamedElement is an Element in a model that may have a name. The name may be given directly and/or via the use of
a StringExpression.

7.8.9.2 Diagrams

Namespaces, Types, Dependencies, Activity Groups, Time, Use Cases, Collaborations, Behavior State
Machines, Interactions, Messages, Lifelines, Occurrences, Fragments, Information Flows, Deployments
Events, Classifiers

Unified Modeling Language 2.5 47

7.8.9.3

7.8.9.4

7.8.9.5

7.8.9.6

7.8.9.7

48

Generalizations
Element
Specializations
Namespace, PackageableElement, TypedElement, ActivityGroup, Trigger, Extend, Include, CollaborationUse,

Vertex, GeneralOrdering, InteractionFragment, Lifeline, Message, MessageEnd, DeployedArtifact
DeploymentTarget, ParameterSet, RedefinableElement

Attributes

name : String [0..1]
The name of the NamedElement.

/qualifiedName : String [0..1]

A name that allows the NamedElement to be identified within a hierarchy of nested Namespaces. It is
constructed from the names of the containing Namespaces starting at the root of the hierarchy and ending with
the name of the NamedElement itself.

visibility : VisibilityKind [0..1]
Determines whether and how the NamedElement is visible outside its owning Namespace.

Association Ends

/clientDependency : Dependency [0..*]{subsets A_source directedRelationship::directedRelationship }

(opposite Dependency::client)
Indicates the Dependencies that reference this NamedElement as a client.

¢ nameExpression : StringExpression [0..1]{subsets Element::ownedElement} (opposite

A nameExpression namedElement::namedElement)
The StringExpression used to define the name of this NamedElement.

/namespace : Namespace [0..1]{union, subsets A_member _memberNamespace::memberNamespace, subsets

Element::owner} (opposite Namespace::ownedMember)
Specifies the Namespace that owns the NamedElement.

Operations

allNamespaces() : Namespace [0..*]{ordered}
The query allNamespaces() gives the sequence of Namespaces in which the NamedElement is nested, working
outwards.

body: if owner. ocl|sKindOf (Tenpl at ePar anet er) and
owner . ocl AsType(Tenpl at ePar anet er) . si gnature. t enpl at e. ocl | skKi ndOf (Nanespace) then
| et encl osi ngNanespace : Nanespace =
owner . ocl AsType(Tenpl at ePar anet er) . si gnature. t enpl at e. ocl AsType(Namespace) in
| encl osi ngNanespace. al | Nanespaces() - >pr epend(encl osi ngNanespace)
el se
i f nanespace->i senpty()
then OrderedSet{}
el se
nanmespace. al | Namespaces() - >pr epend(nanespace)
endi f
endi f

Unified Modeling Language 2.5

7.8.9.8

allOwningPackages() : Package [0..*]
The query allOwningPackages() returns the set of all the enclosing Namespaces of this NamedElement,
working outwards, that are Packages, up to but not including the first such Namespace that is not a Package.

body: if nanespace. ocl | sKi ndOf (Package)
t hen
| et owni ngPackage : Package = namespace. ocl AsType(Package) in
owni ngPackage- >uni on(owni ngPackage. al | Omi ngPackages())
el se
nul |
endi f

isDistinguishableFrom(n : NamedElement, ns : Namespace) : Boolean

The query isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a
Namespace. By default, two named elements are distinguishable if (a) they have types neither of which is a
kind of the other or (b) they have different names.

body: (self.ocl!|sKindO(n.ocl Type()) or n.ocllsKindO (self.ocl Type())) inplies
ns. get NamesOf Menber (sel f) - > ntersecti on(ns. get NanesOf Menber (n)) - > sEnpty()

qualifiedName() : String
When a NamedElement has a name, and all of its containing Namespaces have a name, the qualifiedName is
constructed from the name of the NamedElement and the names of the containing Namespaces.

bgdy: if self.nanme <> null and self.all Nanespaces()->select(ns | ns.name=null)->i sEmpty()
t hen
sel f. al | Nanespaces()->iterate(ns : Namespace; agg: String = self.nanme |
ns. nane. concat (sel f.separator()).concat (agg))
el se
nul |
endi f

separator() : String
The query separator() gives the string that is used to separate names when constructing a qualifiedName.

body:

clientDependency() : Dependency [0..*]
body: Dependency. al | I nstances()->select(d | d.client->includes(self))

Constraints

visibility _needs ownership

If a NamedElement is owned by something other than a Namespace, it does not have a visibility. One that is
not owned by anything (and hence must be a Package, as this is the only kind of NamedElement that overrides
mustBeOwned()) may have a visibility.

inv: (namespace = null and owner <> null) inplies visibility = null

has_qualified name
When there is a name, and all of the containing Namespaces have a name, the qualifiedName is constructed
from the name of the NamedElement and the names of the containing Namespaces.

inv: (name <> null and all Namespaces()->select(ns | ns.nane = null)->i seEnpty()) inplies
qual i fi edName = al | Nanespaces()->iterate(ns : Namespace; agg: String = nane |
ns. nane. concat (sel f. separator()). concat (agg))

Unified Modeling Language 2.5 49

* has no_qualified name
If there is no name, or one of the containing Namespaces has no name, there is no qualifiedName.

inv: nane=nul |l or all Nanespaces()->select(ns | ns.nanme=null)->notEnpty() inplies
qual i fi edName = nul |

7.8.10 Namespace [Abstract Class]

7.8.10.1 Description

A Namespace is an Element in a model that owns and/or imports a set of NamedElements that can be identified by
name.

7.8.10.2 Diagrams

Namespaces, Constraints, Behavior State Machines, Packages, Fragments, Classifiers, Features, Structured
Actions

7.8.10.3 Generalizations
NamedElement
7.8.10.4 Specializations

Region, State, Transition, Package, InteractionOperand, BehavioralFeature, Classifier, StructuredActivityNode

7.8.10.5 Association Ends

* ¢ clementlmport : ElementImport [0..*]{subsets Element::ownedElement, subsets

A_source directedRelationship::directedRelationship} (opposite ElementImport::importingNamespace)
References the ElementImports owned by the Namespace.

* /importedMember : PackageableElement [0..*]{subsets Namespace::member} (opposite
A_importedMember_namespace::namespace)
References the PackageableElements that are members of this Namespace as a result of either Packagelmports
or ElementImports.

* /member : NamedElement [0..*]{union} (opposite A_member memberNamespace::memberNamespace)
A collection of NamedElements identifiable within the Namespace, either by being owned or by being
introduced by importing or inheritance.

* ¢ /ownedMember : NamedElement [0..*]{union, subsets Namespace::member, subsets

Element::ownedElement} (opposite NamedElement::namespace)
A collection of NamedElements owned by the Namespace.

* ¢ ownedRule : Constraint [0..*]{subsets Namespace::ownedMember} (opposite Constraint::context)
Specifies a set of Constraints owned by this Namespace.

* ¢ packagelmport : Packagelmport [0..*]{subsets Element::ownedElement, subsets

A_source directedRelationship::directedRelationship} (opposite Packagelmport::importingNamespace)
References the Packagelmports owned by the Namespace.

50 Unified Modeling Language 2.5

7.8.10.6 Operations

* excludeCollisions(imps : PackageableElement [0..*]) : PackageableElement [0..*]
The query excludeCollisions() excludes from a set of PackageableElements any that would not be
distinguishable from each other in this Namespace.

body: inps->reject(inpl | inps->exists(inmp2 | not inpl.isDistinguishableFron(inp2, self)))

¢ getNamesOfMember(element : NamedElement) : String [0..*]
The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace,
taking importing into account. In general a member can have multiple names in a Namespace if it is imported
more than once with different aliases.

body: if self.ownedMenber ->includes(el ement)
then Set{el emrent. nanme}
else let elementlnports : Set(El ementlnport) = self.elementlnport->select(ei |
ei .inmportedEl ement = elenment) in
if elementlnports->not Enpty()
t hen
el enent | nports->collect(el | el.getNanme())->asSet()
el se
sel f. packagel nport->sel ect (pi |
pi . i nport edPackage. vi si bl eMenber s() . ocl AsType(NamedEl enent) - >i ncl udes(el ement))-> col | ect (pi
| pi .di ;rportedPackage. get NamesOf Menber (el ement)) - >asSet ()
endi
endi f

* importMembers(imps : PackageableElement [0..*]) : PackageableElement [0..*]
The query importMembers() defines which of a set of PackageableElements are actually imported into the
Namespace. This excludes hidden ones, i.e., those which have names that conflict with names of
ownedMembers, and it also excludes PackageableElements that would have the indistinguishable names when
imported.

body: sel f.excludeCol |isions(inps)->select(inp | self.ownedMenber->forAll (mem |
i mp. i sDi stingui shabl eFron{mem self)))

* importedMember() : PackageableElement [0..*]
The importedMember property is derived as the PackageableElements that are members of this Namespace as
a result of either Packagelmports or ElementImports.

body: sel f.inportMenbers(el ementl|nport.inportedEl enent->asSet () -
>uni on(packagel nport. i nportedPackage- >col l ect(p | p.visibleMenbers()))->asSet())

* membersAreDistinguishable() : Boolean
The Boolean query membersAreDistinguishable() determines whether all of the Namespace's members are
distinguishable within it.

body: menber->forAll (menb |
menber - >excl udi ng(nenb) - >for Al | (ot her |
menb. i sDi sti ngui shabl eFron{other, self)))

7.8.10.7 Constraints

e members_distinguishable
All the members of a Namespace are distinguishable within it.

inv: nmenbersAreD stingui shabl e()

Unified Modeling Language 2.5 51

e cannot_import_self
A Namespace cannot have a Packagelmport to itself.

i nv: packagel nport.i nmportedPackage. ocl AsType(Nanespace) - >excl udes(sel f)

e cannot_import ownedMembers
A Namespace cannot have an ElementImport to one of its ownedMembers.

inv: elenmentlnport.inportedEl enent. ocl AsType(El ement) - >excl udesAl | (ownedMenber)

7.8.11 Packagelmport [Class]

7.8.11.1 Description

A Packagelmport is a Relationship that imports all the non-private members of a Package into the Namespace owning
the Packagelmport, so that those Elements may be referred to by their unqualified names in the importingNamespace.

7.8.11.2 Diagrams

Namespaces, Profiles

7.8.11.3 Generalizations

DirectedRelationship

7.8.11.4 Attributes

* visibility : VisibilityKind [1..1] = public
Specifies the visibility of the imported PackageableElements within the importingNamespace, i.e., whether
imported Elements will in turn be visible to other Namespaces. If the PackageImport is public, the imported
Elements will be visible outside the importingNamespace, while, if the Packagelmport is private, they will not.

7.8.11.5 Association Ends

* importedPackage : Package [1..1]{subsets DirectedRelationship::target} (opposite

A_importedPackage packagelmport::packagelmport)
Specifies the Package whose members are imported into a Namespace.

* importingNamespace : Namespace [1..1]{subsets DirectedRelationship::source, subsets Element::owner}
(opposite Namespace::packagelmport)
Specifies the Namespace that imports the members from a Package.

7.8.11.6 Constraints

e public_or private
The visibility of a Packagelmport is either public or private.

inv: visibility = VisibilityKind::public or visibility = VisibilityKind::private
7.8.12 PackageableElement [Abstract Class]

7.8.121 Description

A PackageableElement is a NamedElement that may be owned directly by a Package. A PackageableElement is also
able to serve as the parameteredElement of a TemplateParameter.

52 Unified Modeling Language 2.5

7.8.12.2 Diagrams

Namespaces, Types, Constraints, Dependencies, Literals, Time, Components, Packages, Information Flows
Deployments, Artifacts, Events, Instances, Generalization Sets

7.8.12.3 Generalizations

ParameterableElement, NamedElement

7.8.12.4 Specializations

Constraint, Dependency, Type, Event, Observation, ValueSpecification, Package, InformationFlow,
GeneralizationSet, InstanceSpecification

7.8.12.5 Attributes

* visibility : VisibilityKind [0..1] = public
A PackageableElement must have a visibility specified if it is owned by a Namespace. The default visibility is
public.

7.8.12.6 Constraints

e namespace needs_visibility
A PackageableElement owned by a Namespace must have a visibility.

inv: visibility = null inplies nanmespace = null
7.8.13 ParameterableElement [Abstract Class]

7.8.13.1 Description

A ParameterableElement is an Element that can be exposed as a formal TemplateParameter for a template, or specified
as an actual parameter in a binding of a template.

7.8.13.2 Diagrams

Template Bindings, Templates, Namespaces, Structured Classifiers, Properties, Operations

7.8.13.3 Generalizations
Element
7.8.13.4 Specializations

PackageableElement, ConnectableElement, Operation

7.8.13.5 Association Ends

¢ owningTemplateParameter : TemplateParameter [0..1]{subsets ParameterableElement::templateParameter,

subsets Element::owner} (opposite TemplateParameter::ownedParameteredElement)
The formal TemplateParameter that owns this ParameterableElement.

* templateParameter : TemplateParameter [0..1] (opposite TemplateParameter::parameteredElement)
The TemplateParameter that exposes this ParameterableElement as a formal parameter.

Unified Modeling Language 2.5 53

7.8.13.6 Operations

* isCompatibleWith(p : ParameterableElement) : Boolean
The query isCompatibleWith() determines if this ParameterableElement is compatible with the specified
ParameterableElement. By default, this ParameterableElement is compatible with another
ParameterableElement p if the kind of this ParameterableElement is the same as or a subtype of the kind of p.
Subclasses of ParameterableElement should override this operation to specify different compatibility
constraints.

body: self.ocl|sKindO (p.ocl Type())

* isTemplateParameter() : Boolean
The query isTemplateParameter() determines if this ParameterableElement is exposed as a formal
TemplateParameter.

body: tenpl at ePar anet er - >not Enpt y()

7.8.14 Realization [Class]

7.8.14.1 Description

Realization is a specialized Abstraction relationship between two sets of model Elements, one representing a
specification (the supplier) and the other represents an implementation of the latter (the client). Realization can be used
to model stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

7.8.14.2 Diagrams

Dependencies, Components, Interfaces, Classifiers

7.8.14.3 Generalizations
Abstraction
7.8.14.4 Specializations

ComponentRealization, InterfaceRealization, Substitution

7.8.15 Relationship [Abstract Class]

7.8.15.1 Description

Relationship is an abstract concept that specifies some kind of relationship between Elements.

7.8.15.2 Diagrams

Root, Associations, Information Flows

7.8.15.3 Generalizations
Element
7.8.15.4 Specializations

DirectedRelationship, Association

54 Unified Modeling Language 2.5

7.8.15.5 Association Ends

* /relatedElement : Element [1..*]{union} (opposite A_relatedElement relationship::relationship)
Specifies the elements related by the Relationship.

7.8.16 TemplateBinding [Class]

7.8.16.1 Description

A TemplateBinding is a DirectedRelationship between a TemplateableElement and a template. A TemplateBinding
specifies the TemplateParameterSubstitutions of actual parameters for the formal parameters of the template.

7.8.16.2 Diagrams

Template Bindings

7.8.16.3 Generalizations

DirectedRelationship

7.8.16.4 Association Ends

* boundElement : TemplateableElement [1..1]{subsets DirectedRelationship::source, subsets Element::owner}

(opposite TemplateableElement::templateBinding)
The TemplateableElement that is bound by this TemplateBinding.

* ¢ parameterSubstitution : TemplateParameterSubstitution [0..*]{subsets Element::ownedElement} (opposite

TemplateParameterSubstitution::templateBinding)
The TemplateParameterSubstitutions owned by this TemplateBinding.

* signature : TemplateSignature [1..1]{subsets DirectedRelationship::target} (opposite
A_signature_templateBinding::templateBinding)
The TemplateSignature for the template that is the target of this TemplateBinding.

7.8.16.5 Constraints

e parameter_substitution_formal
Each parameterSubstitution must refer to a formal TemplateParameter of the target TemplateSignature.

inv: paraneterSubstitution->forAll (b | signature. paraneter->includes(b.formal))
e one_parameter_substitution
A TemplateBiinding contains at most one TemplateParameterSubstitution for each formal TemplateParameter

of the target TemplateSignature.

inv: signature.paraneter->forAll(p | paranmeterSubstitution->select(b | b.formal = p)->size()
<= 1)

7.8.17 TemplateParameter [Class]

78171 Description

A TemplateParameter exposes a ParameterableElement as a formal parameter of a template.

Unified Modeling Language 2.5 55

7.8.17.2 Diagrams

Template Bindings, Templates, Structured Classifiers, Classifier Templates, Operations

7.8.17.3 Generalizations
Element
7.8.17.4 Specializations

ConnectableElementTemplateParameter, ClassifierTemplateParameter, OperationTemplateParameter

7.8.17.5 Association Ends

® default : ParameterableElement [0..1] (opposite A_default templateParameter::templateParameter)
The ParameterableElement that is the default for this formal TemplateParameter.

* ¢ ownedDefault : ParameterableElement [0..1]{subsets Element::ownedElement, subsets
TemplateParameter::default} (opposite A_ownedDefault_templateParameter::templateParameter)
The ParameterableElement that is owned by this TemplateParameter for the purpose of providing a default.

* ¢ ownedParameteredElement : ParameterableElement [0..1]{subsets Element::ownedElement, subsets

TemplateParameter::parameteredElement} (opposite ParameterableElement::owningTemplateParameter)
The ParameterableElement that is owned by this TemplateParameter for the purpose of exposing it as the

parameteredElement.

* parameteredElement : ParameterableElement [1..1] (opposite ParameterableElement::templateParameter)
The ParameterableElement exposed by this TemplateParameter.

* signature : TemplateSignature [1..1]{subsets A_parameter_templateSignature::templateSignature, subsets
Element::owner} (opposite TemplateSignature::ownedParameter)
The TemplateSignature that owns this TemplateParameter.

7.8.17.6 Constraints

e must be compatible
The default must be compatible with the formal TemplateParameter.

inv: default <> null inplies default.isConpatibleWth(paraneteredEl enent)

7.8.18 TemplateParameterSubstitution [Class]

7.8.18.1 Description

A TemplateParameterSubstitution relates the actual parameter to a formal TemplateParameter as part of a template
binding.

7.8.18.2 Diagrams

Template Bindings
7.8.18.3 Generalizations

Element

56 Unified Modeling Language 2.5

7.8.18.4 Association Ends

® actual : ParameterableElement [1..1] (opposite

A_actual templateParameterSubstitution::templateParameterSubstitution)
The ParameterableElement that is the actual parameter for this TemplateParameterSubstitution.

e formal : TemplateParameter [1..1] (opposite
A _formal templateParameterSubstitution::templateParameterSubstitution)
The formal TemplateParameter that is associated with this TemplateParameterSubstitution.

* ¢ ownedActual : ParameterableElement [0..1]{subsets Element::ownedElement, subsets
TemplateParameterSubstitution::actual} (opposite
A_ownedActual owningTemplateParameterSubstitution::owningTemplateParameterSubstitution)
The ParameterableElement that is owned by this TemplateParameterSubstitution as its actual parameter.

¢ templateBinding : TemplateBinding [1..1]{subsets Element::owner} (opposite

TemplateBinding::parameterSubstitution)
The TemplateBinding that owns this TemplateParameterSubstitution.

7.8.18.5 Constraints

* must be compatible
The actual ParameterableElement must be compatible with the formal TemplateParameter, e.g., the actual
ParameterableElement for a Class TemplateParameter must be a Class.

inv: actual ->forAll (a | a.isConpatibleWth(formal.paraneteredEl enent))

7.8.19 TemplateSignature [Class]

7.8.19.1 Description

A Template Signature bundles the set of formal TemplateParameters for a template.
7.8.19.2 Diagrams

Template Bindings, Templates, Classifier Templates

7.8.19.3 Generalizations
Element
7.8.19.4 Specializations

RedefinableTemplateSignature
7.8.19.5 Association Ends
* ¢ ownedParameter : TemplateParameter [0..*]{ordered, subsets Element::ownedElement, subsets

TemplateSignature::parameter} (opposite TemplateParameter::signature)
The formal parameters that are owned by this TemplateSignature.

® parameter : TemplateParameter [1..*]{ordered} (opposite A_parameter templateSignature::templateSignature)
The ordered set of all formal TemplateParameters for this TemplateSignature.

Unified Modeling Language 2.5 57

* template : TemplateableElement [1..1]{subsets Element::owner} (opposite
TemplateableElement::ownedTemplateSignature)
The TemplateableElement that owns this TemplateSignature.

7.8.19.6 Constraints

e own_eclements
Parameters must own the ParameterableElements they parameter or those ParameterableElements must be
owned by the TemplateableElement being templated.

inv: tenpl ate. ownedEl ement - >i ncl udesAl | (par anet er. par anet er edEl ement - >asSet () -
par anet er . ownedPar anet er edEl emrent - >asSet ())

* unique parameters
The names of the parameters of a TemplateSignature are unique.

inv: paraneter->forAll(pl, p2 | (pl <> p2 and

pl. par amet er edEl enent . ocl | sKi ndOf (NaredEl emrent) and

p2. par anmet er edEl enent . ocl | sKi ndOf (NamedEl emrent)) inplies
pl. par anet er edEl enent . ocl AsType(NanedEl enent) . name <>

p2. par anet er edEl enent . ocl AsType(NanedEl enent) . nane)

7.8.20 TemplateableElement [Abstract Class]

7.8.20.1 Description

A TemplateableElement is an Element that can optionally be defined as a template and bound to other templates.
7.8.20.2 Diagrams

Template Bindings, Templates, Expressions, Packages, Classifiers, Classifier Templates, Operations

7.8.20.3 Generalizations
Element
7.8.20.4 Specializations

StringExpression, Package, Classifier, Operation
7.8.20.5 Association Ends

* ¢ ownedTemplateSignature : TemplateSignature [0..1]{subsets Element::ownedElement} (opposite

TemplateSignature::template)
The optional TemplateSignature specifying the formal TemplateParameters for this TemplateableElement. If a

TemplateableElement has a TemplateSignature, then it is a template.

* ¢ templateBinding : TemplateBinding [0..*]{subsets Element::ownedElement, subsets

A source directedRelationship::directedRelationship} (opposite TemplateBinding::boundElement)
The optional TemplateBindings from this TemplateableElement to one or more templates.

7.8.20.6 Operations

* isTemplate() : Boolean
The query isTemplate() returns whether this TemplateableElement is actually a template.

body: ownedTenpl at eSi gnature <> nul |

58 Unified Modeling Language 2.5

* parameterableElements() : ParameterableElement [0..*]
The query parameterableElements() returns the set of ParameterableElements that may be used as the
parameteredElements for a TemplateParameter of this TemplateableElement. By default, this set includes all
the ownedElements. Subclasses may override this operation if they choose to restrict the set of
ParameterableElements.

body: sel f.al |l OwmedEl ement s() -
>sel ect (ocl | sKi ndOF (Par anet er abl eEl enent)) . ocl AsType(Par anet er abl eEl ement) - >asSet ()

7.8.21 Type [Abstract Class]

7.8.21.1 Description

A Type constrains the values represented by a TypedElement.

7.8.21.2 Diagrams

Types, Associations, Packages, Classifiers, Features, Operations

7.8.21.3 Generalizations

PackageableElement
7.8.21.4 Specializations

Classifier
7.8.21.5 Attributes

7.8.21.6 Association Ends

* package : Package [0..1]{subsets A_packagedElement owningPackage::owningPackage} (opposite

Package::ownedType)
Specifies the owning Package of this Type, if any.

7.8.21.7 Operations

* conformsTo(other : Type) : Boolean

The query conformsTo() gives true for a Type that conforms to another. By default, two Types do not conform

to each other. This query is intended to be redefined for specific conformance situations.

body: false

7.8.22 TypedElement [Abstract Class]

7.8.22.1 Description

A TypedElement is a NamedElement that may have a Type specified for it.

7.8.22.2 Diagrams

Types, Object Nodes, Literals, Structured Classifiers, Features

7.8.22.3 Generalizations

NamedElement

Unified Modeling Language 2.5

59

7.8.22.4 Specializations

ObjectNode, ValueSpecification, ConnectableElement, StructuralFeature

7.8.22.5 Association Ends

* type : Type [0..1] (opposite A_type typedElement::typedElement)
The type of the TypedElement.

7.8.23 Usage [Class]

7.8.23.1 Description

A Usage is a Dependency in which the client Element requires the supplier Element (or set of Elements) for its full
implementation or operation.

7.8.23.2 Diagrams
Dependencies
7.8.23.3 Generalizations
Dependency
7.8.24 VisibilityKind [Enumeration]
7.8.24.1 Description
VisibilityKind is an enumeration type that defines literals to determine the visibility of Elements in a model.

7.8.24.2 Diagrams

* Namespaces

7.8.24.3 Literals

e public
A Named Element with public visibility is visible to all elements that can access the contents of the Namespace
that owns it.

e private
A NamedElement with private visibility is only visible inside the Namespace that owns it.

e protected
A NamedElement with protected visibility is visible to Elements that have a generalization relationship to the
Namespace that owns it.

* package
A NamedElement with package visibility is visible to all Elements within the nearest enclosing Package (given
that other owning Elements have proper visibility). Outside the nearest enclosing Package, a NamedElement
marked as having package visibility is not visible. Only NamedElements that are not owned by Packages can
be marked as having package visibility.

60 Unified Modeling Language 2.5

7.9 Association Descriptions

791 A_actual_templateParameterSubstitution [Association]
7911 Diagrams

Template Bindings
7.9.1.2 Specializations

A_ownedActual owningTemplateParameterSubstitution

7.91.3 Owned Ends

* templateParameterSubstitution : TemplateParameterSubstitution [0..*] (opposite
TemplateParameterSubstitution::actual)

7.9.2 A_annotatedElement_comment [Association]
7.9.21 Diagrams

Root
7.9.2.2 Owned Ends

* comment : Comment [0..*] (opposite Comment::annotatedElement)

7.9.3 A_clientDependency_client [Association]
7.9.31 Diagrams

Dependencies

7.9.3.2 Member Ends
* NamedElement::clientDependency

* Dependency::client

794 A_constrainedElement_constraint [Association]
7.9.41 Diagrams

Constraints
7.9.4.2 Owned Ends

* constraint : Constraint [0..*] (opposite Constraint::constrainedElement)

7.9.5 A_default_templateParameter [Association]
7.9.5.1 Diagrams
Templates

Unified Modeling Language 2.5 61

7.9.5.2 Specializations

A_ownedDefault templateParameter

7.9.5.3 Owned Ends
* templateParameter : TemplateParameter [0..*] (opposite TemplateParameter::default)

7.9.6 A_elementimport_importingNamespace [Association]
7.9.6.1 Diagrams
Namespaces
7.9.6.2 Member Ends
* Namespace::elementImport

* Elementlmport::importingNamespace

7.9.7 A_formal_templateParameterSubstitution [Association]
7.9.71 Diagrams
Template Bindings

7.9.7.2 Owned Ends

* templateParameterSubstitution : TemplateParameterSubstitution [0..*] (opposite
TemplateParameterSubstitution::formal)

7.9.8 A_importedElement_import [Association]
7.9.8.1 Diagrams

Namespaces

7.9.8.2 Owned Ends

* import : Elementlmport [0..*]{subsets A_target directedRelationship::directedRelationship} (opposite
ElementImport::importedElement)

7.9.9 A_importedMember_namespace [Association]
7.9.91 Diagrams
Namespaces

7.9.9.2 Owned Ends

* namespace : Namespace [0..*]{subsets A_member memberNamespace::memberNamespace} (opposite
Namespace::importedMember)

62 Unified Modeling Language 2.5

7.9.10 A_importedPackage_packagelmport [Association]
7.9.10.1 Diagrams

Namespaces
7.9.10.2 Owned Ends

* packagelmport : Packagelmport [0..*]{subsets A_target directedRelationship::directedRelationship} (opposite
Packagelmport::importedPackage)

7.9.11 A_lowerValue_owningLower [Association]
7.9.11.1 Diagrams
Types

7.9.11.2 Owned Ends

* owningLower : MultiplicityElement [0..1]{subsets Element::owner} (opposite
MultiplicityElement::lowerValue)

7.9.12 A_mapping_abstraction [Association]
7.9.121 Diagrams
Dependencies

7.9.12.2 Owned Ends

® abstraction : Abstraction [0..1]{subsets Element::owner} (opposite Abstraction::mapping)

7.9.13 A_member_memberNamespace [Association]
7.9.13.1 Diagrams
Namespaces

7.9.13.2 Owned Ends

* /memberNamespace : Namespace [0..*]{union} (opposite Namespace::member)

7.9.14 A_nameExpression_namedElement [Association]
7.9.14.1 Diagrams

Namespaces
7.9.14.2 Owned Ends

¢ namedElement : NamedElement [0..1]{subsets Element::owner} (opposite NamedElement::nameExpression)

Unified Modeling Language 2.5 63

7.9.15 A_ownedActual_owningTemplateParameterSubstitution [Association]
7.9.15.1 Diagrams

Template Bindings
7.9.15.2 Generalizations
A actual templateParameterSubstitution

7.9.15.3 Owned Ends

* owningTemplateParameterSubstitution : TemplateParameterSubstitution [0..1]{subsets Element::owner,

redefines A_actual templateParameterSubstitution::templateParameterSubstitution} (opposite
TemplateParameterSubstitution::ownedActual)

7.9.16 A_ownedComment_owningElement [Association]

7.9.16.1 Diagrams
Root

7.9.16.2 Owned Ends

* owningElement : Element [0..1]{subsets Element::owner} (opposite Element::ownedComment)

7.9.17 A_ownedDefault_templateParameter [Association]
79171 Diagrams

Templates

7.9.17.2 Generalizations

A_default templateParameter
7.9.17.3 Owned Ends

* templateParameter : TemplateParameter [0..1]{subsets Element::owner, redefines
A_default templateParameter::templateParameter} (opposite TemplateParameter::ownedDefault)

7.9.18 A_ownedElement_owner [Association]

7.9.18.1 Diagrams
Root

7.9.18.2 Member Ends
¢ FElement::ownedElement

* Element::owner

64 Unified Modeling Language 2.5

7.9.19 A_ownedMember_namespace [Association]
7.9.19.1 Diagrams
Namespaces
7.9.19.2 Member Ends
* Namespace::ownedMember

* NamedElement::namespace

7.9.20 A_ownedParameter_signature [Association]
7.9.20.1 Diagrams
Templates
7.9.20.2 Member Ends
* TemplateSignature::ownedParameter

* TemplateParameter::signature

7.9.21 A_ownedParameteredElement_owningTemplateParameter [Association]
7.9.211 Diagrams
Templates
7.9.21.2 Member Ends
* TemplateParameter::ownedParameteredElement

® ParameterableElement::owningTemplateParameter

7.9.22 A_ownedRule_context [Association]

7.9.221 Diagrams
Namespaces, Constraints

7.9.22.2 Member Ends
* Namespace::ownedRule

* Constraint::context

7.9.23 A_ownedTemplateSignature_template [Association]
7.9.23.1 Diagrams

Templates

Unified Modeling Language 2.5 65

7.9.23.2 Member Ends
* TemplateableElement::ownedTemplateSignature
* TemplateSignature::template

7.9.24 A_packagelmport_importingNamespace [Association]
7.9.241 Diagrams
Namespaces
7.9.24.2 Member Ends
* Namespace::packagelmport

* Packagelmport::importingNamespace

7.9.25 A_parameterSubstitution_templateBinding [Association]
7.9.25.1 Diagrams
Template Bindings
7.9.25.2 Member Ends
¢ TemplateBinding::parameterSubstitution

* TemplateParameterSubstitution::templateBinding

7.9.26 A_parameter_templateSignature [Association]
7.9.26.1 Diagrams
Templates

7.9.26.2 Owned Ends

* templateSignature : TemplateSignature [0..*] (opposite TemplateSignature::parameter)

7.9.27 A_parameteredElement_templateParameter [Association]
7.9.271 Diagrams
Templates

7.9.27.2 Member Ends

* TemplateParameter::parameteredElement

* ParameterableElement::templateParameter

66 Unified Modeling Language 2.5

7.9.28 A_relatedElement_relationship [Association]

7.9.28.1 Diagrams

Root

7.9.28.2 Owned Ends
* /relationship : Relationship [0..*]{union} (opposite Relationship::relatedElement)

7.9.29 A_signature_templateBinding [Association]
7.9.291 Diagrams

Template Bindings
7.9.29.2 Owned Ends

* templateBinding : TemplateBinding [0..*]{subsets A_target directedRelationship::directedRelationship}
(opposite TemplateBinding::signature)

7.9.30 A_source_directedRelationship [Association]

7.9.301 Diagrams
Root

7.9.30.2 Owned Ends

* /directedRelationship : DirectedRelationship [0..*]{union, subsets
A_relatedElement relationship::relationship} (opposite DirectedRelationship::source)

7.9.31 A_specification_owningConstraint [Association]

7.9.311 Diagrams
Constraints
7.9.31.2 Specializations

A_specification_intervalConstraint
7.9.31.3 Owned Ends

* owningConstraint : Constraint [0..1]{subsets Element::owner} (opposite Constraint::specification)

7.9.32 A_supplier_supplierDependency [Association]
7.9.32.1 Diagrams

Dependencies

Unified Modeling Language 2.5

67

7.9.32.2 Owned Ends

* supplierDependency : Dependency [0..*]{subsets A_target directedRelationship::directedRelationship}

(opposite Dependency::supplier)
Indicates the dependencies that reference the supplier.

7.9.33 A_target_directedRelationship [Association]

7.9.33.1 Diagrams

Root

7.9.33.2 Owned Ends

* /directedRelationship : DirectedRelationship [0..*]{union, subsets
A_relatedElement relationship::relationship} (opposite DirectedRelationship::target)

7.9.34 A_templateBinding_boundElement [Association]
7.9.34.1 Diagrams

Template Bindings

7.9.34.2 Member Ends
* TemplateableElement::templateBinding
¢ TemplateBinding::boundElement

7.9.35 A_type_typedElement [Association]
7.9.35.1 Diagrams

Types

7.9.35.2 Owned Ends
¢ typedElement : TypedElement [0..*] (opposite TypedElement::type)

7.9.36 A_upperValue_owningUpper [Association]
7.9.36.1 Diagrams
Types

7.9.36.2 Owned Ends

e owningUpper : MultiplicityElement [0..1]{subsets Element::owner} (opposite
MultiplicityElement::upperValue)

68 Unified Modeling Language 2.5

8 Values

8.1 Summary

This clause describes the specification of values. In general, a ValueSpecification is a model element that is considered
semantically to yield zero or more values. The type and number of values shall be suitable for the context in which the
ValueSpecification is used (as determined by the constraints given in that context).

The following sub clauses describe the various kinds of ValueSpecifications available in UML.

8.2 Literals

8.21 Summary

A LiteralSpecification is a ValueSpecification that specifies a literal value. There is a different kind of
LiteralSpecification for each of the UML standard PrimitiveTypes, with a corresponding textual literal notation, plus a
“null” literal that represents the “lack of a value.”

8.2.2 Abstract Syntax

| TypedElement | | PackageableElement
ValueSpecification
LiteralSpecification
LiteralNull LiteralInteger LiteralUnlimitedNatural
+ value : Integer = 0 + value : UnlimitedNatural = C
LiteralString LiteralBoolean LiteralReal
+ value : String [0..1 + value : Boolean = false + value : Real

Figure 8.1 Literals

8.2.3 Semantics

There are six kinds of LiteralSpecifications:

1 A LiteralNull is intended to be used to explicitly model the lack of a value. In the context of a
MultiplicityElement with a multiplicity lower bound of 0, this corresponds to the empty set (i.e., a set of no
values). It is equivalent to specifying no values for the Element.

2 A LiteralString specifies a constant value of the PrimitiveType String. Though a String is specified as a
sequence of characters, String values are considered to be primitive in UML, so their internal structure is not
specified as part of UML semantics.

Unified Modeling Language 2.5 69

A Literallnteger specifies a constant value of the PrimitiveType Integer.
A LiteralBoolean specifies a constant value of the PrimitiveType Boolean.
A LiteralUnlimitedNatural specifies a constant value of the PrimitiveType UnlimitedNatural.

A LiteralReal specifies a constant value of the PrimitiveType Real.

See also Clause 21 for further discussion of the standard UML primitive types.

8.24

Notation

LiteralSpecifications are notated textually.

8.3

8.3.1

The notation for a LiteralNull varies depending on where it is used. It often appears as the word “null.” Other
notations are described elsewhere for specific uses.

A LiteralString is shown as a sequence of characters within double quotes. The String value is the sequence of
characters, not including the quotes. The character set used is unspecified.

A Literallnteger is shown as a sequence of digits representing the decimal numeral for the Integer value.
A LiteralBoolean is shown as either the word “true” or the word “false,” corresponding to its value.

A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where an asterisk
denotes unlimited. Note that “unlimited” denotes the lack of a limit on the value of some element (such as a
multiplicity upper bound), not a value of “infinity.”

A LiteralReal is shown in decimal notation or scientific notation. Decimal notation consists of an optional sign
character (+/-) followed by zero or more digits followed optionally by a dot (.) followed by one or more digits.
Scientific notation consists of decimal notation followed by either the letter “e” or “E” and an exponent
consisting of an optional sign character followed by one or more digits. The scientific notation expresses a real
number equal to that given by the decimal notation before the exponent, times 10 raised to the power of the
exponent.

This notation is specified by the following EBNF rules:
<natural-literal> ::= ('0"..'9")+
<decimal-literal> ::= ['+'| -'] <natural-literal> | ['+'| -'] [<natural-literal>] "' <natural-literal>

<real-literal> ::= <decimal-literal> [("e' | 'E") ['+'| '] <natural-literal>]
Expressions

Summary

Expressions are ValueSpecifications that specify values resulting from a computation.

70

Unified Modeling Language 2.5

8.3.2 Abstract Syntax

{ordered, subsets ownedElement}
+ operand
>4

ValueSpecification |
*
0.1 - OpaqueExpression
L @ Expre55|_on + body : String [*] {ordered, nonunique
+ expression + symbol : String [0..1] + language : String [*] {ordered}
{subsets owner} + opaqueExpression| * * | + opaqueExpression
{subsets owner}
+ owningExpression
0.1 {readOnly}
+ behavior 0..1 | + /result
* : -
- StringExpression Behavior | | Parameter |
+ subExpression
{ordered, subsets ownedElement}
\V4
| TemplateableElement

Figure 8.2 Expressions

8.3.3 Semantics

8.3.3.1 Expressions

An Expression is specified as a tree structure. Each node in this tree structure consists of a symbol and an optional set of
operands. If there are no operands, the Expression represents a terminal node. If there are operands, the Expression
represents the operator given by the symbol applied to those operands.

An Expression is evaluated by first evaluating each of its operands and then performing the operation denoted by the
Expression symbol to the resulting operand values. However, the actual interpretation of the symbol depends on the
context of use of the Expression and this specification does not provide any standard symbol definitions. A conforming
tool may define a specific set of symbols for which it provides interpretations or it may simply treat all Expressions as
uninterpreted.

8.3.3.2 String Expressions

A StringExpression is an Expression that specifies a String value that is derived by concatenating a list of substrings.
The substrings are given as either a list of LiteralString operands or as a list of StringExpression subExpressions (but it is
not allowed to mix the two). The String value of a StringExpression is obtained by concatenating, in order, the String
values of either the operands or the subExpressions, depending on which is given.

StringExpressions are intended to be used to specify the names of NamedElements in the context of Templates. Either
the entire StringExpression or one or more of its subExpressions may be used as the ParameterableElements of
TemplateParameters, allowing the name of a NamedElement to be parameterized within a template. See the semantics
of NamedElements in sub clause 7.4.3 for further discussion of this.

8.3.3.3 Opaque Expressions

An OpaqueExpression specifies the computation of a set of values either in terms of a UML Behavior or based on a
textual statement in a language other than UML.

Unified Modeling Language 2.5 71

An OpaqueExpression may have a body that consists of a sequence of text Strings representing alternative means of
computing the values of the OpaqueExpression. A corresponding sequence of language Strings may be used to specify
the languages in which each of the body Strings is to be interpreted. Languages are matched to body Strings by order.
The UML specification does not define how body Strings are interpreted relative to any language, though other
specifications may define specific language Strings to be used to indicate interpretation with respect to those
specifications (e.g., “OCL” for expressions to be interpreted according to the OCL specification). Note also that it is not
required to specify the languages. If they are unspecified, then the interpretation of any body Strings must be determined
implicitly from the form of the bodies or the context of use of the OpaqueExpression.

An OpaqueExpression may also be defined by a UML Behavior (see sub clause 13.2) that is restricted to have no
Parameters other than a return Parameter. The values of the OpaqueExpression are given by invoking the Behavior and
returning the values on the return Parameter. Note that the behavior of an OpaqueExpression does not have Parameters
other than its return and thus cannot be passed data upon invocation. It must therefore access any input data through
elements of its behavioral description.

If an OpaqueExpression has more than one body String, or a behavior in addition to one or more body Strings, then any
one of the bodies or the behavior may be used to evaluate the OpaqueExpression. The UML specification does not
determine how this choice is made.

8.3.4 Notation

8.3.4.1 Expressions

An Expression with no operands is notated simply by its symbol (unlike a StringLiteral, the symbol is not enclosed in
quotes). An Expression with operands may be notated by its symbol, followed by round parentheses containing its
operands in order, separated by commas. However, in particular contexts, a conforming tool may permit special
notations, including infix operators.

See sub clause 7.4.4 for the notation of the use of StringExpressions with NamedElements.

8.3.4.2 Opaque Expressions

If an OpaqueExpression has one or more body Strings, then these are used to display the OpaqueExpression in the
context of its containing element. The UML Specification does not define the syntax of such Strings, but, if a
corresponding language is given for a body String, a conforming tool may enforce the syntax of that language. A
conforming tool may also restrict the languages allowed or assume a particular default language.

If languages are specified for an OpaqueExpression, then a language name may be displayed in braces ({}) before the
body String to which it corresponds. It is not required, however, that the languages of an OpaqueExpression be displayed.

If a language has a specification that defines its language name, then the language name used in an OpaqueExpression
should be spelled and capitalized exactly as it appears in the specification for the language. For example, use “OCL,”
not “ocl.”

8.3.5 Examples

8.3.5.1 Expressions
xor

else

plus(x,1)

x+1
8.3.5.2 Opaque Expressions

a>0

72 Unified Modeling Language 2.5

{OCL} i > j and self.size > i

average hours worked per week

8.4 Time

8.4.1 Summary

This sub clause defines TimeExpressions and Durations that produce values based on a simple model of time. This
simple model of time is intended as an approximation for situations in which the more complex aspects of time and time
measurement can safely be ignored. For example, in many distributed systems there is no global notion of time, only the
notion of local time relative to each distributed element of the system. This relativity of time is not accounted for in the
simple time model, nor are the effects resulting from imperfect clocks with finite resolution, overflows, drift, skew, etc.
It is assumed that applications for which such characteristics are relevant will use a more sophisticated model of time
provided by an appropriate profile.

8.4.2 Abstract Syntax

{subsets ownedElement} {subsets ownedElement}
+ expr N T + expr
ValueSpecification
0.1 0..1

{subsets owner}

{subsets owner}
0..1| + duration

+ timeExpression | 0..1

[]
TimeExpressior Duration

—_

+ timeExpression | 0..1 0..1 | + duration

PackageableElement

+ observation Observation + observation
* ? *
TimeObservation DurationObservation
+ firstEvent : Boolean = true + firstEvent : Boolean [0..2°

+ timeObservation | x + durationObservation

*

+ event
+ event {ordered}
1.2

Figure 8.3 Time and Duration

Unified Modeling Language 2.5 73

8.4.3 Semantics

8.4.3.1 Time

The structural modeling constructs of UML are used to model the properties of entities at specific points in time. In
contrast, behavioral modeling constructs are used to model how these properties change over time. An event is a
specification of something that may occur at a specific point in time when something of interest happens relative to the
properties and behaviors being modeled, such as the change in value of a Property or the beginning of execution of an
Activity.

Time in this conception is simply a coordinate that orders the occurrence of events. Every event occurrence can be given
a time coordinate value and, based on this, can be said to be before, after or at the same time as another event
occurrence.

A duration is the period of time between two event occurrences, computed as the difference of the time coordinates of
those events. If a model Element has a behavioral effect, then this effect may occur over some duration. The starting
event of this duration is known as entering the element and the ending event is known as exiting the Element.

8.4.3.2 Observations

An Observation denotes the observation of events that may occur relative to some other part of a model. An
Observation is made on a NamedElement within the model. The events of interest are when the reference
NamedElement is entered and exited. If the referenced NamedElement is not a behavioral element, then the duration
between entering and exiting the NamedElement is considered to be zero, but this specification does not otherwise
define what specific events are observed on the Element.

There are two kinds of Observations, TimeObservations and DurationObservations.

A TimeObservation observes either entering or exiting a specific NamedElement. If firstEvent is true, then it is the entry
event that is observed, otherwise the exit event is observed. The result of a TimeObservation is the time at which the
observed event occurs.

A DurationObservation observes a duration relative to either one or two NamedElements. If a single element is
observed, then the observed duration is between sequential occurrences of the entry and exit events of the element. If
two elements are observed, then the duration is between either the entry or the exit event of the first element and a
subsequent entry or exit event of the second element. In the latter case, two corresponding firstEvent values must also be
given for the DurationObservation, such that, if firstEvent=true for an observed element, then it is the entry event that is
observed, otherwise it is the exit event that is observed.

8.4.3.3 TimeExpression

A TimeExpression is a ValueSpecification that evaluates to the time coordinate for an instant in time, possibly relative
to some given set of observations.

If the TimeExpression has an expr, then this is evaluated to produce the result of the TimeExpression. The expr must
evaluate to a single value, but UML does not define any specific type or units that the value must have. The expr may
reference the observations associated with the TimeExpression but no standard notation is defined for such references. If
the TimeExpression has an expr but no observations, then the expr evaluates to a time constant.

If the TimeExpression does not have an expr, then it must have a single TimeObservation and the result of that
observation is the value of the TimeExpression.

8.4.34 Duration

A Duration is a ValueSpecification that evaluates to some duration in time, possibly relative to some given set of
observations.

If the Duration has an expr, then this is evaluated to produce the result of the DurationExpression. The expr must
evaluate to a single value, but UML does not define any specific type or units that the value must have. The expr may

74 Unified Modeling Language 2.5

reference the observations associated with the Duration but no standard notation is defined for such references. If the
Duration has an expr but no observations, then the expr evaluates to a duration constant.

If the Duration does not have an expr, then it must have a single DurationObservation and the result of that observation is
the value of the Duration.

8.4.4 Notation

8.4.41 Observations

An Observation may be denoted by a straight line attached to the NamedElement it references. The Observation is given
a name that is shown close to the unattached end of the line. Additional notation conventions on Observations are given
elsewhere relative to the modeling constructs in which they are typically used (such as Interactions, see sub clause
17.2).

8.44.2 Time Expressions and Durations

A TimeExpression or Duration is denoted by the textual representation of its expr, if it has one (see sub clause 8.3.5).
The representation is of a formula for computing the time or duration value, which may include the names of related
Observations and constants. If a TimeExpression or Duration does not have an expr, then it is simply represented by its
single associated Observation.

A Duration is a value of relative time given in an implementation specific textual format. Often a Duration is a non-
negative integer expression representing the number of “time ticks” which may elapse during this duration.

8.4.5 Examples

Time is often represented using a numeric coordinate, in which case the expr of a TimeExpression should evaluate to a
numeric value, the units of which may be assumed by convention in a model (e.g., times are always in seconds).
Alternatively, DataTypes may be used to model time values with specific units (e.g., Second, Day, etc.) and the expr of a
TimeExpression should then have the appropriate one of those types.

A Duration is a value of relative time and, as such, is often represented as a non-negative number, such as an Integer
count of the number of “time ticks” on a reference clock that elapsed during the duration. In this case, the expr of a
DurationExpression should evaluate to a non-negative numeric value. A Duration value may also be used to represent a
time coordinate value as a Duration since some fixed “origin” of time.

See also Figure 8.5 in sub clause 8.5.5.

8.5 Intervals

8.5.1 Summary
An Interval is a range between two values, primarily for use in Constraints that assert that some other Element has a

value in the given range. Intervals can be defined for any type of value, but they are especially useful for time and
duration values as part of corresponding TimeConstraints and DurationConstraints.

Unified Modeling Language 2.5 75

8.5.2 Abstract Syntax

ValueSpecification
+min| 1 1|+ max
+ interval | * * [+ interval . .
{redefines owningConstraint}

| Interval 1 + intervalConstraint IntervalConstraint

[]~ + specification 0..1
{redefines specification}

{redefines specification} {redefines intervalConstraint}
Timelnterval + specification + timeConstraint ‘e TimeConstraint

1 0.1 + firstEvent : Boolean [0..1] = true

{redefines interval} {redefines interval}
+ timeInterval | * * | + timelnterval
{redefines min} {redefines max}
+ minj/1 1\/+ max
TimeExpression
{redefines specification} {redefines intervalConstraint}
DurationInterval |,_ * Specification + durationConstraint @ DurationConstraint
[] "1 0..1 + firstEvent : Boolean [0..2]
{redefines interval} {redefines interval}
+ durationInterval | * * [+ durationInterval

{redefines min} {redefines max}
+ mi + max

1 1
Duration

Figure 8.4 Intervals

8.5.3 Semantics

8.5.3.1 Intervals

An Interval is a ValueSpecification specified using two other ValueSpecifications, the min and the max. An Interval is
evaluated by first evaluating each of its constituent ValueSpecifications, which must each evaluate to a single value. The
value of the Interval is then the range from the min value to the max value—that is, the set of all values greater than or
equal to the min value and less than or equal to the max value (which may be the empty set). Note that, while
syntactically any ValueSpecifications of any type are allowed for the min and max of an Interval, a standard semantic
interpretation is only given for Intervals for which the min and max ValueSpecifications have the same type and that type
has a total ordering defined on it.

There are two specializations of Interval for use with timing constraints. A Timelnterval specifies the range between two
time values given by TimeExpressions. A DurationInterval specifies the range between two duration values given by
Durations.

8.5.3.2 IntervalConstraint

An IntervalConstraint defines a Constraint whose specification is given by an Interval (see also sub clause 7.6 on
Constraints). The constrainedElements of an IntervalConstraint are asserted to have values that are within the range
specified by the Interval of the IntervalConstraint. If a constrainedElement has a value outside this range, then the
IntervalConstraint is violated. If any constrainedElement cannot be interpreted to have a value, or its value is not the same
type as the range given by the IntervalConstraint, then the IntervalConstraint has no standard semantic interpretation.

There are two specializations of IntervalConstraint for use in specifying timing constraints. A TimeConstraint defines an
IntervalConstraint on a single constrainedElement in which the constraining Interval is a Timelnterval. A
DurationConstraint defines an IntervalConstraint on either one or two constrainedElements in which the constraining

76 Unified Modeling Language 2.5

Interval is a DurationInterval. If there are two constrainedElements, then the start of the duration being observed may be
between an event in the first constrainedElement and an event in the second.

8.5.4 Notation

8.5.4.1 Intervals

An Interval is denoted textually by the textual representation of its two ValueSpecifications separated by “..”:

¢

<interval> ::= <min-value> *.." <max-value>

A Timelnterval is shown with the notation of Interval where each ValueSpecification element is a TimeExpression. A
DurationInterval is shown using the notation of Interval where each ValueSpecification element is a Duration. (See sub
clause 8.4.4 on the notation for TimeExpressions and Durations.)

8.5.4.2 Interval Constraints

An IntervalConstraint is shown as an annotation of its constrainedElement. The general notation for Constraints (see sub
clause 7.6.4) may be used for an IntervalConstraint, with the specification Interval denoted textually as above. Special
notational constructs are defined for TimeConstraints and DurationConstraints, as given below.

A TimeConstraint of a single constrainedElement may be shown as a small line between the graphical representation of
the constrainedElement and the textual representation of the Timelnterval of TimeConstraint. A DurationConstraint may
also be shown using a graphical notation relating its constrainedElements. However, the notation used is specific to the
diagram type on which the DurationConstraint appears (see sub clause 17.8 for the notation on Sequence Diagrams and
sub clause 17.11 for the notation on Timing Diagrams).

8.5.5 Examples

Figure 8.5 shows a DurationConstraints associated with the duration of a Message and with the duration between two
OccurrenceSpecifications. It also shows a TimeConstraint associated with the reception of a Message. (See also sub
clause 17.2.5.)

gd UserAdccepted)

‘User “ACSystem
J, DurationDbservation
P d=duration & With Duration

N

|
|
DurationConstraint —_-'-—--—}{d..:}'dl |
|

J/ o li’f_‘i/"f/] TimeObservation with
- I=N0W

|_h_ = TimeExpression
- OK
TimeConstraint "-'-'—-—-—-_._J, {t..t+3;4rgr”/

Unlock

/

Figure 8.5 Example of DurationConstraints and TimeConstraints

Unified Modeling Language 2.5 77

8.6 Classifier Descriptions

8.6.1 Duration [Class]

8.6.1.1 Description
A Duration is a ValueSpecification that specifies the temporal distance between two time instants.
8.6.1.2 Diagrams
Time, Intervals
8.6.1.3 Generalizations

ValueSpecification

8.6.1.4 Association Ends

® ¢ cxpr: ValueSpecification [0..1]{subsets Element::ownedElement} (opposite A_expr_duration::duration)
A ValueSpecification that evaluates to the value of the Duration.

® observation : Observation [0..*] (opposite A_observation duration::duration)
Refers to the Observations that are involved in the computation of the Duration value.

8.6.1.5 Constraints

* no_expr_requires_observation
If a Duration has no expr, then it must have a single observation that is a DurationObservation.

inv: expr = null inplies (observation->size() = 1 and observation-
>forAll (ocl | sKi ndOf (Dur ati onCbhservation)))

8.6.2 DurationConstraint [Class]
8.6.2.1 Description
A DurationConstraint is a Constraint that refers to a DurationInterval.
8.6.2.2 Diagrams
Intervals
8.6.2.3 Generalizations
IntervalConstraint

8.6.2.4 Attributes

* firstEvent : Boolean [0..2]
The value of firstEvent[i] is related to constrainedElement[i] (where i is 1 or 2). If firstEvent[i] is true, then the
corresponding observation event is the first time instant the execution enters constrainedElement[i]. If
firstEvent[i] is false, then the corresponding observation event is the last time instant the execution is within
constrainedElement][i].

78 Unified Modeling Language 2.5

8.6.2.5 Association Ends

® ¢ specification : DurationInterval [1..1]{redefines IntervalConstraint::specification} (opposite

A_specification durationConstraint::durationConstraint)
The Durationlnterval constraining the duration.

8.6.2.6 Constraints

e first event multiplicity
The multiplicity of firstEvent must be 2 if the multiplicity of constrainedElement is 2. Otherwise the
multiplicity of firstEvent is 0.

inv: if (constrainedEl enent->size() = 2)
then (firstEvent->size() = 2) else (firstEvent->size() = 0)
endi f

* has one or two_constrainedElements
A DurationConstraint has either one or two constrainedElements.

inv: constrainedEl enent->size() = 1 or constrainedEl ement - >si ze() =2

8.6.3 Durationinterval [Class]
8.6.3.1 Description
A DurationInterval defines the range between two Durations.
8.6.3.2 Diagrams
Intervals
8.6.3.3 Generalizations
Interval

8.6.3.4 Association Ends

®* max : Duration [1..1]{redefines Interval::max} (opposite A_max_durationInterval::durationlnterval)
Refers to the Duration denoting the maximum value of the range.

®* min : Duration [1..1]{redefines Interval::min} (opposite A_min durationInterval::durationInterval)
Refers to the Duration denoting the minimum value of the range.

8.6.4 DurationObservation [Class]

8.6.4.1 Description

A DurationObservation is a reference to a duration during an execution. It points out the NamedElement(s) in the model
to observe and whether the observations are when this NamedElement is entered or when it is exited.

8.6.4.2 Diagrams

Unified Modeling Language 2.5 79

8.6.4.3

8.6.4.4

8.6.4.5

8.6.4.6

8.6.5

8.6.5.1

Generalizations

Observation

Attributes

firstEvent : Boolean [0..2]

The value of firstEvent[i] is related to event[i] (where i is 1 or 2). If firstEvent[i] is true, then the corresponding
observation event is the first time instant the execution enters event[i]. If firstEvent[i] is false, then the
corresponding observation event is the time instant the execution exits event[i].

Association Ends

event : NamedElement [1..2]{ordered} (opposite A_event durationObservation::durationObservation)

The DurationObservation is determined as the duration between the entering or exiting of a single event
Element during execution, or the entering/exiting of one event Element and the entering/exiting of a second.

Constraints

first_event_multiplicity
The multiplicity of firstEvent must be 2 if the multiplicity of event is 2. Otherwise the multiplicity of firstEvent
is 0.

inv: if (event->size() = 2)
then (firstEvent->size() = 2) else (firstEvent->size() = 0)
endi f

Expression [Class]

Description

An Expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands that are ValueSpecifications. It denotes a (possibly empty) set of values
when evaluated in a context.

8.6.5.2

8.6.5.3

8.6.5.4

8.6.5.5

80

Diagrams
Expressions

Generalizations
ValueSpecification

Specializations

StringExpression
Attributes

symbol : String [0..1]
The symbol associated with this node in the expression tree.

Unified Modeling Language 2.5

8.6.5.6 Association Ends

® ¢ operand : ValueSpecification [0..*]{ordered, subsets Element::ownedElement} (opposite

A_operand_expression::expression)
Specifies a sequence of operand ValueSpecifications.

8.6.6 Interval [Class]

8.6.6.1 Description

An Interval defines the range between two ValueSpecifications.

8.6.6.2 Diagrams
Intervals
8.6.6.3 Generalizations

ValueSpecification
8.6.6.4 Specializations

DurationInterval, Timelnterval

8.6.6.5 Association Ends

®* max : ValueSpecification [1..1] (opposite A_max_interval::interval)
Refers to the ValueSpecification denoting the maximum value of the range.

* min : ValueSpecification [1..1] (opposite A_min_interval::interval)
Refers to the ValueSpecification denoting the minimum value of the range.

8.6.7 IntervalConstraint [Class]
8.6.7.1 Description
An IntervalConstraint is a Constraint that is specified by an Interval.
8.6.7.2 Diagrams
Intervals
8.6.7.3 Generalizations
Constraint
8.6.7.4 Specializations
DurationConstraint, TimeConstraint

8.6.7.5 Association Ends

® ¢ specification : Interval [1..1]{redefines Constraint::specification} (opposite

A_specification intervalConstraint::intervalConstraint)
The Interval that specifies the condition of the IntervalConstraint.

Unified Modeling Language 2.5

81

8.6.8 LiteralBoolean [Class]

8.6.8.1 Description

A LiteralBoolean is a specification of a Boolean value.

8.6.8.2 Diagrams
Literals
8.6.8.3 Generalizations

LiteralSpecification

8.6.8.4 Attributes

® value: Boolean [1..1] = false
The specified Boolean value.

8.6.8.5 Operations

* booleanValue() : Boolean {redefines ValueSpecification::booleanValue() }

The query booleanValue() gives the value.

body: val ue

* isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

body: true

8.6.9 Literallnteger [Class]

8.6.9.1 Description

A Literallnteger is a specification of an Integer value.

8.6.9.2 Diagrams
Literals
8.6.9.3 Generalizations

LiteralSpecification

8.6.9.4 Attributes

* value: Integer [1..1]=0
The specified Integer value.

8.6.9.5 Operations

* integerValue() : Integer {redefines ValueSpecification::integerValue() }
The query integerValue() gives the value.

82 Unified Modeling Language 2.5

body: val ue

* isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

body: true

8.6.10 LiteralNull [Class]
8.6.10.1 Description
A LiteralNull specifies the lack of a value.
8.6.10.2 Diagrams

Literals
8.6.10.3 Generalizations

LiteralSpecification

8.6.10.4 Operations

* isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

body: true

* isNull() : Boolean {redefines ValueSpecification::isNull()}
The query isNull() returns true.

body: true

8.6.11 LiteralReal [Class]

8.6.11.1 Description

A LiteralReal is a specification of a Real value.

8.6.11.2 Diagrams
Literals
8.6.11.3 Generalizations

LiteralSpecification

8.6.11.4 Attributes

® value: Real [1..1]
The specified Real value.

8.6.11.5 Operations

* isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

Unified Modeling Language 2.5

83

8.6.12

8.6.12.1

body: true

realValue() : Real {redefines ValueSpecification::realValue()}
The query realValue() gives the value.

body: val ue
LiteralSpecification [Abstract Class]

Description

A LiteralSpecification identifies a literal constant being modeled.

8.6.12.2 Diagrams
Literals
8.6.12.3 Generalizations

ValueSpecification

8.6.12.4 Specializations

8.6.13

8.6.13.1

LiteralBoolean, Literallnteger, LiteralNull, LiteralReal, LiteralString, LiteralUnlimitedNatural

LiteralString [Class]

Description

A LiteralString is a specification of a String value.

8.6.13.2 Diagrams
Literals
8.6.13.3 Generalizations

LiteralSpecification

8.6.13.4 Attributes

value : String [0..1]
The specified String value.

8.6.13.5 Operations

84

isComputable() : Boolean {redefines ValueSpecification::isComputable() }

The query isComputable() is redefined to be true.

body: true

stringValue() : String {redefines ValueSpecification::stringValue()}
The query stringValue() gives the value.

body: val ue

Unified Modeling Language 2.5

8.6.14 LiteralUnlimitedNatural [Class]

8.6.14.1 Description

A LiteralUnlimitedNatural is a specification of an UnlimitedNatural number.

8.6.14.2 Diagrams
Literals
8.6.14.3 Generalizations

LiteralSpecification
8.6.14.4 Attributes

® value : UnlimitedNatural [1..1]=0
The specified UnlimitedNatural value.

8.6.14.5 Operations

* isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

body: true

* unlimitedValue() : UnlimitedNatural {redefines ValueSpecification::unlimitedValue()}
The query unlimitedValue() gives the value.

body: val ue

8.6.15 Observation [Abstract Class]

8.6.15.1 Description

Observation specifies a value determined by observing an event or events that occur relative to other model Elements.

8.6.15.2 Diagrams

Time

8.6.15.3 Generalizations
PackageableElement

8.6.15.4 Specializations
DurationObservation, TimeObservation

8.6.16 OpaqueExpression [Class]

8.6.16.1 Description

An OpaqueExpression is a ValueSpecification that specifies the computation of a collection of values either in terms of
a UML Behavior or based on a textual statement in a language other than UML

Unified Modeling Language 2.5 85

8.6.16.2 Diagrams

Expressions, Dependencies
8.6.16.3 Generalizations

ValueSpecification

8.6.16.4 Attributes

® body : String [0..*]
A textual definition of the behavior of the OpaqueExpression, possibly in multiple languages.

* language : String [0..*]
Specifies the languages used to express the textual bodies of the OpaqueExpression. Languages are matched to
body Strings by order. The interpretation of the body depends on the languages. If the languages are
unspecified, they may be implicit from the expression body or the context.

8.6.16.5 Association Ends

® behavior : Behavior [0..1] (opposite A_behavior_opaqueExpression::opaqueExpression)
Specifies the behavior of the OpaqueExpression as a UML Behavior.

® /result : Parameter [0..1]{} (opposite A_result opaqueExpression::opaqueExpression)
If an OpaqueExpression is specified using a UML Behavior, then this refers to the single required return
Parameter of that Behavior. When the Behavior completes execution, the values on this Parameter give the
result of evaluating the OpaqueExpression.

8.6.16.6 Operations

isIntegral() : Boolean
The query isIntegral() tells whether an expression is intended to produce an Integer.

body: false

* isNonNegative() : Boolean
The query isNonNegative() tells whether an integer expression has a non-negative value.

pre: self.islntegral ()
body: false

* isPositive() : Boolean
The query isPositive() tells whether an integer expression has a positive value.

pre: self.islntegral ()
body: false

* result() : Parameter [0..1]
Derivation for OpaqueExpression::/result

body: if behavior = null then

nul |
el se

behavi or. ownedPar aneter->first()
endi f

86 Unified Modeling Language 2.5

* value() : Integer
The query value() gives an integer value for an expression intended to produce one.

pre: self.islntegral ()
body:

8.6.16.7 Constraints

e language body size
If the language attribute is not empty, then the size of the body and language arrays must be the same.

inv: | anguage->notEnpty() inplies (_'body'->size() = |anguage->size())

e one return_result parameter
The behavior must have exactly one return result parameter.

inv: behavior <> null inplies
behavi or. ownedPar anet er - >sel ect (di recti on=ParaneterDi rectionKind::return)->size() =1

e only return_result parameters
The behavior may only have return result parameters.

inv: behavior <> null inplies behavior.ownedParaneter-
>sel ect (directi on<>ParaneterDirectionKind::return)->i senpty()

8.6.17 StringExpression [Class]

8.6.17.1 Description

A StringExpression is an Expression that specifies a String value that is derived by concatenating a sequence of
operands with String values or a sequence of subExpressions, some of which might be template parameters.

8.6.17.2 Diagrams
Expressions, Namespaces
8.6.17.3 Generalizations

TemplateableElement, Expression

8.6.17.4 Association Ends

* owningExpression : StringExpression [0..1]{subsets Element::owner} (opposite

StringExpression::subExpression)
The StringExpression of which this StringExpression is a subExpression.

* ¢ subExpression : StringExpression [0..*]{ordered, subsets Element::ownedElement} (opposite
StringExpression::owningExpression)

The StringExpressions that constitute this StringExpression.

8.6.17.5 Operations

* stringValue() : String {redefines ValueSpecification::stringValue() }
The query stringValue() returns the String resulting from concatenating, in order, all the component String
values of all the operands or subExpressions that are part of the StringExpression.

Unified Modeling Language 2.5

87

8.6.17.6

8.6.18

8.6.18.1

body: if subExpression->not Enpty()

then subExpression->iterate(se; stringValue: String ="' |

stringVal ue. concat (se. stringVal ue()))

el se operand->iterate(op; stringValue: String ="'' | stringVal ue.concat(op.stringValue()))
endi f

Constraints

operands
All the operands of a StringExpression must be LiteralStrings

inv: operand->forAll (ocllsKindO (Literal String))

subexpressions
If a StringExpression has sub-expressions, it cannot have operands and vice versa (this avoids the problem of
having to define a collating sequence between operands and subexpressions).

inv: if subExpression->not Enpty() then operand->i sEnpty() el se operand->notEnpty() endif

TimeConstraint [Class]

Description

A TimeConstraint is a Constraint that refers to a Timelnterval.

8.6.18.2 Diagrams

Intervals

8.6.18.3 Generalizations

IntervalConstraint

8.6.18.4 Attributes

firstEvent : Boolean [0..1] = true

The value of firstEvent is related to the constrainedElement. If firstEvent is true, then the corresponding
observation event is the first time instant the execution enters the constrainedElement. If firstEvent is false,
then the corresponding observation event is the last time instant the execution is within the
constrainedElement.

8.6.18.5 Association Ends

¢ specification : Timelnterval [1..1]{redefines IntervalConstraint::specification} (opposite
A_specification_timeConstraint::timeConstraint)
TheTimelnterval constraining the duration.

8.6.18.6 Constraints

88

has_one constrainedElement
A TimeConstraint has one constrainedElement.

inv: constrainedEl enent->size() =1

Unified Modeling Language 2.5

8.6.19 TimeExpression [Class]

8.6.19.1 Description

A TimeExpression is a ValueSpecification that represents a time value.

8.6.19.2 Diagrams
Time, Intervals, Events
8.6.19.3 Generalizations
ValueSpecification

8.6.19.4 Association Ends

® ¢ cxpr: ValueSpecification [0..1]{subsets Element::ownedElement} (opposite

A_expr_timeExpression::timeExpression)
A ValueSpecification that evaluates to the value of the TimeExpression.

® observation : Observation [0..*] (opposite A_observation timeExpression::timeExpression)
Refers to the Observations that are involved in the computation of the TimeExpression value.

8.6.19.5 Constraints

* no_expr_requires_observation
If a TimeExpression has no expr, then it must have a single observation that is a TimeObservation.

inv: expr = null inplies (observation->size() = 1 and observation-
>forAl |l (ocl | ski ndOf (Ti meCbservation)))

8.6.20 Timelnterval [Class]

8.6.20.1 Description

A Timelnterval defines the range between two TimeExpressions.

8.6.20.2 Diagrams

Intervals

8.6.20.3 Generalizations

Interval

8.6.20.4 Association Ends

* max : TimeExpression [1..1]{redefines Interval::max} (opposite A_max_timelnterval::timelnterval)
Refers to the TimeExpression denoting the maximum value of the range.

* min: TimeExpression [1..1]{redefines Interval::min} (opposite A_min_timelnterval::timelnterval)
Refers to the TimeExpression denoting the minimum value of the range.

Unified Modeling Language 2.5 89

8.6.21 TimeObservation [Class]

8.6.21.1 Description

A TimeObservation is a reference to a time instant during an execution. It points out the NamedElement in the model to
observe and whether the observation is when this NamedElement is entered or when it is exited.

8.6.21.2 Diagrams
Time

8.6.21.3 Generalizations
Observation

8.6.21.4 Attributes

* firstEvent : Boolean [1..1] = true
The value of firstEvent is related to the event. If firstEvent is true, then the corresponding observation event is
the first time instant the execution enters the event Element. If firstEvent is false, then the corresponding
observation event is the time instant the execution exits the event Element.

8.6.21.5 Association Ends

* cvent: NamedElement [1..1] (opposite A_event timeObservation::timeObservation)
The TimeObservation is determined by the entering or exiting of the event Element during execution.

8.6.22 ValueSpecification [Abstract Class]

8.6.22.1 Description

A ValueSpecification is the specification of a (possibly empty) set of values. A ValueSpecification is a
ParameterableElement that may be exposed as a formal TemplateParameter and provided as the actual parameter in the
binding of a template.

8.6.22.2 Diagrams

Expressions, Literals, Time, Intervals, Object Nodes, Activities, Control Nodes, Messages, Lifelines,
Fragments, Interaction Uses, Types, Constraints, Events, Features, Properties, Instances, Actions, Object
Actions

8.6.22.3 Generalizations
TypedElement, PackageableElement
8.6.22.4 Specializations

Duration, Expression, Interval, LiteralSpecification, OpaqueExpression, TimeExpression, InstanceValue

8.6.22.5 Operations

* booleanValue() : Boolean [0..1]
The query booleanValue() gives a single Boolean value when one can be computed.

body: null

20 Unified Modeling Language 2.5

8.7

8.71

8.7.1.1

integerValue() : Integer [0..1]
The query integerValue() gives a single Integer value when one can be computed.

body: null

isCompatibleWith(p : ParameterableElement) : Boolean {redefines

ParameterableElement::isCompatibleWith() }

The query isCompatibleWith() determines if this ValueSpecification is compatible with the specified
ParameterableElement. This ValueSpecification is compatible with ParameterableElement p if the kind of this
ValueSpecification is the same as or a subtype of the kind of p. Further, if p is a TypedElement, then the type of
this ValueSpecification must be conformant with the type of p.

body: self.ocl|sKindO (p.ocl Type()) and (p.ocl|sKindOf (TypedEl enent) inplies
sel f.type. confornsTo(p. ocl AsType(TypedEl enent) . type))

isComputable() : Boolean

The query isComputable() determines whether a value specification can be computed in a model. This
operation cannot be fully defined in OCL. A conforming implementation is expected to deliver true for this
operation for all ValueSpecifications that it can compute, and to compute all of those for which the operation is
true. A conforming implementation is expected to be able to compute at least the value of all
LiteralSpecifications.

body: false

isNull() : Boolean
The query isNull() returns true when it can be computed that the value is null.

body: false

realValue() : Real [0..1]
The query realValue() gives a single Real value when one can be computed.

body: null

stringValue() : String [0..1]
The query stringValue() gives a single String value when one can be computed.

body: nul |

unlimitedValue() : UnlimitedNatural [0..1]
The query unlimitedValue() gives a single UnlimitedNatural value when one can be computed.

body: nul |

Association Descriptions

A_behavior_opaqueExpression [Association]
Diagrams

Expressions

Unified Modeling Language 2.5 91

8.7.1.2 Owned Ends

* opaqueExpression : OpaqueExpression [0..*] (opposite OpaqueExpression::behavior)

8.7.2 A_event_durationObservation [Association]
8.7.21 Diagrams

Time
8.7.2.2 Owned Ends

® durationObservation : DurationObservation [0..*] (opposite DurationObservation::event)

8.7.3 A_event_timeObservation [Association]
8.7.3.1 Diagrams

Time
8.7.3.2 Owned Ends

* timeObservation : TimeObservation [0..*] (opposite TimeObservation::event)

8.74 A_expr_duration [Association]
8.7.4.1 Diagrams

Time
8.7.4.2 Owned Ends

® duration : Duration [0..1]{subsets Element::owner} (opposite Duration::expr)

8.7.5 A_expr_timeExpression [Association]
8.7.51 Diagrams

Time
8.7.5.2 Owned Ends

* timeExpression : TimeExpression [0..1]{subsets Element::owner} (opposite TimeExpression::expr)

8.7.6 A_max_durationinterval [Association]
8.7.6.1 Diagrams

Intervals
8.7.6.2 Generalizations

A_max_interval

92 Unified Modeling Language 2.5

8.7.6.3

8.7.7

8.7.71

8.7.7.2

8.7.7.3

8.7.8

8.7.8.1

8.7.8.2

8.7.8.3

8.7.9

8.7.9.1

8.7.9.2

8.7.9.3

8.7.10

8.7.10.1

Owned Ends

durationInterval : DurationInterval [0..*]{redefines A_max_interval::interval} (opposite

DurationInterval::max)

A_max_interval [Association]
Diagrams
Intervals
Specializations

A_max_timelnterval, A_max_durationlnterval

Owned Ends

interval : Interval [0..*] (opposite Interval::max)

A_max_timelnterval [Association]
Diagrams
Intervals
Generalizations
A_max_interval

Owned Ends

timelnterval : Timelnterval [0..*]{redefines A_max_interval::interval} (opposite Timelnterval::max)

A_min_durationinterval [Association]

Diagrams
Intervals

Generalizations
A_min_interval

Owned Ends

durationInterval : DurationInterval [0..*]{redefines A_min_interval::interval} (opposite Durationlnterval::min)

A_min_interval [Association]
Diagrams

Intervals

Unified Modeling Language 2.5

93

8.7.10.2 Specializations

A_min_timelnterval, A _min_durationInterval

8.7.10.3 Owned Ends

* interval : Interval [0..*] (opposite Interval::min)

8.7.11 A_min_timelnterval [Association]

8.7.11.1 Diagrams
Intervals
8.7.11.2 Generalizations

A_min_interval

8.7.11.3 Owned Ends

* timelnterval : Timelnterval [0..*]{redefines A_min_interval::interval} (opposite Timelnterval::min)

8.7.12 A_observation_duration [Association]
8.7.121 Diagrams
Time

8.7.12.2 Owned Ends

® duration : Duration [0..1] (opposite Duration::observation)

8.7.13 A_observation_timeExpression [Association]

8.7.13.1 Diagrams
Time

8.7.13.2 Owned Ends
* timeExpression : TimeExpression [0..1] (opposite TimeExpression::observation)

8.7.14 A_operand_expression [Association]
8.7.141 Diagrams

Expressions

8.7.14.2 Owned Ends

® expression : Expression [0..1]{subsets Element::owner} (opposite Expression::operand)

94 Unified Modeling Language 2.5

8.7.15 A_result_opaqueExpression [Association]
8.7.15.1 Diagrams

Expressions
8.7.15.2 Owned Ends

* opaqueExpression : OpaqueExpression [0..*] (opposite OpaqueExpression::result)

8.7.16 A_specification_durationConstraint [Association]

8.7.16.1 Diagrams
Intervals
8.7.16.2 Generalizations

A_specification_intervalConstraint
8.7.16.3 Owned Ends

® durationConstraint : DurationConstraint [0..1]{redefines
A_specification_intervalConstraint::intervalConstraint} (opposite DurationConstraint::specification)

8.7.17 A_specification_intervalConstraint [Association]

8.7.171 Diagrams
Intervals
8.7.17.2 Generalizations

A_specification owningConstraint

8.7.17.3 Specializations

A_specification timeConstraint, A_specification durationConstraint
8.7.17.4 Owned Ends

* intervalConstraint : IntervalConstraint [0..1]{redefines A_specification owningConstraint::owningConstraint}
(opposite IntervalConstraint::specification)

8.7.18 A_specification_timeConstraint [Association]

8.7.18.1 Diagrams
Intervals
8.7.18.2 Generalizations

A_specification_intervalConstraint

Unified Modeling Language 2.5 95

8.7.18.3 Owned Ends

* timeConstraint : TimeConstraint [0..1]{redefines A_specification intervalConstraint::intervalConstraint}
(opposite TimeConstraint::specification)

8.7.19 A_subExpression_owningExpression [Association]
8.7.191 Diagrams

Expressions

8.7.19.2 Member Ends
* StringExpression::subExpression

* StringExpression::owningExpression

96 Unified Modeling Language 2.5

9

9.1

Classification is an important technique for organization. This clause specifies concepts relating to classification. The
core concept is Classifier, an abstract metaclass whose concrete subclasses are used to classify different kinds of values.
The other metaclasses in this clause represent the constituents of Classifiers, models of how Classifiers are instantiated
using InstanceSpecifications, and various relationships between all of these concepts.

Classification

Summary

9.2 Classifiers

9.21 Summary

A Classifier represents a classification of instances according to their Features. Classifiers are organized in hierarchies
by Generalizations. RedefinableElements may be redefined in the context of Generalization hierarchies.

JAN

Classifier

9.2.2 Abstract Syntax

* Namespace TemplateableElemen:

A + /inheritedMember

{readOnly, subsets member}

DirectedRelationship
JAN

+ inheritingClassifie

subsets source,
{subsets memberNamespace} { !

subsets owner}

{subsets ownedElement, subsets

directedRelationship}

T isAbstract : Boolean + specific + generalization
+ isFinalSpecialization : Boolean " . -
+TsLeat - Boolean = false P 1 % | + isSubstitutable : Boolean [0..1] = tru¢
{subsets
SreadOnI /, union} {subsets target} directedRelationship;
+ [redefinableElement + general + generalization
B3
* {subsets redefinedElement} 1)
+ redefinedClassifier + dlassifier -
% " * * | + generalization
*
+ /redefinedElement *
{readOnly, union} + classifier + /general * | + generalizationSet
{subsets redefinableElement} + powertype + powertypeExtent ﬁ:
. *
{readOnly, union} {readOnly, union} 0-1
+ /redefinableElement + /redefinitionContext + subject + useCase
* * * * UseCase
+ classifier + ownedUseCase
* 0..1 {subsets namespace} {subsets ownedMember}
Feat n "
@ + [feature + /featuringClassifier 0.1 *
+ contract + substitution

{readOnly, union, subsets member} {readOnly, union, subsets memberNamespace}|

{readOnly, union, subsets featuringClassifier,
subsets redefinitionContext}

{subsets supplier}

{subsets supplierDependency}

1

* Substitution

+ substitutingClassifiel
{subsets client, subsets owner}

*

1

+ substitution
{subsets ownedElement,

* + /classifier subsets memberNamespace} bsets clientDs d
Property + /attribute 01 + inheritingClassifie subsets clientDependency} !
{ordered, readOnly, union, subsets *
feature, subsets redefinableElement} {subsets owner} {redefines classifier}
) 1 0..1 | + classifier
+ classifier
{subsets ownedElement} {subsets collaborationUse} {r@dhon!y, j;bse;s member}
+ collaborationUse | * 0.1 | + representation % | + [inheritedMember

NamedElemem

CollaborationUse

Figure 9.1 Classifiers

9.2.3 Semantics

9.2.3.1 Classifiers

A Classifier has a set of Features, some of which are Properties called the attributes of the Classifier. Each of the Features
is a member of the Classifier (see sub clause 7.4 Namespaces).

The values that are classified by a Classifier are called instances of the Classifier.

A Classifier may be redefined (see below).

Unified Modeling Language 2.5 97

A Classifier may own CollaborationUses that relate the Classifier to Collaborations. The Collaborations describes
aspects of this Classifier. See 11.7 Collaborations.

A Classifier may own UseCases. See 18.1 Use Cases.

9.2.3.2 Generalization

Generalizations define generalization/specialization relationships between Classifiers. Each Generalization relates a
specific Classifier to a more general Classifier. Given a Classifier, the transitive closure of its general Classifiers is often
called its generalizations, and the transitive closure of its specific Classifiers is called its specializations. The immediate
generalizations are also called the Classifier’s parents, and where the Classifier is a Class, its superClasses (see 11.4).

NOTE. The concept of parent (a generalization relationship between Classifiers) is unrelated to the concept of owner (a
composition relationship between instances).

An instance of a Classifier is also an (indirect) instance of each of its generalizations. Any Constraints applying to
instances of the generalizations also apply to instances of the Classifier.

When a Classifier is generalized, certain members of its generalizations are inherited, that is they behave as though they
were defined in the inheriting Classifier itself. For example, an inherited member that is an attribute may have a value or
collection of values in any instance of the inheriting Classifier, and an inherited member that is an Operation may be
invoked on an instance of the inheriting Classifier.

The set of members that are inherited is called the inheritedMembers. Unless specified differently for a particular kind of
Classifier, the inheritedMembers are members that do not have private visibility.

Type conformance means that if one Type conforms to another, then any instance of the first Type may be used as the
value of a TypedElement whose type is declared to be the second Type. A Classifier is a Type, and conforms to itself and
to all of its generalizations.

The isAbstract property of Classifier, when true, specifies that the Classifier is abstract, i.e., has no direct instances: every
instance of the abstract Classifier shall be an instance of one of its specializations.

If one Classifier (the parent) generalizes another (the child) it is not necessarily the case that instances of the child are
substitutable for instances of the parent under every possible circumstance. For example, Circle may be defined as a
specialization of Ellipse, and its instances would be substitutable in every circumstance involving accessing the
properties of an Ellipse. However, if Ellipse were to define a stretch behavior that modifies the length of its major axis
only, then a Circle object would be unable to implement such a behavior. The isSubstitutable property may be used to
indicate whether the specific Classifier can be used in every circumstance that the general Classifier can be used.

9.2.3.3 Redefinition

Any member (that is a kind of RedefinableElement) of a generalization of a specializing Classifier may be redefined
instead of being inherited. Redefinition is done in order to augment, constrain, or override the redefined member(s) in
the context of instances of the specializing Classifier. When this occurs, the redefining member contributes to the
structure or behavior of the specializing Classifier in place of the redefined member(s); specifically, any reference to a
redefined member in the context of an instance of the specializing Classifier shall resolve to the redefining member (note
that to avoid circularity “any reference” here excludes the redefinedElement reference itself).

The Classifier from which the member may be redefined is called the redefinitionContext. Although in the metamodel
redefinitionContext has the multiplicity ‘*’, there are no cases in the UML specification where there is more than one
redefinitionContext. The redefinitionContext is defined for each kind of RedefinableElement; it is often, but not always, the
owner of the member.

A redefining element shall be consistent with the RedefinableElement it redefines, but it may add specific constraints or
other details that are particular to instances of the specializing redefinitionContext that do not contradict constraints in the
general context.

One redefining element may redefine multiple RedefinableElements. Furthermore, a RedefinableElement may be
redefined multiple times, as long as it is unambiguous which definition applies for a particular instance.

98 Unified Modeling Language 2.5

The isLeaf property, when true for a particular RedefinableElement, specifies that it shall have no redefinitions.

The detailed semantics of redefinition vary for each specialization of RedefinableElement. There are various kinds of
compatibility between a redefined element and its redefining element, such as name compatibility (the redefining
element has the same name as the redefined element), structural compatibility (the client visible properties of the
redefined element are also properties of the redefining element), or behavioral compatibility (the redefining element is
substitutable for the redefined element). Any kind of compatibility involves a constraint on redefinitions.

Classifier is itself a RedefinableElement. This can come into play when a Classifier is nested in a Class or Interface,
which becomes the redefinitionContext. Redefining a Classifier in the context of a specializing Class or Interface has the
effect of making any references to the redefined Classifier from an instance of the specializing Class or Interface resolve
to the redefining Classifier.

9.2.34 Substitution

A Substitution is a relationship between two Classifiers which signifies that the substitutingClassifier complies with the
contract specified by the contract Classifier. This implies that instances of the substitutingClassifier are runtime
substitutable where instances of the contract Classifier are expected. The Substitution dependency denotes runtime
substitutability that is not based on specialization. Substitution, unlike specialization, does not imply inheritance of
structure, but only compliance of publicly available contracts. It requires that:

* Interfaces implemented by the contract Classifier are also implemented by the substitutingClassifier or else the
substitutingClassifier implements a more specialized Interface type.

* Any Port owned by the contract Classifier has a matching Port (see 11.3.3) owned by the substitutingClassifier.

9.24 Notation

9.2.41 Classifiers

Classifier is an abstract metaclass. It is nevertheless convenient to define in one place a default notation available for
any concrete subclass of Classifier. Some specializations of Classifier have their own distinct notations.

The default notation for a Classifier is a solid-outline rectangle containing the Classifier’s name, and with compartments
separated by horizontal lines below the name. The name of the Classifier should be centered in boldface. For those
languages that distinguish between uppercase and lowercase characters, Classifier names should begin with an
uppercase character.

If the default notation is used for a Classifier, a keyword corresponding to the metaclass of the Classifier shall be shown
in guillemets above the name. The keywords for each metaclass are listed in Annex C and are specified in the notation
for each subclass of Classifier. No keyword is needed to indicate that the metaclass is Class.

Any keywords (including stereotype names) should also be centered in plain face within guillemets above the Classifier
name. If multiple keywords and/or stereotype names apply to the same model element, each may be enclosed in a
separate pair of guillemets and listed one after the other. Alternatively they may all appear between the same pair of
guillemets, separated by commas.

The name of an abstract Classifier is shown in italics, where permitted by the font in use. Alternatively or in addition,
an abstract Classifier may be shown using the textual annotation {abstract} after or below its name.

Some compartments in Classifier shapes are mandatory and shall be supported by tools that exhibit concrete syntax
conformance. Others are optional, in the sense that a conforming tool may not support such compartments.

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference may be drawn about the presence or absence of elements in it.

The compartment named “attributes” contains notation for the Properties that are reached via the attribute property. The
attributes compartment is mandatory and always appears above other compartments, if it is not suppressed.

Unified Modeling Language 2.5 929

file:///Users/ajw/Documents/OMG/C:%5CUsers%5Cstcook%5CDocuments%5COMG%5CUML-Spec-Simplification%5Ctrunk%5CModels%5CMetamodel%5CSpecification%5CUML_11_3_3

The compartment named “operations” contains notation for Operations. The operations compartment is mandatory and
always appears below the attributes compartment, if it is not suppressed. The operations compartment is used for
Classifiers that own Operations, including Class (see 11.4), DataType (see 10.2) and Interface (see 10.4).

The compartment named “receptions” contains notation for Receptions. The receptions compartment is mandatory and
always appears below the operations compartment, if it is not suppressed. The receptions compartment is used for
Classifiers that own Receptions, including Class (see 11.4).

Any compartment which contains notation for Features may show those Features grouped under the literals public,
private and protected, representing their visibility. The visibility literals are left-justified in the compartment with the
Features’ notation appearing indented beneath them. The groups may appear in any order. Visibility grouping is
optional: a conforming tool need not support it.

A conforming tool may provide the option to suppress individual Features in a compartment containing notation for
Features.

A conforming tool may optionally support compartment naming. A compartment’s name may be shown to remove
ambiguity, or it may be hidden. Compartment names should be centered and start with lower-case letters. Compartment
names may contain spaces and should not contain punctuation (including guillemets).

If a Classifier has ownedMembers that are Classifiers (including Behaviors — see 13.2), a conforming tool may provide
the option to show the owned Classifiers, and relationships between them, diagrammatically nested within a separate
compartment of the owning Classifier’s rectangle. Unless otherwise specified, the name of such a compartment shall be
derived from the corresponding metamodel property, pluralized if that property has multiplicity greater than 1. So, for
example, a compartment showing the contents of the property nestedClassifier for a Class (see 11.4.2) shall be called
“nested classifiers;” a compartment showing the contents of the property ownedBehavior for a BehavioredClassifier shall
be called “owned behaviors.”

If a Classifier owns Constraints, a conforming tool may implement a compartment to show the owned Constraints listed
within a separate compartment of the owning Classifier’s rectangle. The name of this optional compartment is
“constraints.”

9.2.4.2 Other elements

A Generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the
involved Classifiers. The arrowhead points to the symbol representing the general Classifier.

Multiple Generalization relationships that reference the same general Classifier may be shown as separate lines with
separate arrowheads. This notation is referred to as the “separate target style.” Alternatively they may be connected to
the same arrowhead in the “shared target style.”

There is no general notation for RedefinableElement. See the subclasses of RedefinableElement for specific notations.
A Substitution is shown as a Dependency with the keyword «substitute» attached to it.

Members that are inherited by a Classifier may be shown on a diagram of that Classifier by prepending a caret **’ symbol
to the textual representation that would be shown if the member were not inherited. Thus the notation for an inherited
Property is defined like this:

<inherited-property> ::= "’ <property>

where <property> is specified in 9.5.4.

Similarly, the notation for an inherited Connector is defined like this:
<inherited-connector> ::= "’ <connector>

where <connector> is specified in 11.2.4.

Analogous notations may be used for all NamedElements that are inheritedMembers of a Classifier to indicate that they
are inherited.

100 Unified Modeling Language 2.5

Inherited members may also be shown in a lighter color to help distinguish them from non-inherited members. A
conforming implementation does not need to provide this option.

9.2.5 Examples

Examples for Classifier notation are shown under its various concrete subclasses, especially Class (see 11.4.4).

Figure 9.2 illustrates Generalization notation with different target styles.

Shape
Separate target style
Polygon Ellipse Spline
Shape

Shared target style

Polygon Ellipse Spline

Figure 9.2 Generalization notation showing different target styles

In Figure 9.3, a generic Window class is substitutable in a particular environment by the Resizable Window class.

Window ResizableWindow

R e TGO

«substitute»

Figure 9.3 Example of Substitution notation

9.3 Classifier Templates

9.31 Summary

Classifier is a kind of TemplateableElement signifying that a Classifier may be parameterized. It is also (via
PackageableElement) a kind of ParameterableElement so that a Classifier may be a formal TemplateParameter and may
be specified as an actual parameter in a binding of a template. Sub clause 7.3 describes the general semantics of
templates and their parameters.

Unified Modeling Language 2.5 101

9.3.2 Abstract Syntax

AN

{subsets redefinableElement, {subsets redefinitionContext,

redefines ownedTemplateSignature} redefines template}
+ ownedTemplateSignature + classifier "

> o | Classifier

0.1 1

{subsets redefinableElement} {redefines parameteredElement} - .

+ constrainingClassifier

+ redefinableTemplateSignature + parameteredElement | 1 * 9

*

*

*

{subsets templateSignature} T
+ redefinableTemplateSignature

+ extendedSignature
{subsets redefinedElement}

{readOnly, subsets parameter}

n N {redefines templateParameter}
+ /inheritedParameter

+ templateParameter | 0..1 x| + classifierTemplateParameter

[remplateparameter | [classi I
+ allowSubstitutable : Boolean = true

*

Figure 9.4 Classifier Templates

9.3.3 Semantics

9.3.3.1 Template and Bound Classifiers
The meanings of the terms template and bound element are defined in 7.3 — Templates.

A Classifier that is parameterized using a RedefinableTemplateSignature is called a template Classifier, while a
Classifier with one or more TemplateBindings is called a bound Classifier.

The general semantics of templates as defined in sub clause 7.3.3. There the details of how the contents are merged into
a bound element are left open. In the case of Classifier the semantics are equivalent to inserting an anonymous general
bound Classifier representing the intermediate result for each binding, and specializing all these intermediate results by
the bound Classifier.

Members of the expanded bound Classifier may be used as actual parameters in a binding.
A bound Classifier may have contents in addition to those resulting from its bindings.

The parameters of a template Classifier can be any kind of TemplateParameter. Semantics and notation are only defined
when the parameter is a Classifier, a LiteralSpecification, a Property or an Operation.

When the parameter is a Classifier, represented by a ClassifierTemplateParameter, the semantics and notation are
defined in this clause.

When the parameter is a LiteralSpecification, the semantics and notation are as specified in 7.3.
When the parameter is an Operation, the semantics and notation are as specified in 9.6.

When the parameter is a Property, the semantics and notation are as specified in 9.5.

9.3.3.2 Template Classifier specialization

RedefinableTemplateSignature specializes both TemplateSignature and RedefinableElement in order to allow the
addition of new formal TemplateParameters in the context of a specializing template Classifier.

A RedefinableTemplateSignature redefines the RedefinableTemplateSignatures of all parent Classifiers that are
templates. All the formal TemplateParameters of the extended (redefined) signatures are included as formal
TemplateParameters of the extending signature, along with any TemplateParameters locally specified for the extending
signature.

102 Unified Modeling Language 2.5

9.3.3.3 Classifier Template Parameters

ClassifierTemplateParameter is a TemplateParameter where the parameteredElement is a Classifier in its capacity of being
a kind of ParameterableElement.

All subclasses of Classifier (such as Class, Collaboration, Component, Datatype, Interface, Signal, and UseCases) may
be parameterized, bound, and used as TemplateParameters. The same holds for Behavior as a subclass of Class, and
thereby all subclasses of Behavior (such as Activity, Interaction, StateMachine).

The constrainingClassifier property of ClassifierTemplateParameter specifies a set of Classifiers that constrain the
argument that can be used for the parameter. If there are any Classifiers in this set, then the argument shall be
compatible with all of them, in the following sense:

e IfallowSubstitutable is false, then compatibility means being the same as or a specialization of all of the
constrainingClassifiers.

e If allowSubstitutable is true, then compatibility additionally allows a Substitution whose contract is a
constrainingClassifier.

Furthermore, if there are any constrainingClassifiers, the parameteredElement shall be constrained as follows:

e IfallowSubstitutable is false, then compatibility means being the same as or a direct specialization of all of the
constrainingClassifiers, with no additional features.

e If allowSubstitutable is true, then compatibility additionally allows a Substitution whose contract is a
constrainingClassifier.

In all cases, if the parameteredElement is not abstract then the Classifier used as an argument shall not be abstract. Apart
from this, if the constrainingClassifier property is empty, there are no constraints on the Classifier that can be used as an
argument. In this case the parameteredElement shall have no generalizations and no features, and allowSubstitutable shall be
false.

9.34 Notation

See TemplateableElement for the general notation for displaying a template and a bound element.

When a bound Classifier is used directly as the type of a Property, then <template-param-name> acts as the prop-type of
the Property in its notation (see Property).

The general notation for template parameters specified in 7.3.4 is extended for the parameters of a template Classifier to
include the following:

<template-parameter> ::= <classifier-template-parameter> | <operation-template-parameter>| <connectable-
element-template-parameter>

A ClassifierTemplateParameter extends the notation for a TemplateParameter to include an optional type constraint:
<classifier-template-parameter> ::= <parameter-name> | ‘:* <parameter-kind> | [*>’ <constraint>] [‘=" <default>]
<constraint> ::=[*{contract }’] <classifier-name>*

<default> ::= <classifier-name>

The parameter-kind indicates the metaclass of the parameteredElement. It may be suppressed if it is ‘Class.’

The classifier-name of constraint designates a constrainingClassifier, of which there may be zero or more, with the
meaning specified in the semantics above. The ‘contract’ option indicates that allowSubstitutable is true.

Unified Modeling Language 2.5 103

9.3.5 Examples

The example shows a Class template (named FArray) with two formal TemplateParameters. The first formal
TemplateParameter (named T) is an unconstrained class TemplateParameter: the metaclass Class has been suppressed
from the diagram. The second formal TemplateParameter (named k) is a Literallnteger that has a default of 10. There is

also a bound Class (named AddressList) that substitutes Address for T and 3 for k.

FArray

T, k : LiteralInteger = 10

contents: T[0..k]

A

«bind» T -> Address, k -> 3

AddressList

Figure 9.5 Template Class and Bound Class

The following figure shows an anonymous bound Class that substitutes the Point class for T. As there is no substitution
for k, the default (10) will be used.

FArray<T -> Point>

Figure 9.6 Anonymous Bound Class

The following figure shows a template Class (named Car) with two formal TemplateParameters. The first formal
TemplateParameter (named CarEngine) is a Class that is constrained to conform to the Class called Engine. The second
formal TemplateParameter (named n) is a Literallnteger.

Car

CarEngine->Engine,
n:LiteralInteger

e : CarEngine

dw : Wheel [n+1]

Figure 9.7 Template Class with constrained Class parameter

104

Unified Modeling Language 2.5

The following figure shows a bound Class (named DieselCar) that binds CarEngine to DieselEngine and n to 2: thus
defining a class of 3-wheeled diesel cars.

DieselCar : Car<CarEngine -> DieselEngine, n -> 2p

Figure 9.8 Bound Class

9.4 Features

9.41 Summary

Features represent structural and behavioral characteristics of Classifiers.

9.4.2 Abstract Syntax

RedefinableElement CallC q irectionKi Paramete
{readonly, union, subsets {readOnly union, subsets 7 Pl nout e
memberNamespace} member} concurrent out update
+ /featuringClassifier + [feature lreun | delete
Classifier }: TypedElement
0.1 * | + isStatic : Boolean = false A
/AN
TypedElement MultiplicityElement ConnectableElement

{ordered, subsets

{subsets namespace} ownedMember} Parameter
StructuralFeaturt BehavioralFeatur. -+ ownerFormalParam + ownedParameter _ | + /default: String [0...
+ isReadOnly : Boolean = false + concurrency : CallConcurrencyKind = sequel| . 0..1 % + direction : FarameterD\re_ctlcnKmd =in
+ isAbstract : Boolean = false + effect : ParameterEffectKind [0..1]
+ isException : Boolean = false
+ behavioralFeature | * + specification | 0..1 {subsets namespace} + isStream : Boolean = false
0.1] + behavioralFeature
+ parameter {subsets owner}
{subsets ownedMember} + owningParameter
. N .
+ raisedException + method | * + ownedParameterSet
*
i subsets ownedElement]
Behavior + parameterSet {subs)
+ defaultValue
{subsets owner}
0..1 | + parameterSet _ValueSpeciﬁcaﬁon
{subsets ownedElement}
* |, + condition
Constraint

Figure 9.9 Features

9.4.3 Semantics

9.4.3.1 Features

Each Feature is associated with a Classifier called its featuringClassifier. The Feature represents some structural or
behavioral characteristic for its featuringClassifier, except for Properties acting as qualifiers (see 9.5.3).

The isStatic property specifies whether the characteristic relates to the Classifier’s instances considered individually
(isStatic=false), or to the Classifier itself (isStatic=true). All semantics relating to Features that do not explicitly state
whether the feature is static shall be assumed to refer to non-static Features. Where semantics are not explicitly
specified for static Features, those semantics are undefined.

9.4.3.2 Structural Features

A StructuralFeature is a typed Feature of a Classifier that specifies the structure of instances of the Classifier.

Unified Modeling Language 2.5 105

The StructuralFeatures of a Classifier that are Properties are called the attributes of the Classifier (see 9.2.3). In UML,
Property is the only kind of StructuralFeature so all of the StructuralFeatures of a Classifier are Properties, and hence
attributes.

For each instance of a Classifier there is a value or collection of values for each direct or inherited non-static attribute of
the Classifier, as follows:

e Ifthe attribute’s multiplicity is 0..1, there shall either be no value or a single value whose Type conforms to the
Type of the attribute

e Ifthe attribute’s multiplicity is 1..1, there shall be a single value whose Type conforms to the Type of the
attribute.

e If'the attribute’s multiplicity is j..k where k is not 1, there shall be a collection of values whose size is not less
than j and not greater than k, each of whose Types conforms to the Type of the attribute.

o Ifthe attribute’s multiplicity is 0..0, there shall be no value or values.

If a StructuralFeature is marked with isStatic = true, then the bullet points above are relative to the Classifier itself
considered as an identifiable individual within some execution scope, rather than to individual instances. (See sub
clause 6.3.1 for a discussion of execution scope.)

In a semantically conforming tool, each inherited static StructuralFeature shall have one of two alternative semantics:

1. Within an execution scope, the value or collection of values of the StructuralFeature is always the same for any
inheriting Classifier as its value or collection of values for the owning Classifier. These semantics correspond
to those for static members in Java and C#.

2. Within an execution scope, the StructuralFeature has a separate and independent value or collection of values
for its owning Classifier and for each Classifier that inherits it. These semantics correspond to those for class
instance variables in Ruby and Smalltalk.

If a StructuralFeature is marked with isReadOnly true, then it may not be updated once it has been assigned an initial
value. Conversely, when isReadOnly is false (the default), the value may be modified.

9.4.3.3 Behavioral Features

A non-static BehavioralFeature specifies that an instance of its featuringClassifier will react to an invocation of the
BehavioralFeature by carrying out a specific behavioral response. Subclasses of BehavioralFeature model different
behavioral aspects of a Classifier.

The list of ownedParameters describes the order, type, and direction of arguments that may be given when the
BehavioralFeature is invoked, or which are output and returned when the invocation completes.

The ownedParameters with direction in or inout define the arguments that shall be provided when invoking the
BehavioralFeature. The ownedParameters with direction out, inout, or return define the arguments that will be output and
returned from a successful invocation.

A BehavioralFeature may raise an exception during its invocation. Possible exception types may be specified by
attaching them to the BehavioralFeature using the raisedException association.

One way to define the behavioral response of a BehavioralFeature is to specify one or more Behaviors as methods that
implement the BehavioralFeature. An invocation of the BehavioralFeature then results in the execution of one of the
associated methods (as further discussed in sub clause 13.2 on Behaviors). The isAbstract property, when true, specifies
that the BehavioralFeature does not have any methods implementing it, with the expectation that an implementation will
be supplied by a more specific element.

The concurrency property specifies the semantics of concurrent calls to the same instance. Its type is
CallConcurrencyKind, an enumeration with the following literals:

106 Unified Modeling Language 2.5

sequential | No concurrency management mechanism is associated with the BehavioralFeature and, therefore,
concurrency conflicts may occur. Instances that invoke a BehavioralFeature need to coordinate so
that only one invocation to a target on any BehavioralFeature occurs at once.

guarded Multiple invocations of a BehavioralFeature that overlap in time may occur to one instance, but only
one is allowed to commence. The others are blocked until the performance of the currently executing
BehavioralFeature is complete. It is the responsibility of the system designer to ensure that deadlocks
do not occur due to simultaneous blocking.

concurrent | Multiple invocations of a BehavioralFeature that overlap in time may occur to one instance and all of
them may proceed concurrently.

9.4.34 Parameters

A Parameter is a specification of an argument used to pass information into or out of an invocation of a
BehavioralFeature. The Type and Multiplicity of a Parameter restrict what values may be passed, how many, and
whether the values are ordered. The Multiplicity defines a lower and upper bound on the values passed to the Parameter
at runtime. A lower bound of zero means the Parameter is optional. Actions using the Parameter may execute without
having a value for optional Parameters. A lower bound greater than zero means values for the Parameter are required to
arrive sometime during the execution of the action.

If a defaultvalue is specified for a Parameter, then it is evaluated at invocation time and used as the argument for this
Parameter if and only if no argument is supplied at invocation of the BehavioralFeature.

A Parameter may be given a name, which then identifies the Parameter uniquely within the Parameters of the same
BehavioralFeature. If it is unnamed, it is distinguished only by its position in the ordered list of Parameters.

The direction property specifies whether a value is passed into, out of, or both into and out of the owning
BehavioralFeature. Its type is ParameterDirectionKind, an enumeration of the following literal values:

in Indicates that Parameter values are passed in by the caller.

inout Indicates that Parameter values are passed in by the caller and (possibly different) values passed out
to the caller.

out Indicates that Parameter values are passed out to the caller.

return Indicates that Parameter values are passed as return values back to the caller.

No more than one Parameter for a BehavioralFeature may be marked as a return Parameter by setting its direction to
return.

The effect property may be used to specify what happens to objects passed in or out of a Parameter. It does not apply to
parameters typed by data types, because these do not have identity with which to detect changes. It is a declaration of
modeler intent that must be consistent with the behaviors having the effect. Multiple effects might occur during
execution, whether or not an effect is specified. For example, an update effect does not preclude reading from occurring
during execution, and a lack of value for effect does not prevent effects from occurring during execution. The effect is
specified using an enumerated value typed by ParameterEffectKind, an enumeration of the following literals:

create Objects passed out of executions of the behavior as values of the parameter do not exist before those
executions start.

read Objects that are values of the parameter have values of their properties, or links in which they
participate, or their classifiers retrieved during executions of the behavior.

update Objects that are values of the parameter have values of their properties, or links in which they
participate, or their classification changed during executions of the behavior.

delete Objects that are values of the parameter do not exist after executions of the behavior are finished.

Only in and inout Parameters may have a delete effect. Only out, inout, and return Parameters may have a create effect.

The isException property applies to output Parameters. An output posted to a Parameter with isException true during an
invocation of a BehavioralFeature excludes outputs from being posted to any other outputs of the BehavioralFeature
during the same invocation. The type of such an exception Parameter may be included in the raisedException set, but does
not have to be included.

Unified Modeling Language 2.5 107

The isStream property, when true, designates a streaming Parameter. A streaming Parameter expresses the expectation
that any Behavior implementing this feature will exhibit streaming behavior on this Parameter — see sub clause 13.2.
The semantics for a Parameter designated as streaming when the implementing Behavior does not exhibit streaming

behavior are undefined.

A ParameterSet owned by a BehavioralFeature is an element that provides alternative sets of inputs or outputs that the

Behaviors that implements that BehavioralFeature may use. The Parameters in a ParameterSet shall all be inputs or all

outputs of the same BehavioralFeature: a ParameterSet with all inputs is called an input ParameterSet, and one with all
outputs is called an output ParameterSet.

A BehavioralFeature with input ParameterSets may only accept inputs from Parameters in one of the sets per
invocation. A BehavioralFeature with output ParameterSets may only return outputs to the Parameters in one of the sets
per invocation. The semantics of conditions on input and output ParameterSets of BehavioralFeatures is the same as
Operation preconditions and postconditions, respectively, but apply to only to invocations that accept inputs to or return
outputs from Parameters in the ParameterSet having the condition.

More detailed semantics and examples of ParameterSets may be found in sub clause 16.3.

944 Notation

There is no general notation for Feature. Subclasses define their specific notation.
Static Features are underlined.

Where Features are shown in lists, an ellipsis (...) as the final element of a list of Features may be used to indicate that
additional Features exist but are not shown in that list.

A read only StructuralFeature is shown using {readOnly} as part of the notation for the StructuralFeature. This
annotation may be suppressed, in which case it is not possible to determine its value from the diagram. Alternatively a
conforming tool may only allow suppression of the {readOnly} annotation when isReadOnly=false (the default). In this
case it is possible to assume this value in all cases where {readOnly} is not shown.

Feature redefinitions may either be explicitly notated with the use of a {redefines <x>} property string on the Feature or
implicitly by having a Feature which cannot be distinguished using isDistinguishableFrom() from another Feature in
one of the owning Classifier’s more general Classifiers. In both cases, the redefined Feature shall conform to the
compatibility constraint on the redefinitions.

A Parameter is shown as a text string of the form:
<parameter> ::= [<direction>]| <parameter-name>:’ <type-expression> [’[’<multiplicity-range>’1"] [’=" <default>]
[’ {* <parm-property> [’,” <parm-property>]* ’}’] where:
* <direction> ::="in’ | *out’ | ’inout’ (defaults to ’in’ if omitted).
e <parameter-name> is the name of the Parameter.
* <type-expression> is an expression that specifies the type of the Parameter.
e <multiplicity-range> is the multiplicity of the Parameter. (See MultiplicityElement — sub clause 7.5).
* <default> is an expression that defines the value specification for the default value of the Parameter.
e <parm-property> indicates additional property values that apply to the Parameter.
<parm-property> ::="ordered’ | 'unordered’ | unique’ | 'nonunique’ | ’seq’ | ’sequence’ where
e ’ordered’ applies when there is a multi-valued Parameter and means that its values are ordered.
e ’unordered’ applies when there is a multi-valued Parameter and means that its values are not ordered.

e ’unique’ applies when there is a multi-valued Parameter and means that its values have no duplicates.

108 Unified Modeling Language 2.5

e ’nonunique’ applies when there is a multi-valued Parameter and means that its values may have duplicates.

e ’seq’ or ’sequence’ applies when there is a multi-valued Parameter and means that its values constitute an
ordered bag, i.e., isUnique = false and isOrdered = true.

Notation for ParameterSets in activity diagrams may be found in sub clause 16.3.4. There is no notation for
ParameterSets in other diagrams.

9.5
9.5.1

Properties

Summary

Properties are StructuralFeatures that represent the attributes of Classifiers, the memberEnds of Associations, and the parts

of StructuredClassifiers.

«enumeration>
AggregationKind
none

‘ shared
composite

{ordered, subsets feature, subsets
redefinableElement, subsets
memberEnd, subsets ownedMember}

Property

{subsets featuringClassifier, subsets
namespace, subsets association,
subsets redefinitionContext}

9.5.2 Abstract Syntax
[parameterabiegiement < c
{subsets namespace, {ordered, subsets attribute, subsets
subsets classifier} ownedMember}
+ interface + ownedAttribute
Interface ,-Le
0.1 *
{subsets namespace, {ordered, subsets attribute, subsets
subsets classifier} ownedMember}
+ datatype + ownedAttribute
DataType ,-Le
0.1 *

{subsets namespace, subsets
structuredClassifier, subsets classifier}
+ class
Class

{ordered, subsets attribute, subsets
ownedMember, redefines
ownedAttribute}

+ ownedAttribute

0.1

Figure 9.10 Properties

9.5.3

*

+ aggregation : Aggregationkind = none
+ [isComposite : Boolean = false

+ isDerived : Boolean = false

+ isDerivedUnion : Boolean = false
+isID : Boolean = false

+ property

Semantics

| s bsettedProperty

{subsets redefinedElement}
+ redefinedProperty

*

+ ownedEnd + owningAssociatior
. 0.1 Associatior
{ordered, subsets member} {subsets memberNamespace}
+ memberEnd + association
2. 0.1
+ qualifier {ordered, subsets ownedElement}
*
0.1
+ associationEnd {subsets owner}
0.1
+ Jopposite
0.1
+ property
{subsets owner} {subsets ownedElement}
+ owningProperty + defaultvalue —
0.1 0.1
+ property
{Esubsets
redefinableElement}

A Property may represent an attribute of a Classifier, a memberEnd of an Association, or in some cases both

simultaneously.

A useful convention for general modeling scenarios is that a Property whose type is a kind of Class is an Association
end, while a property whose type is a kind of DataType is not. This convention is not enforced by UML.

A Property represents a declared state of one or more instances in terms of a named relationship to a value or values.
When a Property is a non-static attribute of a Classifier, the value or values are related to the instance of the Classifier
by being held in slots of the instance. When a Property is an Association’s memberEnd, the value or values are related to
the instance or instances at the other end(s) of the association (see 11.5 Associations). When a Property is a static
attribute of a Classifier, the value or values are related to the Classifier itself within some execution scope.

A Property that is a memberEnd may itself have other Properties that serve as qualifiers.

Unified Modeling Language 2.5

109

When a Property is owned by a Classifier other than an Association via ownedAttribute, then it represents an attribute of
the Classifier. When related to an Association via memberEnd it represents an end of the Association. For a binary
Association, it may be both at once. In either case, when instantiated a Property represents a value or collection of
values associated with an instance of one (or in the case of a ternary or higher-order association, more than one)
Classifier. This set of Classifiers is called the context for the Property; in the case of an attribute the context is the owning
Classifier, and in the case of an association end the context is the set of Classifiers at the other end or ends of the
Association.

If there is a defaultValue specified for a Property, this default is evaluated when an instance of the Property is created in
the absence of a specific setting for the Property or a constraint in the model that requires the Property to have a specific
value. The evaluated default then becomes the initial value (or values) of the Property.

If a Property has isDerived = true, it is derived and its value or values may be computed from other information. Actions
involving a derived Property behave the same as for a nonderived Property. Derived Properties are often specified to be
read-only (i.e., clients may not directly change values). But where a derived Property is changeable, an implementation
is expected to make appropriate changes to the model in order for all the constraints to be met, in particular the
derivation constraint for the derived Property. The derivation for a derived Property may be specified by a constraint.

Property is indirectly a kind of RedefinableElement, so Properties may be redefined. The name and visibility of a Property
are not required to match those of any Property it redefines.

A derived Property may redefine one which is not derived. An implementation shall ensure that the constraints implied
by the derivation are maintained if the Property is updated.

If a Property has a specified default, and the Property redefines another Property with a specified default, then the
redefining Property’s default is used in place of the more general default from the redefined Property.

Sometimes a Property is used to model circumstances in which one instance is used to group together a set of instances;
this is called aggregation. To represent such circumstances, a Property has an aggregation property, of type
AggregationKind; the instance representing the whole group is classified by the owner of the Property, and the instances
representing the grouped individuals are classified by the type of the Property. AggregationKind is an enumeration with
the following literal values:

none Indicates that the Property has no aggregation semantics.

shared Indicates that the Property has shared aggregation semantics. Precise semantics of shared aggregation
varies by application area and modeler.

composite | Indicates that the Property is aggregated compositely, i.e., the composite object has responsibility for
the existence and storage of the composed objects (see the definition of parts in 11.2.3).

Composite aggregation is a strong form of aggregation that requires a part object be included in at most one composite
object at a time. If a composite object is deleted, all of its part instances that are objects are deleted with it.

NOTE. A part object may (where otherwise allowed) be removed from a composite object before the composite object
is deleted, and thus not be deleted as part of the composite object.

Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an
object in one part of the graph will also result in the deletion of all objects of the subgraph below that object. The
precise lifecycle semantics of composite aggregation is intentionally not specified. The order and way in which
composed objects are created is intentionally not defined. The semantics of composite aggregation when the container
or part is typed by a DataType are intentionally not specified.

A Property may be marked as the subset of another subsettedProperty. In this case, calculate a set by eliminating
duplicates from the collection of values denoted by the subsetting property in some context. Then that set shall be
included in (or the same as) a set calculated by eliminating duplicates from the collection of values denoted by the
subsettedProperty in the same context.

A Property may be marked as being a derived union, by setting isDerivedUnion to true. This means that the collection of
values denoted by the Property in some context is derived by being the strict union of all of the values denoted, in the

110 Unified Modeling Language 2.5

same context, by Properties defined to subset it. If the Property has a multiplicity upper bound of 1, then this means that
the values of all the subsets shall be null or the same.

When an attribute marked as a derived union is marked with isOrdered = true, and in a particular context all of its
subsetting properties are attributes marked as ordered or with upper bound 1, and the value in that context of the
Classifier::allAttributes() operation gives a well-defined ordering, then the ordering of the union is defined by
evaluating the subsetting properties in the order in which they appear in the result of allAttributes() and concatenating
the results. In all other cases the ordering of a property marked as an ordered derived union is undefined.

A Property may be marked, via the property isID, as being (part of) the identifier (if any) for Classifiers of which it is a
member. The interpretation of this is left open but this could be mapped to implementations such as primary keys for
relational database tables or ID attributes in XML. If multiple Properties are marked as isID (possibly in generalizing
Classifiers) then it is the combination of the (Property, value) tuples that will logically provide the uniqueness for any
instance. Hence there is no need for any specification of order and it is possible for some of the Property values to be
empty. If the Property is multivalued then all values are included.

Property specializes ParameterableElement to specify that a Property may be exposed as a formal
ConnectableElementTemplateParameter (see 11.2.3), and provided as an actual parameter in a binding of a template.
Within a template a Property TemplateParameter may be used like any other accessible Property. Any references to the
Property TemplateParameter within the template will end up being a reference to the actual Property in the bound
element.

9.5.4 Notation

The following general notation is defined for Properties.

NOTE. Some specializations of Property may also have additional notational forms. These are covered in the
appropriate Notation sub clauses of those classes.

<property> ::= [<visibility>] [/'] <name> [*:" <prop-type>] [[<multiplicity-range> ‘]’] [‘="<default>] [{*
<prop-modifier > [',” <prop-modifier >]* ’}’]

where:

e <visibility> is the visibility of the Property. (See VisibilityKind - sub clause 7.4.)
<visibility> ::= +7| “°| ‘#'| ~’

e ‘/’signifies that the Property is derived.
e <name> is the name of the Property, or the empty string if the Property has no name.
e <prop-type> is the name of the Classifier that is the type of the Property.

* <multiplicity-range> is the multiplicity range of the Property. If this term is omitted, it implies a multiplicity
of 1 (exactly one). (See MultiplicityElement — sub clause 7.5.)

e <default> is an expression that evaluates to the default value or values of the Property.

* <prop-modifier> indicates a modifier that applies to the Property.
<prop-modifier> ::= ‘readOnly’ | ‘union’ | ‘subsets’ <property-name> |
‘redefines’ <property-name> | ‘ordered’ | ‘unordered’ | ‘unique’ | ‘nonunique’ | ‘seq’ | ‘sequence’
‘id’ | <prop-constraint>

where:
¢ ‘readOnly’ means that the Property is read only.
e ‘union’ means that the Property is a derived union of its subsets.
e ‘subsets’ <property-name> means that the Property is a proper subset of the Property identified by

<property-name>, where <property-name> may be qualified.

Unified Modeling Language 2.5 111

‘redefines’ <property-name> means that the Property redefines an inherited Property identified by
<property-name>, where <property-name> may be qualified.

‘ordered’ means that the Property is ordered, i.e., isOrdered = true.

‘unordered’ means that the Property is not ordered, i.e., isOrdered = false.

‘unique’ means that there are no duplicates in a multi-valued Property, i.e., isUnique = true.
‘nonunique’ means that there may be duplicates in a multi-valued Property, i.e., isUnique = false.

‘seq’ or ‘sequence’ means that the property represents an ordered bag, i.e., isUnique = false and
isOrdered = true

‘id” means that the Property is part of the identifier for the class.

<prop-constraint> is an expression that specifies a constraint that applies to the Property.

The notation for qualifiers is defined in 11.5 Associations.

The notation for the aggregation of a Property is defined in 11.5 Associations.

In a Classifier, the type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if
there are values in the model.

In a Classifier, the individual properties of an attribute may be shown in columns rather than as a continuous string.

In a Classifier, an attribute may also be shown using association notation, where only an aggregation adornment (hollow
or filled diamond) may be shown at the tail of the arrow.

The notation for a ConnectableElementTemplateParameter used to parameterize a template Classifier by a Property is

this:

<connectable-element-template-parameter> ::= <property-name> ‘. Property’

112

Unified Modeling Language 2.5

9.5.5

Examples

ClassA

name: String

shape: Rectangle

+size: Integer[0..1]
/area: Integer {readOnly}
height: Integer =5
width: Integer

ClassB

id {redefines name}
shape: Square
Atsize: Integer[0..1]
Integer =7

/width

Figure 9.11 Examples of attributes

The attributes in Figure 9.11 are explained below.

ClassA::name is an attribute with type String.

ClassA::shape is an attribute with type Rectangle.

ClassA::size is a public attribute of type Integer with multiplicity 0..1.
ClassA::area is a derived attribute with type Integer. It is marked as read-only.
ClassA::height is an attribute of type Integer with a default initial value of 5.
ClassA::width is an attribute of type Integer.

ClassB::id is an attribute that redefines ClassA::name.

ClassB::shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

ClassB shows size as an attribute inherited from ClassA, as signified by the prepended caret symbol (see
9.2.4).

ClassB::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances that
overrides the ClassA default of 5.

ClassB::width is a derived attribute that redefines ClassA::width, which is not derived.

Figure 9.12 shows how an attribute may be shown using association notation.

Unified Modeling Language 2.5

113

Window

size
e
1

Area

Figure 9.12 Association-like notation for attributes

9.6

9.6.1

Operations

Summary

An Operation is a BehavioralFeature that may be owned by an Interface, DataType or Class. Operations may also be
templated and used as template parameters.

9.6.2

_ + interface + ownedOperation

DataType

Abstract Syntax

{subsets featuringClassifier,

subsets namespace, subsets
redefinitionContext}

0.1

{subsets featuringClassifier,
subsets namespace, subsets
redefinitionContext}

+ datatype
0..1

{subsets featuringClassifier,
subsets namespace, subsets
redefinitionContext}

+ class

0.1

] |

{ordered, subsets feature,
subsets redefinableElement,
subsets ownedMember}

*

{ordered, subsets feature,
subsets redefinableElement
subsets ownedMember}

+ ownedOperation

*

{ordered, subsets

feature, subsets

redefinableElement,

subsets ownedMember}
+ ownedOperation

*

Operation

{subsets ownerFormalParam}
+ operation

{ordered, redefines
+ ownedParameter

ownedParameter}

+ /isOrdered : Boolean {readOnly}

+ isQuery : Boolean = false

+ /isUnique : Boolean {readOnly}

+ /lower : Integer [0..1] {readOnly}

+ /upper : UnlimitedNatural [0..1] {readOnly}

0..1

{subsets context}
+ preContext

*

{subsets ownedRule}

+ precondition

{_Parameter |

Ci
0.1 *
{subsets context} {subsets ownedRule}
+ postContext + postcondition
0..1 *
{subsets context} {subsets ownedRule}
+ bodyContext + bodyCondition
0.1 0.1
+ operation 0..1
T)
N + Jtype ype
{subsets behavioralFeature} {readOnly}
+ operation *
+ raisedException

*

{redefines raisedException}

{subsets redefinableElement}

+ operation
*
{redefines parameteredElement} *
+ parameteredElement 1 + redefinedOperation
{subsets redefinedElement}
{redefines templateParameter}
+ templateParameter | 0..1

OperationTemplateParametei]
L I

\V4
TemplateParameter

Figure 9.13 Operations

9.6.3 Semantics

9.6.3.1 Operations

An Operation is a BehaviorialFeature of an Interface, DataType, or Class. An Operation may be directly invoked on
instances of its featuringClassifiers. The Operation specifies the name, type, Parameters, and Constraints for such
invocations.

If there is a return Parameter, the type of the Operation is the same as the type of this Parameter. Otherwise the
Operation has no type.

114 Unified Modeling Language 2.5

The preconditions for an Operation define conditions that shall be true when the Operation is invoked. These preconditions
may be assumed by an implementation of this Operation. The behavior of an invocation of an Operation when a
precondition 1s not satisfied is not defined in UML.

The postconditions for an Operation define conditions that will be true when the invocation of the Operation completes
successfully, assuming the preconditions were satisfied. These postconditions shall be satisfied by any implementation of
the Operation.

The bodyCondition for an Operation constrains the return result to a value calculated by the specification of the
bodyCondition. This value should satisfy the postconditions, if any. The bodyCondition differs from postconditions in that the
bodyCondition may be overridden when an Operation is redefined, whereas postconditions may only be added during
redefinition.

An Operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that
the postconditions or bodyCondition of the Operation are satisfied.

An Operation may be redefined in a specialization of the featuringClassifier. This redefinition may add new preconditions or
postconditions, add new raisedExceptions, or otherwise refine the specification of the Operation.

Different type-conformance systems adopt different schemes for how the types of parameters and results may vary
when an Operation is redefined in a specialization. When the type may not vary, it is called invariance. When the
parameter type may be specialized in a specialized type, it is called covariance. When the parameter type may be
generalized in a specialized type, it is called contravariance. In UML, such rules for type conformance are intentionally
not specified. Redefined parameters shall have compatible multiplicity, and the same direction, ordering and uniqueness
as the redefined parameters.

If the isQuery property is true, an invocation of the Operation shall not modify the state of the instance or any other
element in the model.

An Operation may be owned by and in the namespace of a Class, DataType or Interface that provides the context for its
possible redefinition. The owning classifier of the Operation provides its redefinitionContext.

9.6.3.2 Template Operations

Operation specializes TemplateableElement in order to support specification of template Operations and bound
Operations. Bound Operations must be owned by a Classifier. If the original operation was defined with a Behavior,
then the bound element has to be owned by a Classifier that is consistent with that Behavior. This means one of three
things: (a) the bound operation appears in the same Classifier as the template; (b) the bound operation appears in a
subtype of the template’s owner; (c) the template was defined without side-effects in a static class and the bound one
can then appear anywhere.

9.6.3.3 Operation Template Parameters

An Operation may be exposed by a template as a formal template parameter via an OperationTemplateParameter.
OperationTemplateParameter is a kind of TemplateParameter where the parametered element is an Operation. Within a
template Classifier an OperationTemplateParameter may be used like any other accessible Operation. Any references to
the OperationTemplateParameter within the template will end up being a reference to the actual Operation in the bound
Classifier. For example, a call to the OperationTemplateParameter will be a call to the actual Operation.

A default for an OperationTemplateParameter must be an Operation with the same parameter types, directions, and
multiplicities as the exposed Operation.

9.6.4 Notation

If shown in a diagram, an Operation is shown as a text string of the form:

[<visibility>] <name> ‘(‘ [<parameter-list>] ‘)’ [‘:’ [<veturn-type>] [‘[<multiplicity-range> ‘]’]
[" <oper-property> [",” <oper-property>]* ‘}']]

Unified Modeling Language 2.5 115

where:

e <visibility> is the visibility of the Operation (see 7.4).
<visibility> 1=+ | - | ‘# | °~°

* <name> is the name of the Operation.

* <parameter-list> is a list of Parameters of the Operation in the following format:
<parameter-list> ::= <parameter> [‘,’<parameter>]*

where <parameter> is defined in 9.4.4.
e <return-type> is the type of the return result Parameter if the Operation has one defined.
* <multiplicity-range> is the multiplicity of the return type (see 7.5).

e <oper-property> indicates the properties of the Operation.
<oper-property> ::= ‘redefines’ <oper-name> | ‘query’ | ‘ordered’ | ‘unordered’ | “‘unique’ | ‘nonunique’ | ‘seq’ |
‘sequence’ | <oper-constraint>

where:

¢ ‘redefines’ <oper-name> means that the Operation redefines an inherited Operation identified by <oper-
name>, where <oper-name> may be qualified.

e ‘query’ means that the Operation does not change the state of the system.
e ‘ordered’ applies when there is a multi-valued return Parameter and means that its values are ordered.

e ‘unordered’ applies when there is a multi-valued return Parameter and means that its values are not
ordered.

e ‘unique’ applies when there is a multi-valued return Parameter and means that its values have no
duplicates.

e ‘nonunique’ applies when there is a multi-valued return Parameter and means that its values may have
duplicates.

* ‘seq’ or ‘sequence’ applies when there is a multi-valued return Parameter and means that its values
constitute an ordered bag, i.e., isUnique = false and isOrdered = true.

e <oper-constraint> is a constraint that applies to the Operation. The parameter list may be suppressed.

The TemplateParameters of a template Operation are in a list between the name of the Operation and the Parameters of
the Operation.

[<visibility>] <name> ‘<* <template-parameter-list> >’ ‘(* [<parameter-list>])’ [*:” [<return-type>] [‘[* <multiplicity>
‘T1[*{* <oper-property> [*,” <oper-property>]* *}’]]

The TemplateParameter bindings of a bound template Operation are in a list between the name of the Operation and the
Parameters of the Operation.

[<visibility>] <name> ‘<<‘ <binding-expression-list> ‘>>" ‘(* [<parameter-list>] °)’ [*:” [<return-type>] [‘[*
<multiplicity> ‘1’| [*{* <oper-property> [‘,” <oper-property>]* ‘}’]]

where < binding-expression-list> ::= <binding-expression> [,’ <binding-expression>]*, and <binding-expression> is
defined in 7.3.4.

Within the notation for formal TemplateParameters and TemplateParameter bindings, an Operation is shown as
<operation-name> ‘(‘<parameter-list> °)’.

An OperationTemplateParameter extends the notation for a TemplateParameter to include the Parameters for the
Operation:

116 Unified Modeling Language 2.5

<operation-template-parameter> ::= <parameter> [‘. Operation’] [‘=" <default>]
<parameter> ::= <operation-name> ‘(‘<parameter-list> ‘)’
<default> ::= <operation-name ‘(‘<parameter-list> ‘)’

The notation in class diagrams for exceptions and streaming Parameters on Operations has the keywords “exception” or
“stream” in the property string.

9.6.5 Examples
Normal Operations:
display ()
-hide ()
+createWindow (location: Coordinates, container: Container [0..1]): Window
+toString (): String
A template Operation:
f <T:Class>(x: T)
A binding of that template Operation.
f << T -> Window >>(x : Window)

NOTE. Parameters may be suppressed; they are calculated by the binding.

9.7 Generalization Sets

9.71 Summary
GeneralizationSet provides a way to group Generalizations into orthogonal dimensions. A GeneralizationSet may be

associated with a Classifier called its powertype. These techniques provide additional expressive power for organizing
classification hierarchies.

9.7.2 Abstract Syntax

| PackageableElement

—— + powertype + powertypeExtent | GeneralizationSet | 4 generalizationSet + generalization —
E’ + isCovering : Boolean -J| Generalization

0..1 * | + isDisjoint : Boolean | * *

Figure 9.14 Generalization Sets

9.7.3 Semantics

Generalizations may be grouped to represent orthogonal dimensions of generalization. Each group is represented by a
GeneralizationSet. The generalizationSet property designates the GeneralizationSets to which the Generalization belongs.
All of the Generalizations in a particular GeneralizationSet shall have the same general Classifier.

The isCovering property of GeneralizationSet specifies whether the specific Classifiers of the Generalizations in that set
are complete, in the following sense: if isCovering is true, then every instance of the general Classifier is an instance of

Unified Modeling Language 2.5 117

(at least) one of the specific Classifiers. The isDisjoint property specifies whether the specific Classifiers of the
Generalizations in that set may overlap, in the following sense: if isDisjoint is true, then no instance of any of the specific
Classifiers may also be an instance of any other of the specific Classifiers. By default, both properties are false.

A GeneralizationSet may optionally be associated with a Classifier called its powertype. This means that for every
Generalization in the GeneralizationSet, the specializing Classifier is uniquely associated with an instance of the
powertype, i.e., there is a 1-1 correspondence between instances of the powertype and specializations in the
GeneralizationSet, so that the powertype instances and the corresponding Classifiers may be treated as semantically
equivalent. How this semantic equivalence is implemented and how its integrity is maintained is not defined within the
scope of UML.

9.7.4 Notation

When Generalization relationship lines are named, that name designates a GeneralizationSet to which the
Generalization belongs. All Generalization relationships with the same GeneralizationSet name are part of the same
GeneralizationSet. This notation form is depicted in Figure 9.15.

GeneralizationSet1 GeneralizationSet2

Generalizationbet1

Figure 9.15 GeneralizationSets designated by name

When two or more lines are drawn to the same arrowhead and labeled by a single GeneralizationSet name, i.e., “shared
target” style as illustrated in Figure 9.16, the specific Classifiers are part of the same GeneralizationSet.

A A

- GeneralizationSet2
GeneralizationSet1 GeneralizationSet1 GeneralizationSet2

e

Figure 9.16 GeneralizationSets designated by shared target

With either of the notation forms above, if there are no labels on the Generalization arrows it cannot be determined from
the diagram whether there are any GeneralizationSets in the model.

Lastly in Figure 9.17, a GeneralizationSet may be designated by drawing a dashed line across those lines with separate
arrowheads that are meant to be part of the same set. Here, as in Figure 9.16, the GeneralizationSet is labeled with a
single name, instead of each line labeled separately. This label may be elided.

118 Unified Modeling Language 2.5

neralizationSet1
Generalizati Sle— ———————— GeneralizationSet2

Figure 9.17 GeneralizationSet designated by dashed line spanning Generalization arrows

To indicate whether or not a generalization set is covering and disjoint, each set may be labeled with a constraint
consisting of one of the textual annotations indicated below.

Table 9.1 GeneralizationSet constraints

{complete, disjoint} Indicates the generalization set is covering and its specific Classifiers have no common
instances.

{incomplete, disjoint} Indicates the generalization set is not covering and its specific Classifiers have no common

instances.
{complete, Indicates the generalization set is covering and its specific Classifiers do share common
overlapping} instances.
{incomplete, Indicates the generalization set is not covering and its specific Classifiers do share common
overlapping} instances.

The constraints may appear in either order: {complete, disjoint} is equivalent to {disjoint, complete}. The default
values are {incomplete, overlapping}. If only one constraint is shown, the other takes its default value.

Graphically, the GeneralizationSet constraints are placed next to the sets, whether the common arrowhead notation is
employed as illustrated in Figure 9.18 below, or the dashed line notation as shown in Figure 9.19.

A

{GeneralizationSetConstraint1} {GeneralizationSetConstraint2}

Figure 9.18 GeneralizationSet constraint notation with shared target style

Unified Modeling Language 2.5 119

{GeneralizationSetConstraint3} {GeneralizationSetConstraint4}

Figure 9.19 GeneralizationSet constraint notation with dashed line style

Power type specification is indicated by placing the name of the powertype Classifier—preceded by a colon—next to
the corresponding GeneralizationSet. Figure 9.20 below indicates how this would appear for the shared arrowhead
notation, and Figure 9.21 shows it for the dashed-line notation.

PowerTypel PowerType2

A

:PowerTypel
:PowerTypel

Figure 9.20 Power type notation with shared target style

PowerTypel PowerType2

‘PowerTypel
T :PowerType2

Figure 9.21 Power type notation with dashed line style

The labels for GeneralizationSet name, GeneralizationSet constraint and powertype may appear together in any
combination on a diagram.

9.7.5 Examples

In Figure 9.22, Person (an abstract class) is specialized as Woman and Man. Separately, Person is specialized as
Employee. Here, the specializations to Woman and Man constitute one GeneralizationSet and that to Employee another.
This example employs the various notation forms.

120 Unified Modeling Language 2.5

Person Person
A
gender gender emg:gr:};ent gender emﬂg{l:r;ent
Woman Man Employee Woman | — Employee
Man —
Person Person

employment
status

Woman Man Employee Woman Man Employee

Figure 9.22 GeneralizationSet notation options

In Figure 9.23 below, Person (an abstract class) is specialized as Woman and Man. Because this GeneralizationSet is
partitioned (i.e., is constrained to be complete and disjoint), each instance of Person shall either be a Woman or a Man;
that is, it shall be one or the other and not both. Person is also specialized as Employee, and this single specialization is
expressed as {incomplete}, which means that a Person may either be an Employee or not. Taken together, the diagram
indicates that a Person may be 1) either a Man or Woman, and 2) an Employee or not (a total of four options).

{complete, disjoint} {incomplete}

Woman — Employee

Figure 9.23 GeneralizationSets and constraints

One of the ways botanists organize trees is by species. Each tree we see may be classified as an American elm, sugar
maple, apricot, saguaro—or some other species of tree. The class diagram below expresses that each Tree Species
classifies zero or more instances of Tree, and each Tree is classified as exactly one Tree Species. For example, one of
the instances of Tree could be the tree in your front yard, the tree in your neighbor’s backyard, or trees at your local
nursery. Furthermore, this figure indicates the relationships that exist between these two sets of objects. For instance,
the tree in your front yard might be classified as a sugar maple, your neighbor’s tree as an apricot, and so on. This class

Unified Modeling Language 2.5 121

diagram indicates that each Tree Species is identified with a Leaf Pattern and has a general location in any number of
Geographic Locations. For example, the saguaro cactus has leaves reduced to large spines and is generally found in
southern Arizona and northern Sonora. Additionally, this figure indicates each Tree has an actual location at a particular
Geographic Location. In this way, a particular tree could be classified as a saguaro and be located in Phoenix, Arizona.

tree tree species
Tree * 1 Tree Species
*®
* 1
: i disjaint,
: TreeSpecies inf:o n’llplete} actual general leaf
location | 1 + |locations | |pattern
Geographic Leaf
— Sugar Maple Location Pattern
— Apricot
| | American
Elm
L Saguaro

Figure 9.24 Power type example

This diagram also illustrates that Tree is subtyped as American Elm, Sugar Maple, Apricot, or Saguaro—or something
else. Each subtype, then, may have its own specialized Properties. For instance, each Sugar Maple could have a yearly
maple sugar yield of some given quantity, each Saguaro could be inhabited by zero or more instances of a Gila

Woodpecker, and so on.

The powertype designation on the Tree GeneralizationSet specifies that the instances of TreeSpecies are in one-to-one
correspondence to the subclasses of Tree.

This concept applies to many situations within many lines of business. Figure 9.25 depicts other examples of power
types. The name on the GeneralizationSet beginning with a colon indicates the power type.

122

Unified Modeling Language 2.5

account 1 vehicle 1
Account . - Vehicle
Account * account type Vehicle vehicle type
typ Type tvp Type
{disjoint, incomplete} {disjoint, incomplete}
:AccountType VehicleType
Checking
Account Truck
Savings
Account Car
(a) Bank account/account type example (b)) Vehicle/vehicle type example
Disease disease ! Dicease Tnstalled | - /' ! Telephone
Occurrence * classification Classification Telephone * category Service
Service Category
{disjoint, incomplete} {disjoint, incomplete}
:DiseaseClassification :TelephoneServiceCategory
Call
ChickenPox Waiting
Call
Measles Transferring

(c) Disease occurrence/classification example (d) Telephone service/cateqory example

Figure 9.25 More power type examples

In diagram (a), each instance of Checking Account could have its own attributes (including those inherited from
Account), such as account number and balance. Additionally, the equivalent instance for Checking Account may have
attributes, such as interest rate and maximum delay for withdrawal.

The example (b) depicts a vehicle-modeling example. Here, each Vehicle may be classified as either a Truck or a Car or
something else. Furthermore, Truck and Car are equivalent to instances of Vehicle Type. In (c), Disease Occurrence
classifies each occurrence of disease (e.g., my chicken pox and your measles). Disease Classification is the power type
whose instances are equivalent to classes such as Chicken Pox and Measles.

Labeling collections of subtypes with powertypes becomes increasingly important when a type has more than one
powertype. Figure 9.26 illustrates one such example, showing which subtype collection contains Policy Coverage Types
and which Insurance Lines. For instance, a Policy may be classified as Life, Health, Property/Casualty, or some other
Insurance Line. The same Policy may be classified with its Policy Coverage Type as Group or Individual.

Unified Modeling Language 2.5 123

Policy oli olicy insurance line
Coverage 1 palicy Policy policy Irlsulrance
Type coverage type ¥ ¥ 1 Line

t?‘. [-\- {disjoint, incomplete}
:Insuranceline
{disjoint, complete}
‘PolicyCoverageType
|| Life
Policy
| Group
Policy | | Health
Policy
Individual
Policy Property/
L{ Casualty
Policy

Figure 9.26 More than one powertype

9.8 Instances

9.8.1 Summary

InstanceSpecifications represent instances of Classifiers in a modeled system. They are often used to model example
configurations of instances. They may be partial or complete representations of the instances that they correspond to.

9.8.2 Abstract Syntax

| PackageableElement |
DeploymentTarget | | DeployedArtifact |
/\
{subsets owner} {subsets ownedElement}
InstanceSpecification + owninglnstance + slot

+ slot + definingFeaturt
¥ 1/‘4 StructuralFeature

+ owningSlot {subsets owner}

1 *

{subsets ownedElement} % |, + value {ordered, subsets ownedElement}

0.1 + specification_
+ owningInstanceSpec 0..1
{subsets owner}

ification

+ instance + instanceValue

1 *I—I

+ instanceSpecification

+ classifieg|,*
Classifier

Figure 9.27 Instances

*

124 Unified Modeling Language 2.5

9.8.3 Semantics

An InstanceSpecification represents the possible or actual existence of instances in a modeled system and completely or
partially describes those instances.

A Slot specifies that an instance modeled by an InstanceSpecification has a value or values for a specific
StructuralFeature, which shall be a StructuralFeature that is related to a classifier of the InstanceSpecification owning
the Slot by being a direct attribute, inherited attribute, private attribute in a generalization, or a memberEnd if the
classifier is an Association, but excluding redefined StructuralFeatures. The values in a Slot shall conform to the
defining StructuralFeature of the Slot (in type, multiplicity, etc.). The values in a Slot are specified using
ValueSpecifications (see Clause 8).

The InstanceSpecification may represent:
* C(Classification of the instance by one or more Classifiers, any of which may be abstract.

¢ The kind of instance, based on its classifiers. For example, an InstanceSpecification whose classifier is a Class
describes an instance of that Class, while an InstanceSpecification whose classifier is an Association describes a
link of that Association. If no classifiers are given, then the InstanceSpecification does not constrain the kind of
instance represented. If classifiers of different kinds are given, then the semantics are not defined.

¢ Specification of values of StructuralFeatures of the instance, where the values are contained in Slots. Not all
StructuralFeatures of all Classifiers of the InstanceSpecification need be represented by Slots, in which case
the InstanceSpecification is a partial description.

* An optional specification, by a ValueSpecification, of how to compute, derive, or construct the instance. If
such a ValueSpecification is given, then the represented instance is equal to the value resulting from the
evaluation of the ValueSpecification. If the InstanceSpecification has one or more classifiers, then the type of
the ValueSpecification must conform to at least one of those classifiers.

An InstanceSpecification may specify the actual existence of an instance in a modeled system. Or, an
InstanceSpecification may provide an illustration or example of a possible instance in a modeled system. The purpose of
an InstanceSpecification is to show what is of interest about the instance. The instance conforms to each classifier of the
InstanceSpecification, and has properties with values indicated by each slot of the InstanceSpecification. Having no slot
in an InstanceSpecification for some properties does not mean that the represented instance does not have the property,
but merely that the property is not of interest in the model. Similarly, the actual instance might conform to a
specialization of a modeled classifier of the InstanceSpecification, but this fact may not be of interest in the model.

An InstanceSpecification may represent an instance at a point in time (a snapshot). Changes to the instance may be
modeled using multiple InstanceSpecification, one for each snapshot.

It is important to keep in mind that InstanceSpecification is a model element and should not be confused with the
instance that it is modeling. As an InstanceSpecification may only partially determine the properties of an instance,
there may actually be multiple instances in the modeled system that satisfy the requirements of the
InstanceSpecification. On the other hand, an InstanceSpecification may model a situation which is not actually
supposed to occur in the modeled system, in which case no instance meeting the requirements of the
InstanceSpecification may ever actually occur in the system.

An InstanceValue is a kind of ValueSpecification whose value is specified using an InstanceSpecification. Each
evaluation of the InstanceValue is considered to result in a distinct instance conforming to the InstanceSpecification. If
the InstanceSpecification has a specification, then that ValueSpecification is evaluated to give the value of the
InstanceValue. Otherwise, an InstanceValue is evaluated by creating a value that is an instance of each of the classifiers
identified in the InstanceSpecification. Any slots in the InstanceSpecification then provide values for the corresponding
StructuralFeatures of the instance by evaluating the ValueSpecifications associated with those slots. A StructuralFeature
for which no slot is given either has the value obtained by evaluating its defaultValue, if it is a Property with a
defaultValue, or no value, otherwise.

NOTE. An InstanceValue does not own the InstanceSpecification to which it refers; multiple InstanceValues may refer
to the same InstanceSpecification.

Unified Modeling Language 2.5 125

9.8.4 Notation

An InstanceSpecification is depicted using similar notation to its classifiers, but in place of the Classifier name appears
an underlined concatenation of the instance name (if any), a colon (*:”) and the Classifier name or names. The
convention for showing multiple classifiers is to separate their names by commas.

An InstanceSpecification whose classifier is an Association represents a link and is shown using the same notation as for
an Association, but the solid path or paths connect InstanceSpecifications rather than Classifiers. It is not necessary to
show an underlined name where it is clear from its connection to instance specifications that it represents a link and not
an Association. End names may adorn the ends. Navigation arrows may be shown, but if shown, they shall agree with
the navigation of the Association’s ends.

NOTE. Names are optional for Classifiers and InstanceSpecifications. The absence of a name in a diagram does not
necessarily reflect its absence in the underlying model.

The standard notation for an anonymous InstanceSpecification of an unnamed Classifier is an underlined colon (“:”).

If an InstanceSpecification has a ValueSpecification as its specification, the ValueSpecification is shown either after an
equal sign (“=") following the name, or without an equal sign below the name. If the InstanceSpecification is shown
using an enclosing shape (such as a rectangle) that contains the name, the ValueSpecification is shown within the
enclosing shape.

Slots are shown using similar notation to that of the corresponding StructuralFeatures. Where a StructuralFeature would
be shown textually in a compartment, a Slot for that StructuralFeature may be shown textually as a StructuralFeature
name or qualifiedName followed by an equal sign (‘=") and a value specification. Other properties of the
StructuralFeature, such as its type, may optionally be shown.

An InstanceValue may appear using textual or graphical notation. When textual, as may appear for the value of a Slot,
the name of the InstanceSpecification is shown. This may be displayed as a qualified name. When graphical, an
InstanceValue is represented using the notation for its InstanceSpecification.

A Slot value that is an InstanceValue may alternatively be shown using a graphical notation similar to that for a link. A
solid path runs from the owning InstanceSpecification to the symbol representing the InstanceValue that is the Slot’s
value, and the name of the attribute adorns the target end of the path. Navigability, if shown, shall be only in the
direction of the target. This notation can give rise to visual ambiguity with the link notation when the only adornments
are at the target end; in such cases the model should be inspected to determine the presence or absence of an actual
Association instance.

Where an InstanceSpecification is classified by a StructuredClassifier (see 11.2.3) it may contain nested rectangles
representing the instances playing its roles. The namestring of such a nested InstanceSpecification obeys the following
syntax:

{<name> [/’ <rolename>] | I’ <rolename>} [‘:* <classifiername> [*,” <classifiername>]*]

The name of the InstanceSpecification may be followed by the name of the role which the instance plays. The role name
may only be present if the instance plays a role.

Where an InstanceSpecification contains both Slot values and nested rectangles depicting roles, it is divided into
compartments analogous to the attributes and internal structure compartments of its corresponding StructuredClassifier.

Examples of InstanceSpecifications for StructuredClassifiers are shown in 11.4.5.

9.8.5 Examples

The example in Figure 9.28 below shows an InstanceSpecification called “streetName,” classified as String, and with a
specification that is a LiteralString whose value is “S.Crown Street.”

126 Unified Modeling Language 2.5

freetName : Strin
"S. Crown Street”

Figure 9.28 Specification of an Instance of String

The example in Figure 9.29 below shows an InstanceSpecification with Slots.

myAddress : Address

streetMame = "S. Crown Street”
streetMumber; Integer = 381

Figure 9.29 Slots with values

The example in Figure 9.30 below shows a link between two InstanceSpecifications.

Don : Person Josh : Person
father son

Figure 9.30 InstanceSpecifications representing two objects connected by a link

The example in Figure 9.31 below shows an InstanceValue as the value of a Slot represented using textual notation.

Window medium : Area

size = medium

Figure 9.31 InstanceValue represented textually

The example in Figure 9.32 below shows the same model represented using graphical notation.

‘Window medium : Area

size

Figure 9.32 InstanceValue represented graphically

9.9 Classifier Descriptions

9.9.1 AggregationKind [Enumeration]

9.9.1.1 Description

AggregationKind is an Enumeration for specifying the kind of aggregation of a Property.

9.9.1.2 Diagrams

* Properties

Unified Modeling Language 2.5 127

9.9.1.3 Literals

* none
Indicates that the Property has no aggregation.

e shared
Indicates that the Property has shared aggregation.

* composite
Indicates that the Property is aggregated compositely, i.e., the composite object has responsibility for the
existence and storage of the composed objects (parts).

9.9.2 BehavioralFeature [Abstract Class]

9.9.2.1 Description

A BehavioralFeature is a feature of a Classifier that specifies an aspect of the behavior of its instances. A
BehavioralFeature is implemented (realized) by a Behavior. A BehavioralFeature specifies that a Classifier will respond
to a designated request by invoking its implementing method.

9.9.2.2 Diagrams
Features, Operations, Signals, Behaviors
9.9.2.3 Generalizations

Feature, Namespace

9.9.24 Specializations

Operation, Reception
9.9.2.5 Attributes

* concurrency : CallConcurrencyKind [1..1] = sequential
Specifies the semantics of concurrent calls to the same passive instance (i.e., an instance originating from a
Class with isActive being false). Active instances control access to their own BehavioralFeatures.

® isAbstract : Boolean [1..1] = false
If true, then the BehavioralFeature does not have an implementation, and one must be supplied by a more
specific Classifier. If false, the BehavioralFeature must have an implementation in the Classifier or one must be
inherited.

9.9.2.6 Association Ends

* method : Behavior [0..*] (opposite Behavior::specification)
A Behavior that implements the BehavioralFeature. There may be at most one Behavior for a particular pairing
of a Classifier (as owner of the Behavior) and a BehavioralFeature (as specification of the Behavior).

* ¢ ownedParameter : Parameter [0..*]{ordered, subsets Namespace::ownedMember} (opposite
A_ownedParameter_ownerFormalParam::ownerFormalParam)
The ordered set of formal Parameters of this BehavioralFeature.

128 Unified Modeling Language 2.5

* ¢ ownedParameterSet : ParameterSet [0..*]{subsets Namespace::ownedMember} (opposite
A_ownedParameterSet behavioralFeature::behavioralFeature)
The ParameterSets owned by this BehavioralFeature.

* raisedException : Type [0..*] (opposite A_raisedException behavioralFeature::behavioralFeature)
The Types representing exceptions that may be raised during an invocation of this BehavioralFeature.

9.9.2.7 Operations

* isDistinguishableFrom(n : NamedElement, ns : Namespace) : Boolean {redefines
NamedElement::isDistinguishableFrom() }

The query isDistinguishableFrom() determines whether two BehavioralFeatures may coexist in the same
Namespace. It specifies that they must have different signatures.

body: (n.ocl|sKi ndOf (Behavi oral Feature) and ns. get NamesOf Menber (sel f) -
>ji ntersection(ns. get NanesOf Menber (n))->not Enpty()) inplies
Set {sel f}->i ncl udi ng(n. ocl AsType(Behavi or al Feat ure)) - >i sUni que(ownedPar anet er - >col | ect (p|
Tupl e { name=p. nane,
type=p. type, ef fect =p. effect, directi on=p.direction,isException=p.isException,
i sStreanrp.isStream i sO dered=p.isOdered,isUni que=p.isUnique, | ower=p. | ower,
upper =p. upper }))

* inputParameters() : Parameter [0..*]{ordered}
The ownedParameters with direction in and inout.

body: ownedParaneter->sel ect(directi on=ParaneterDirectionKind::_"in' or
direction=ParaneterDirectionKind::inout)

* outputParameters() : Parameter [0..*]{ordered}
The ownedParameters with direction out, inout, or return.

body: ownedPar anet er - >sel ect (di recti on=Paranet erDi recti onKi nd: : out or
direction=ParaneterDirectionKind::inout or direction=ParaneterDi rectionKind::return)

9.9.2.8 Constraints

e abstract no_method
When isAbstract is true there are no methods.

inv: isAbstract inplies nethod->i senmpty()

9.9.3 CallConcurrencyKind [Enumeration]

9.9.3.1 Description
CallConcurrencyKind is an Enumeration used to specify the semantics of concurrent calls to a BehavioralFeature.

9.9.3.2 Diagrams

e Features

9.9.3.3 Literals

e sequential
No concurrency management mechanism is associated with the BehavioralFeature and, therefore, concurrency

Unified Modeling Language 2.5 129

9.9.4

9.9.4.1

conflicts may occur. Instances that invoke a BehavioralFeature need to coordinate so that only one invocation
to a target on any BehavioralFeature occurs at once.

guarded

Multiple invocations of a BehavioralFeature that overlap in time may occur to one instance, but only one is
allowed to commence. The others are blocked until the performance of the currently executing
BehavioralFeature is complete. It is the responsibility of the system designer to ensure that deadlocks do not
occur due to simultaneous blocking.

concurrent

Multiple invocations of a BehavioralFeature that overlap in time may occur to one instance and all of them
may proceed concurrently.

Classifier [Abstract Class]

Description

A Classifier represents a classification of instances according to their Features.

9.9.4.2

9.94.3

9.944

9.94.5

9.9.4.6

130

Diagrams

Structured Classifiers, Classes, Associations, Components, Collaborations, State Machine Redefinition,
DataTypes, Signals, Interfaces, Information Flows, Artifacts, Actions, Accept Event Actions, Object Actions

Generalizations

Namespace, Type, TemplateableElement, RedefinableElement

Specializations

Association, StructuredClassifier, BehavioredClassifier, DataType, Interface, Signal, Informationltem, Artifact

Attributes

isAbstract : Boolean [1..1] = false
If true, the Classifier can only be instantiated by instantiating one of its specializations. An abstract Classifier is
intended to be used by other Classifiers e.g., as the target of Associations or Generalizations.

isFinalSpecialization : Boolean [1..1] = false
If true, the Classifier cannot be specialized.

Association Ends
/attribute : Property [0..*]{ordered, union, subsets Classifier::feature, subsets
A_redefinitionContext_redefinableElement::redefinableElement} (opposite A_attribute classifier::classifier)
All of the Properties that are direct (i.e., not inherited or imported) attributes of the Classifier.
+ collaborationUse : CollaborationUse [0..*]{subsets Element::ownedElement} (opposite

A_collaborationUse_classifier::classifier)
The CollaborationUses owned by the Classifier.

Unified Modeling Language 2.5

9.94.7

/feature : Feature [0..*]{union, subsets Namespace::member} (opposite Feature::featuringClassifier)
Specifies each Feature directly defined in the classifier. Note that there may be members of the Classifier that
are of the type Feature but are not included, e.g., inherited features.

/general : Classifier [0..*] (opposite A_general classifier::classifier)
The generalizing Classifiers for this Classifier.

¢ generalization : Generalization [0..*]{subsets Element::ownedElement, subsets

A source directedRelationship::directedRelationship} (opposite Generalization::specific)
The Generalization relationships for this Classifier. These Generalizations navigate to more general Classifiers

in the generalization hierarchy.

/inheritedMember : NamedElement [0..*]{subsets Namespace::member} (opposite
A_inheritedMember_inheritingClassifier::inheritingClassifier)
All elements inherited by this Classifier from its general Classifiers.

¢ ownedTemplateSignature : RedefinableTemplateSignature [0..1]{subsets

A_redefinitionContext redefinableElement::redefinableElement, redefines
TemplateableElement::ownedTemplateSignature} (opposite RedefinableTemplateSignature::classifier)
The optional RedefinableTemplateSignature specifying the formal template parameters.

¢ ownedUseCase : UseCase [0..*]{subsets Namespace::ownedMember} (opposite
A_ownedUseCase_classifier::classifier)
The UseCases owned by this classifier.

powertypeExtent : GeneralizationSet [0..*] (opposite GeneralizationSet::powertype)
The GeneralizationSet of which this Classifier is a power type.

redefinedClassifier : Classifier [0..*]{subsets RedefinableElement::redefinedElement} (opposite
A_redefinedClassifier classifier::classifier)
The Classifiers redefined by this Classifier.

representation : CollaborationUse [0..1]{subsets Classifier::collaborationUse} (opposite

A_representation_classifier::classifier)
A CollaborationUse which indicates the Collaboration that represents this Classifier.

¢ substitution : Substitution [0..*]{subsets Element::ownedElement, subsets
NamedElement::clientDependency } (opposite Substitution::substitutingClassifier)
The Substitutions owned by this Classifier.

templateParameter : ClassifierTemplateParameter [0..1]{redefines ParameterableElement::templateParameter }

(opposite ClassifierTemplateParameter::parameteredElement)
TheClassifierTemplateParameter that exposes this element as a formal parameter.

useCase : UseCase [0..*] (opposite UseCase::subject)
The set of UseCases for which this Classifier is the subject.

Operations
allFeatures() : Feature [0..*]

The query allFeatures() gives all of the Features in the namespace of the Classifier. In general, through
mechanisms such as inheritance, this will be a larger set than feature.

Unified Modeling Language 2.5 131

body: nenber->sel ect (ocl | sKi ndOf (Feature))->col | ect (ocl AsType(Feature))->asSet ()

® allParents() : Classifier [0..*]
The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.

body: parents()->union(parents()->collect(allParents())->asSet())

* conformsTo(other : Type) : Boolean {redefines Type::conformsTo()}
The query conformsTo() gives true for a Classifier that defines a type that conforms to another. This is used,
for example, in the specification of signature conformance for operations.

body: if other.ocllsKindO(C assifier) then
let otherClassifier : Classifier = other.ocl AsType(Classifier) in
self = otherClassifier or allParents()->includes(otherC assifier)
el se
fal se
endi f

* general() : Classifier [0..%]
The general Classifiers are the ones referenced by the Generalization relationships.

body: parents()

* hasVisibilityOf(n : NamedElement) : Boolean
The query hasVisibilityOf() determines whether a NamedElement is visible in the classifier. Non-private
members are visible. It is only called when the argument is something owned by a parent.

pre: all Parents()->including(self)->collect(menber)->includes(n)
body: n.visibility <> VisibilityKind::private

® inherit(inhs : NamedElement [0..*]) : NamedElement [0..*]
The query inherit() defines how to inherit a set of elements passed as its argument. It excludes redefined
elements from the result.

body: inhs->reject(inh |
i nh. ocl | sKi ndOF (Redef | nabl eEl enent) and
ownedMenber - >sel ect (ocl | sKi ndOF (Redef i nabl eEl enent)) - >
sel ect (redefi nedEl ement - >i ncl udes(i nh. ocl AsType(Redefi nabl eEl enent)))

->not Enpty())
* inheritableMembers(c : Classifier) : NamedElement [0..*]
The query inheritableMembers() gives all of the members of a Classifier that may be inherited in one of its

descendants, subject to whatever visibility restrictions apply.

pre: c.all Parents()->includes(self)
body: menber->select(m| c.hasVisibilityO(m)

* inheritedMember() : NamedElement [0..*]
The inheritedMember association is derived by inheriting the inheritable members of the parents.

body: inherit(parents()->collect(inheritableMnbers(self))->asSet())

* isTemplate() : Boolean {redefines TemplateableElement::isTemplate()}

The query isTemplate() returns whether this Classifier is actually a template.

body: ownedTenpl ateSi gnature <> null or general ->exists(g | g.isTenplate())

132 Unified Modeling Language 2.5

* maySpecializeType(c : Classifier) : Boolean
The query maySpecializeType() determines whether this classifier may have a generalization relationship to
classifiers of the specified type. By default a classifier may specialize classifiers of the same or a more general
type. It is intended to be redefined by classifiers that have different specialization constraints.

body: self.ocl|sKindO(c.ocl Type())

* parents() : Classifier [0..*]
The query parents() gives all of the immediate ancestors of a generalized Classifier.

body: generalization. general->asSet ()

* directlyRealizedInterfaces() : Interface [0..*]
The Interfaces directly realized by this Classifier

body: (clientDependency->
sel ect (ocl I sKi ndOf (Real i zation) and supplier->forAll (ocllsKindO(Interface))))->
col l ect (supplier.ocl AsType(Interface))->asSet()

® directlyUsedInterfaces() : Interface [0..*]
The Interfaces directly used by this Classifier

body: (supplierDependency->
sel ect (ocl I sKi ndOF (Usage) and client->forAll (ocllsKindO(Interface))))->
collect(client.ocl AsType(lnterface))->asSet()

¢ allRealizedInterfaces() : Interface [0..*]
The Interfaces realized by this Classifier and all of its generalizations

body: directlyRealizedlnterfaces()->union(self.allParents()-
>col l ect (directlyRealizedlnterfaces()))->asSet()

* allUsedInterfaces() : Interface [0..*]
The Interfaces used by this Classifier and all of its generalizations

body: directlyUsedlnterfaces()->union(self.allParents()->collect(directlyUsedlnterfaces()))-
>asSet ()

* isSubstitutableFor(contract : Classifier) : Boolean

body: substitution.contract->i ncl udes(contract)

¢ allAttributes() : Property [0..*]{ordered}
The query allAttributes gives an ordered set of all owned and inherited attributes of the Classifier. All owned
attributes appear before any inherited attributes, and the attributes inherited from any more specific parent
Classifier appear before those of any more general parent Classifier. However, if the Classifier has multiple
immediate parents, then the relative ordering of the sets of attributes from those parents is not defined.

body: attri bute->asSequence()->uni on(parents()->asSequence().allAttributes())->select(p |
menber - >i ncl udes(p)) - >asOr der edSet ()

¢ allSlottableFeatures() : StructuralFeature [0..*]
All StructuralFeatures related to the Classifier that may have Slots, including direct attributes, inherited
attributes, private attributes in generalizations, and memberEnds of Associations, but excluding redefined
StructuralFeatures.

body: nenber->sel ect (ocl | sKi ndOf (Structural Feature))->

Unified Modeling Language 2.5 133

col | ect (ocl AsType(Structural Feature))->
uni on(sel f.inherit(self.allParents()->collect(p

| p.attribute)->asSet())->
col I ect (ocl AsType(Structural Feature)))->asSet ()

9.9.4.8 Constraints

e specialize_type
A Classifier may only specialize Classifiers of a valid type.

inv: parents()->forAll(c | self.mySpecializeType(c))

* maps_to_generalization_set
The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an
instance of itself nor may its instances also be its subclasses.

inv: powertypeExtent->forAll(gs |
gs. generalization->forAl(gen |
not (gen.general = self) and not gen.general.allParents()->includes(self) and not
(gen.specific = self) and not self.all Parents()->includes(gen. specific)
))

e non_final parents
The parents of a Classifier must be non-final.

inv: parents()->forAll(not isFinal Specialization)

* 1o _cycles in generalization
Generalization hierarchies must be directed and acyclical. A Classifier can not be both a transitively general
and transitively specific Classifier of the same Classifier.

inv: not allParents()->includes(self)

9.9.5 ClassifierTemplateParameter [Class]
9.9.51 Description
A ClassifierTemplateParameter exposes a Classifier as a formal template parameter.

9.9.5.2 Diagrams

Classifier Templates

9.9.5.3 Generalizations
TemplateParameter
9.9.54 Attributes

¢ allowSubstitutable : Boolean [1..1] = true
Constrains the required relationship between an actual parameter and the parameteredElement for this formal
parameter.

9.9.5.5 Association Ends

* constrainingClassifier : Classifier [0..*] (opposite
A_constrainingClassifier classifierTemplateParameter::classifierTemplateParameter)

134 Unified Modeling Language 2.5

The classifiers that constrain the argument that can be used for the parameter. If the allowSubstitutable
attribute is true, then any Classifier that is compatible with this constraining Classifier can be substituted;
otherwise, it must be either this Classifier or one of its specializations. If this property is empty, there are no
constraints on the Classifier that can be used as an argument.

* parameteredElement : Classifier [1..1]{redefines TemplateParameter::parameteredElement} (opposite
Classifier::templateParameter)
The Classifier exposed by this ClassifierTemplateParameter.

9.9.5.6 Constraints

* has_constraining_classifier
If allowSubstitutable is true, then there must be a constrainingClassifier.

inv: allowSubstitutable inplies constrainingC assifier->notEnmpty()

e parametered element no features
The parameteredElement has no direct features, and if constrainedElement is empty it has no generalizations.

i nv: paraneteredEl enent. feature->i senpty() and (constrainingCd assifier->iseEnpty() inplies
par anet er edEl enent . al | Parent s()->i sEnpty())

* matching_abstract
If the parameteredElement is not abstract, then the Classifier used as an argument shall not be abstract.

inv: (not paraneteredEl enent.isAbstract) inplies tenplateParaneterSubstitution.actual -
>forAll (a | not a.ocl AsType(d assifier).isAbstract)

e actual is classifier
The argument to a ClassifierTemplateParameter is a Classifier.

inv: tenplateParaneterSubstitution.actual->forAl(a | a.ocllsKindO(dassifier))

e constraining_classifiers_constrain_args
If there are any constrainingClassifiers, then every argument must be the same as or a specialization of them,
or if allowSubstitutable is true, then it can also be substitutable.

inv: tenpl ateParaneter Substitution.actual ->forAl(a |
let arg : Classifier = a.ocl AsType(Cl assifier) in
constrai ningC assifier->forAl (
cc |
arg = cc or arg.confornsTo(cc) or (allowSubstitutable and
arg.isSubstitutabl eFor(cc))
)

)

e constraining_classifiers_constrain_parametered element
If there are any constrainingClassifiers, then the parameteredElement must be the same as or a specialization of
them, or if allowSubstitutable is true, then it can also be substitutable.

inv: constrainingd assifier->forAll(
cc | paraneteredEl enent = cc or paraneteredEl ement. confornsTo(cc) or
(al l owSubstitutabl e and paraneteredEl enent.isSubstitutabl eFor(cc))

Unified Modeling Language 2.5 135

9.9.6 Feature [Abstract Class]
9.9.6.1 Description
A Feature declares a behavioral or structural characteristic of Classifiers.

9.9.6.2 Diagrams

Classifiers, Features, Structured Classifiers

9.9.6.3 Generalizations
RedefinableElement
9.9.6.4 Specializations

BehavioralFeature, StructuralFeature, Connector

9.9.6.5 Attributes

* isStatic : Boolean [1..1] = false
Specifies whether this Feature characterizes individual instances classified by the Classifier (false) or the
Classifier itself (true).

9.9.6.6 Association Ends

e /featuringClassifier : Classifier [0..1]{union, subsets A_member memberNamespace::memberNamespace }
(opposite Classifier::feature)
The Classifiers that have this Feature as a feature.

9.9.7 Generalization [Class]

9.9.71 Description

A Generalization is a taxonomic relationship between a more general Classifier and a more specific Classifier. Each
instance of the specific Classifier is also an instance of the general Classifier. The specific Classifier inherits the features
of the more general Classifier. A Generalization is owned by the specific Classifier.

9.9.7.2 Diagrams

Classifiers, Generalization Sets

9.9.7.3 Generalizations
DirectedRelationship
9.9.74 Attributes

* isSubstitutable : Boolean [0..1] = true
Indicates whether the specific Classifier can be used wherever the general Classifier can be used. If true, the
execution traces of the specific Classifier shall be a superset of the execution traces of the general Classifier. If
false, there is no such constraint on execution traces. If unset, the modeler has not stated whether there is such
a constraint or not.

136 Unified Modeling Language 2.5

9.9.7.5

9.9.8

9.9.8.1

Association Ends

general : Classifier [1..1]{subsets DirectedRelationship::target} (opposite

A_general generalization::generalization)
The general classifier in the Generalization relationship.

generalizationSet : GeneralizationSet [0..*] (opposite GeneralizationSet::generalization)
Represents a set of instances of Generalization. A Generalization may appear in many GeneralizationSets.

specific : Classifier [1..1]{subsets DirectedRelationship::source, subsets Element::owner} (opposite

Classifier::generalization)
The specializing Classifier in the Generalization relationship.

GeneralizationSet [Class]

Description

A GeneralizationSet is a PackageableElement whose instances represent sets of Generalization relationships.

9.9.8.2

9.9.8.3

9.9.84

9.9.8.5

9.9.8.6

Diagrams
Classifiers, Generalization Sets
Generalizations

PackageableElement

Attributes

isCovering : Boolean [1..1] = false

Indicates (via the associated Generalizations) whether or not the set of specific Classifiers are covering for a
particular general classifier. When isCovering is true, every instance of a particular general Classifier is also an
instance of at least one of its specific Classifiers for the GeneralizationSet. When isCovering is false, there are
one or more instances of the particular general Classifier that are not instances of at least one of its specific
Classifiers defined for the GeneralizationSet.

isDisjoint : Boolean [1..1] = false

Indicates whether or not the set of specific Classifiers in a Generalization relationship have instance in
common. If isDisjoint is true, the specific Classifiers for a particular GeneralizationSet have no members in
common; that is, their intersection is empty. If isDisjoint is false, the specific Classifiers in a particular
GeneralizationSet have one or more members in common; that is, their intersection is not empty.

Association Ends

generalization : Generalization [0..*] (opposite Generalization::generalizationSet)
Designates the instances of Generalization that are members of this GeneralizationSet.

powertype : Classifier [0..1] (opposite Classifier::powertypeExtent)
Designates the Classifier that is defined as the power type for the associated GeneralizationSet, if there is one.

Constraints

generalization_same_classifier
Every Generalization associated with a particular GeneralizationSet must have the same general Classifier.

Unified Modeling Language 2.5 137

9.9.9

9.9.9.1

inv: generalization->collect(general)->asSet()->size() <=1

maps_to_generalization set

The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an
instance of itself nor may its instances be its subclasses.

inv: powertype <> null inplies generalization->forAll(gen |
not (gen.general = powertype) and not gen.general.allParents()->includes(powertype) and
not (gen.specific = powertype) and not powertype.all Parents()->includes(gen. specific)

InstanceSpecification [Class]

Description

An InstanceSpecification is a model element that represents an instance in a modeled system. An InstanceSpecification
can act as a DeploymentTarget in a Deployment relationship, in the case that it represents an instance of a Node. It can
also act as a DeployedArtifact, if it represents an instance of an Artifact.

9.9.9.2

9.9.9.3

9.9.94

9.9.9.5

9.9.9.6

138

Diagrams

Instances, DataTypes, Deployments
Generalizations

DeploymentTarget, PackageableElement, DeployedArtifact
Specializations

EnumerationLiteral

Association Ends

classifier : Classifier [0..*] (opposite A_classifier instanceSpecification::instanceSpecification)
The Classifier or Classifiers of the represented instance. If multiple Classifiers are specified, the instance is
classified by all of them.

¢ slot : Slot [0..*]{subsets Element::ownedElement} (opposite Slot::owninglnstance)

A Slot giving the value or values of a StructuralFeature of the instance. An InstanceSpecification can have one
Slot per StructuralFeature of its Classifiers, including inherited features. It is not necessary to model a Slot for
every StructuralFeature, in which case the InstanceSpecification is a partial description.

¢ specification : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite
A_specification owninglnstanceSpec::owninglnstanceSpec)
A specification of how to compute, derive, or construct the instance.

Constraints

deployment_artifact
An InstanceSpecification can act as a DeployedArtifact if it represents an instance of an Artifact.

inv: deploynent ForArtifact->notEnpty() inplies classifier->exists(ocllsKindO(Artifact))

structural feature
No more than one slot in an InstanceSpecification may have the same definingFeature.

Unified Modeling Language 2.5

inv: classifier->forAll(c | (c.allSlottabl eFeatures()->forAll(f | slot->select(s |
s.definingFeature = f)->size() <= 1)))

e defining_feature
The definingFeature of each slot is a StructuralFeature related to a classifier of the InstanceSpecification,
including direct attributes, inherited attributes, private attributes in generalizations, and memberEnds of
Associations, but excluding redefined StructuralFeatures.

inv: slot->forAll(

s | classifier->exists (c | c.allSlottabl eFeatures()->i ncl udes
(s.definingFeature)))

e deployment target

An InstanceSpecification can act as a DeploymentTarget if it represents an instance of a Node and functions as

a part in the internal structure of an encompassing Node.

inv: depl oynent->not Enpty() inplies classifier->exists(node | node. ocl|sKi ndOf (Node) and
Node. al | I nstances()->exists(n | n.part->exists(p | p.type = node)))

9.9.10 InstanceValue [Class]

9.9.10.1 Description

An InstanceValue is a ValueSpecification that identifies an instance.

9.9.10.2 Diagrams
Instances
9.9.10.3 Generalizations

ValueSpecification

9.9.10.4 Association Ends

* instance : InstanceSpecification [1..1] (opposite A_instance instanceValue::instanceValue)
The InstanceSpecification that represents the specified value.

9.9.11 Operation [Class]

9.9.11.1 Description

An Operation is a BehavioralFeature of a Classifier that specifies the name, type, parameters, and constraints for
invoking an associated Behavior. An Operation may invoke both the execution of method behaviors as well as other
behavioral responses. Operation specializes TemplateableElement in order to support specification of template
operations and bound operations. Operation specializes ParameterableElement to specify that an operation can be
exposed as a formal template parameter, and provided as an actual parameter in a binding of a template.

9.9.11.2 Diagrams

Operations, Classes, Protocol State Machines, DataTypes, Interfaces, Artifacts, Events, Invocation Actions

9.9.11.3 Generalizations

TemplateableElement, ParameterableElement, BehavioralFeature

Unified Modeling Language 2.5

9.9.11.4 Attributes

® /isOrdered : Boolean [1..1]
Specifies whether the return parameter is ordered or not, if present. This information is derived from the return
result for this Operation.

® isQuery : Boolean [1..1] = false
Specifies whether an execution of the BehavioralFeature leaves the state of the system unchanged
(isQuery=true) or whether side effects may occur (isQuery=false).

e /isUnique : Boolean [1..1]
Specifies whether the return parameter is unique or not, if present. This information is derived from the return
result for this Operation.

* /lower : Integer [0..1]
Specifies the lower multiplicity of the return parameter, if present. This information is derived from the return
result for this Operation.

* /upper : UnlimitedNatural [0..1]
The upper multiplicity of the return parameter, if present. This information is derived from the return result for
this Operation.

9.9.11.5 Association Ends

* ¢ bodyCondition : Constraint [0..1]{subsets Namespace::ownedRule} (opposite

A_bodyCondition bodyContext::bodyContext)
An optional Constraint on the result values of an invocation of this Operation.

® class: Class [0..1]{subsets Feature::featuringClassifier, subsets NamedElement::namespace, subsets
RedefinableElement::redefinitionContext} (opposite Class::ownedOperation)
The Class that owns this operation, if any.

® datatype : DataType [0..1]{subsets Feature::featuringClassifier, subsets NamedElement::namespace, subsets
RedefinableElement::redefinitionContext} (opposite DataType::ownedOperation)
The DataType that owns this Operation, if any.

* interface : Interface [0..1]{subsets Feature::featuringClassifier, subsets NamedElement::namespace, subsets
RedefinableElement::redefinitionContext} (opposite Interface::ownedOperation)
The Interface that owns this Operation, if any.

* ¢ ownedParameter : Parameter [0..*]{ordered, redefines BehavioralFeature::ownedParameter} (opposite

Parameter::operation)
The parameters owned by this Operation.

® ¢ postcondition : Constraint [0..*]{subsets Namespace::ownedRule} (opposite

A_postcondition postContext::postContext)
An optional set of Constraints specifying the state of the system when the Operation is completed.

® ¢ precondition : Constraint [0..*]{subsets Namespace::ownedRule} (opposite

A_precondition_preContext::preContext)
An optional set of Constraints on the state of the system when the Operation is invoked.

140 Unified Modeling Language 2.5

* raisedException : Type [0..*]{redefines BehavioralFeature::raisedException} (opposite
A_raisedException_operation::operation)
The Types representing exceptions that may be raised during an invocation of this operation.

* redefinedOperation : Operation [0..*]{subsets RedefinableElement::redefinedElement} (opposite

A_redefinedOperation _operation::operation)
The Operations that are redefined by this Operation.

* templateParameter : OperationTemplateParameter [0..1]{redefines ParameterableElement::templateParameter }

(opposite OperationTemplateParameter::parameteredElement)
The OperationTemplateParameter that exposes this element as a formal parameter.

* J/type : Type [0..1]{} (opposite A_type operation::operation)
The return type of the operation, if present. This information is derived from the return result for this
Operation.

9.9.11.6 Operations

* isConsistentWith(redefiningElement : RedefinableElement) : Boolean {redefines
RedefinableElement::isConsistentWith() }
The query isConsistentWith() specifies, for any two Operations in a context in which redefinition is possible,
whether redefinition would be consistent. A redefining operation is consistent with a redefined operation if it
has the same number of owned parameters, and for each parameter the following holds: - Direction, ordering
and uniqueness are the same. - The corresponding types are covariant, contravariant or invariant. - The
multiplicities are compatible, depending on the parameter direction.

pre: redefiningEl enent.isRedefinitionContextValid(self)
body: redefini ngEl enent. ocl | skKi ndOf (Operati on) and
let op : Operation = redefiningEl enent. ocl AsType(Operation) in
sel f. ownedPar anet er - >si ze() = op. ownedPar anet er - >si ze() and
Sequence{l. . sel f. ownedPar anet er - >si ze() }->
forAll (i |
| et redefiningParam: Paraneter = op.ownedParaneter->at (i),
redefi nedParam : Parameter = self.ownedParaneter->at(i) in
(redefini ngParam i sUni que = redefi nedParam i sUni que) and
(redefiningParamisOrdered = redefi nedParam isOrdered) and
(redefini ngParam direction = redefi nedParam di rection) and
(redefini ngParam t ype. conf or nsTo(r edef i nedParam t ype) or
redef i nedPar am t ype. conf or msTo(r edef i ni ngParam type)) and
(redefiningParam direction = ParaneterDirectionKind::inout inplies
(redefi nedParam conpati bl eWt h(redefi ni ngParan) and
redef i ni ngPar am conpati bl eWth(redefi nedParan))) and
(redefiningParamdirection = ParameterDirectionKind:: _'"in" inplies
redef i nedPar am conpati bl eWt h(redefini ngParam) and
((redefiningParam direction = ParaneterDirectionKind::out or
redefini ngParam directi on = ParameterDirectionKind::return) inplies
redef i ni ngParam conpati bl eW t h(redefi nedParanm))

® isOrdered() : Boolean
If this operation has a return parameter, isOrdered equals the value of isOrdered for that parameter. Otherwise
i1sOrdered is false.

body: if returnResult()->notEnpty() then returnResult()-> exists(isOrdered) else false endif
* isUnique() : Boolean
If this operation has a return parameter, isUnique equals the value of isUnique for that parameter. Otherwise

isUnique is true.

body: if returnResult()->notEnmpty() then returnResult()->exists(isUnique) else true endif

Unified Modeling Language 2.5 141

* lower() : Integer
If this operation has a return parameter, lower equals the value of lower for that parameter. Otherwise lower
has no value.

body: if returnResult()->notEnmpty() then returnResult()->any(true).lower else null endif

* returnResult() : Parameter [0..*]
The query returnResult() returns the set containing the return parameter of the Operation if one exists,
otherwise, it returns an empty set

body: ownedPar aneter->sel ect (direction = ParaneterDirectionKind::return)

* type() : Type
If this operation has a return parameter, type equals the value of type for that parameter. Otherwise type has no
value.

body: if returnResult()->notEnpty() then returnResult()->any(true).type else null endif

e upper() : UnlimitedNatural
If this operation has a return parameter, upper equals the value of upper for that parameter. Otherwise upper
has no value.

body: if returnResult()->notEnmpty() then returnResult()->any(true).upper else null endif

9.9.11.7 Constraints

e at most one return
An Operation can have at most one return parameter; i.e., an owned parameter with the direction set to 'return.'

inv: self.ownedParaneter->select(direction = ParaneterDirectionKind::return)->size() <=1

e only body for query
A bodyCondition can only be specified for a query Operation.

inv: bodyCondition <> null inplies isQuery
9.9.12 OperationTemplateParameter [Class]
9.9.12.1 Description
An OperationTemplateParameter exposes an Operation as a formal parameter for a template.
9.9.12.2 Diagrams
Operations
9.9.12.3 Generalizations

TemplateParameter
9.9.12.4 Association Ends

* parameteredElement : Operation [1..1]{redefines TemplateParameter::parameteredElement} (opposite

Operation::templateParameter)
The Operation exposed by this OperationTemplateParameter.

142 Unified Modeling Language 2.5

9.9.12.5 Constraints

e match default signature

inv: defaul t->notEnpty() inplies (default.ocllsKindO (Qperation) and (let defaultOp :
Operation = default.ocl AsType(Operation) in
def aul t Op. ownedPar anet er - >si ze() = par anet er edEl enent . ownedPar anet er - >si ze() and
Sequence{1.. defaul t Op. ownedPar anet er->size()}->forAl(ix |
let pl: Paraneter = defaultOp.ownedParaneter->at(ix), p2 : Paraneter =
par anet er edEl enent . ownedPar aneter->at (i x) in

pl.type = p2.type and pl.upper = p2.upper and pl.lower = p2.lower and pl.direction

= p2.direction and pl.isOdered = p2.1sOrdered and pl.isUnique = p2.isUnique)))

9.9.13 Parameter [Class]

9.9.13.1 Description

A Parameter is a specification of an argument used to pass information into or out of an invocation of a
BehavioralFeature. Parameters can be treated as ConnectableElements within Collaborations.

9.9.13.2 Diagrams

Features, Operations, Object Nodes, Expressions, Behaviors
9.9.13.3 Generalizations

MultiplicityElement, ConnectableElement

9.9.13.4 Attributes

® /default : String [0..1]
A String that represents a value to be used when no argument is supplied for the Parameter.

® direction : ParameterDirectionKind [1..1] =in
Indicates whether a parameter is being sent into or out of a behavioral element.

e cffect : ParameterEffectKind [0..1]

Specifies the effect that executions of the owner of the Parameter have on objects passed in or out of the
parameter.

* isException : Boolean [1..1] = false
Tells whether an output parameter may emit a value to the exclusion of the other outputs.

® isStream : Boolean [1..1] = false
Tells whether an input parameter may accept values while its behavior is executing, or whether an output
parameter may post values while the behavior is executing.

9.9.13.5 Association Ends

® ¢ defaultValue : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite

A_defaultValue_owningParameter::owningParameter)
Specifies a ValueSpecification that represents a value to be used when no argument is supplied for the

Parameter.

Unified Modeling Language 2.5

143

operation : Operation [0..1]{subsets A_ownedParameter_ownerFormalParam::ownerFormalParam} (opposite
Operation::ownedParameter)
The Operation owning this parameter.

parameterSet : ParameterSet [0..*] (opposite ParameterSet::parameter)
The ParameterSets containing the parameter. See ParameterSet.

9.9.13.6 Operations

default() : String [0..1]
Derivation for Parameter::/default

body: if self.type = String then defaultValue.stringValue() else null endif

9.9.13.7 Constraints

144

in_and out
Only in and inout Parameters may have a delete effect. Only out, inout, and return Parameters may have a
create effect.

inv: (effect = ParaneterEffectKind::delete inplies (direction =
ParaneterDirectionKind::_"in' or direction = ParaneterDirectionKind::inout))

and

(effect = ParameterEffectKind::create inplies (direction = ParaneterDirectionKind::out or
direction = ParaneterDirectionKind::inout or direction = ParaneterDirectionKind::return))

not_exception
An input Parameter cannot be an exception.

inv: isException inplies (direction <> ParaneterDirectionKind::_'"in' and direction <>
Par anet er Di recti onKi nd: : i nout)

connector_end
A Parameter may only be associated with a Connector end within the context of a Collaboration.

inv: end->not Enpty() inplies collaboration->notEnmpty()

reentrant_behaviors
Reentrant behaviors cannot have stream Parameters.

inv: (isStream and behavior <> null) inplies not behavior.isReentrant

stream_and_exception
A Parameter cannot be a stream and exception at the same time.

inv: not (isException and isStream

object_effect
Parameters typed by DataTypes cannot have an effect.

inv: (type.ocl!|sKindO (DataType)) inplies (effect = null)

Unified Modeling Language 2.5

9.9.14 ParameterDirectionKind [Enumeration]

9.9.14.1 Description

ParameterDirectionKind is an Enumeration that defines literals used to specify direction of parameters.

9.9.14.2 Diagrams
* Features
9.9.14.3 Literals

* in
Indicates that Parameter values are passed in by the caller.

e inout
Indicates that Parameter values are passed in by the caller and (possibly different) values passed out to the
caller.

e out

Indicates that Parameter values are passed out to the caller.

e return
Indicates that Parameter values are passed as return values back to the caller.

9.9.15 ParameterEffectKind [Enumeration]

9.9.15.1 Description

ParameterEffectKind is an Enumeration that indicates the effect of a Behavior on values passed in or out of its
parameters.

9.9.15.2 Diagrams

* Features

9.9.15.3 Literals

e create
Indicates that the behavior creates values.

e read
Indicates objects that are values of the parameter have values of their properties, or links in which they
participate, or their classifiers retrieved during executions of the behavior.

e update
Indicates objects that are values of the parameter have values of their properties, or links in which they

participate, or their classification changed during executions of the behavior.

e delete
Indicates objects that are values of the parameter do not exist after executions of the behavior are finished.

Unified Modeling Language 2.5 145

9.9.16 ParameterSet [Class]

9.9.16.1 Description

A ParameterSet designates alternative sets of inputs or outputs that a Behavior may use.

9.9.16.2 Diagrams

Features, Behaviors

9.9.16.3 Generalizations

NamedElement

9.9.16.4 Association Ends

® ¢ condition : Constraint [0..*]{subsets Element::ownedElement} (opposite
A_condition_parameterSet::parameterSet)
A constraint that should be satisfied for the owner of the Parameters in an input ParameterSet to start execution
using the values provided for those Parameters, or the owner of the Parameters in an output ParameterSet to
end execution providing the values for those Parameters, if all preconditions and conditions on input
ParameterSets were satisfied.

® parameter : Parameter [1..*] (opposite Parameter::parameterSet)
Parameters in the ParameterSet.

9.9.16.5 Constraints

e same parameterized entity
The Parameters in a ParameterSet must all be inputs or all be outputs of the same parameterized entity, and the
ParameterSet is owned by that entity.

inv: paraneter->forAll(pl, p2 | self.owner = pl.owner and self.owner = p2.owner and
pl.direction = p2.direction)

* input
If a parameterized entity has input Parameters that are in a ParameterSet, then any inputs that are not in a
ParameterSet must be streaming. Same for output Parameters.

inv: ((paraneter->exists(direction = ParaneterDirectionKind::_'in')) inplies

behavi or al Feat ur e. ownedPar anet er->select(p | p.direction = ParaneterDirectionKind::_"in'
and p. paraneterSet->i senpty())->forAll(isStream)

and

((paraneter->exists(direction = ParaneterDirectionKind::out)) inplies
behavi or al Feat ur e. ownedPar anet er->select(p | p.direction = ParaneterDirectionKi nd: : out
and p. paraneter Set->i sEnmpty())->forAll(isStream)

e two_parameter_sets
Two ParameterSets cannot have exactly the same set of Parameters.

inv: parameter->forAll (paranmeterSet->forAl(sl, s2 | sl->size() = s2->size() inplies
sl. paraneter->exists(p | not s2.paraneter->includes(p))))

146 Unified Modeling Language 2.5

9.9.17 Property [Class]

9.9.17.1 Description

A Property is a StructuralFeature. A Property related by ownedAttribute to a Classifier (other than an association)
represents an attribute and might also represent an association end. It relates an instance of the Classifier to a value or
set of values of the type of the attribute. A Property related by memberEnd to an Association represents an end of the
Association. The type of the Property is the type of the end of the Association. A Property has the capability of being a
DeploymentTarget in a Deployment relationship. This enables modeling the deployment to hierarchical nodes that have
Properties functioning as internal parts. Property specializes ParameterableElement to specify that a Property can be
exposed as a formal template parameter, and provided as an actual parameter in a binding of a template.

9.9.17.2 Diagrams

Classifiers, Properties, Encapsulated Classifiers, Structured Classifiers, Classes, Associations, DataTypes,
Signals, Interfaces, Profiles, Deployments, Artifacts, Link End Data, Link Object Actions

9.9.17.3 Generalizations
ConnectableElement, DeploymentTarget, StructuralFeature
9.9.17.4 Specializations

Port, ExtensionEnd

9.9.17.5 Attributes

® aggregation : AggregationKind [1..1] = none
Specifies the kind of aggregation that applies to the Property.

* /isComposite : Boolean [1..1] = false
If isComposite is true, the object containing the attribute is a container for the object or value contained in the
attribute. This is a derived value, indicating whether the aggregation of the Property is composite or not.

® isDerived : Boolean [1..1] = false
Specifies whether the Property is derived, i.e., whether its value or values can be computed from other
information.

* isDerivedUnion : Boolean [1..1] = false
Specifies whether the property is derived as the union of all of the Properties that are constrained to subset it.

* isID: Boolean [1..1] = false
True indicates this property can be used to uniquely identify an instance of the containing Class.

9.9.17.6 Association Ends

® association : Association [0..1]{subsets A_member memberNamespace::memberNamespace} (opposite
Association::memberEnd)
The Association of which this Property is a member, if any.

* associationEnd : Property [0..1]{subsets Element::owner} (opposite Property::qualifier)
Designates the optional association end that owns a qualifier attribute.

Unified Modeling Language 2.5 147

class : Class [0..1]{subsets NamedElement::namespace, subsets
A_ownedAttribute_structuredClassifier::structuredClassifier, subsets A_attribute_classifier::classifier}
(opposite Class::ownedAttribute)

The Class that owns this Property, if any.

datatype : DataType [0..1]{subsets NamedElement::namespace, subsets A_attribute_classifier::classifier}
(opposite DataType::ownedAttribute)
The DataType that owns this Property, if any.

¢ defaultValue : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite

A_defaultValue owningProperty::owningProperty)
A ValueSpecification that is evaluated to give a default value for the Property when an instance of the owning

Classifier is instantiated.

interface : Interface [0..1]{subsets NamedElement::namespace, subsets A_attribute classifier::classifier}
(opposite Interface::ownedAttribute)
The Interface that owns this Property, if any.

/opposite : Property [0..1] (opposite A_opposite_property::property)
In the case where the Property is one end of a binary association this gives the other end.

owningAssociation : Association [0..1]{subsets Feature::featuringClassifier, subsets
NamedElement::namespace, subsets Property::association, subsets RedefinableElement::redefinitionContext}
(opposite Association::ownedEnd)

The owning association of this property, if any.

¢ qualifier : Property [0..*]{ordered, subsets Element::ownedElement} (opposite Property::associationEnd)
An optional list of ordered qualifier attributes for the end.

redefinedProperty : Property [0..*]{subsets RedefinableElement::redefinedElement} (opposite
A_redefinedProperty_property::property)
The properties that are redefined by this property, if any.

subsettedProperty : Property [0..*] (opposite A_subsettedProperty property::property)
The properties of which this Property is constrained to be a subset, if any.

9.9.17.7 Operations

148

isAttribute() : Boolean
The query isAttribute() is true if the Property is defined as an attribute of some Classifier.

body: not classifier->i senpty()

isCompatibleWith(p : ParameterableElement) : Boolean {redefines

ParameterableElement::isCompatibleWith() }

The query isCompatibleWith() determines if this Property is compatible with the specified
ParameterableElement. This Property is compatible with ParameterableElement p if the kind of this Property is
thesame as or a subtype of the kind of p. Further, if p is a TypedElement, then the type of this Property must be
conformant with the type of p.

body: self.ocl|sKi ndOf (p.ocl Type()) and (p.ocl|sKi ndOf (TypeEl enent) inplies
sel f.type. confornsTo(p. ocl AsType(TypedEl enent) . type))

Unified Modeling Language 2.5

* isComposite() : Boolean
The value of isComposite is true only if aggregation is composite.

body: aggregati on = Aggregati onKind:: conposite

* isConsistentWith(redefiningElement : RedefinableElement) : Boolean {redefines

RedefinableElement::isConsistentWith() }

The query isConsistentWith() specifies, for any two Properties in a context in which redefinition is possible,
whether redefinition would be logically consistent. A redefining Property is consistent with a redefined
Property if the type of the redefining Property conforms to the type of the redefined Property, and the
multiplicity of the redefining Property (if specified) is contained in the multiplicity of the redefined Property.

pre: redefiningEl enent.isRedefinitionContextValid(self)
body: redefini ngEl enent. ocl | ski ndOf (Property) and
let prop : Property = redefiningEl enent. ocl AsType(Property) in
(prop.type.confornsTo(sel f.type) and
((prop. | ower Bound()->not Enpty() and sel f.| owerBound()->not Enpty()) inplies
prop. | ower Bound() >= self.|owerBound()) and
((prop. upper Bound() - >not Enpty() and sel f. upperBound()->not Enpty()) inplies
prop. | ower Bound() <= self.|owerBound()) and
(self.isConposite inplies prop.isConposite))

* isNavigable() : Boolean
The query isNavigable() indicates whether it is possible to navigate across the property.

body: not classifier->i sEnpty() or association. navi gabl eOmedEnd- >i ncl udes(sel f)

* opposite() : Property
If this property is a memberEnd of a binary association, then opposite gives the other end.

body: if association <> null and associ ati on. menber End- >si ze() = 2
t hen
associ ati on. nenber End- >any(e | e <> self)
el se
nul |
endi f

* subsettingContext() : Type [0..*]
The query subsettingContext() gives the context for subsetting a Property. It consists, in the case of an
attribute, of the corresponding Classifier, and in the case of an association end, all of the Classifiers at the other
ends.

body: if association <> null
tlhen associ ati on. menber End- >excl udi ng(sel f)->col | ect (type)->asSet ()
el se
if classifier<>null
then cl assifier->asSet ()
el se Set{}
endi f
endi f

9.9.17.8 Constraints

e subsetting context conforms
Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted
property.

inv: subsettedProperty->notEnmpty() inplies
(subsettingContext()->notEmpty() and subsettingContext()->forAl (sc |
subsettedProperty->forAll (sp |
sp. subsettingCont ext ()->exists(c | sc.confornmsTo(c)))))

Unified Modeling Language 2.5 149

150

derived union_is read only
A derived union is read only.

inv: isDerivedUnion inplies i sReadOnly

multiplicity of composite
A multiplicity on the composing end of a composite aggregation must not have an upper bound greater than 1.

inv: isConposite and association <> null inplies opposite.upperBound() <=1

redefined property inherited
A redefined Property must be inherited from a more general Classifier.

inv: (redefinedProperty->notEnmpty()) inplies
(redefinitionContext->notEnpty() and
redefi nedProperty->forAll (rp
((redefinitionContext->collect(fc|
fc.allParents()))->asSet())->collect(c| c.allFeatures())->asSet()->includes(rp)))

subsetting_rules
A subsetting Property may strengthen the type of the subsetted Property, and its upper bound may be less.

inv: subsettedProperty->forAll(sp |
sel f.type. confornsTo(sp.type) and
((sel f.upperBound()->not Enpty() and sp. upper Bound()->not Enpty()) inplies
sel f. upperBound() <= sp.upperBound()))

binding_to_attribute
A binding of a PropertyTemplateParameter representing an attribute must be to an attribute.

inv: (self.isAttribute()
and (tenpl at ePar anet er Substi t uti on->not Enpty())
implies (tenplateParaneterSubstitution->forAll(ts |
ts.formal . ocl | sKi ndOf (Property)
and ts.formal.ocl AsType(Property).isAttribute())))

derived_union_is_derived
A derived union is derived.

inv: isDerivedUnion inplies isDerived

deployment_target
A Property can be a DeploymentTarget if it is a kind of Node and functions as a part in the internal structure of
an encompassing Node.

i nv: depl oynent ->not Enpty() inplies owner.ocl!|sKi ndOf(Node) and Node. al | | nstances() -
>exists(n | n.part->exists(p | p = self))

subsetted property names
A Property may not subset a Property with the same name.

inv: subsettedProperty->forAll(sp | sp.name <> nane)

type_of opposite _end
If a Property is a classifier-owned end of a binary Association, its owner must be the type of the opposite end.

inv: (opposite->notEmpty() and owni ngAssoci ati on->i sEnpty()) inplies classifier =
opposite.type

Unified Modeling Language 2.5

e qualified is association_end
All qualified Properties must be Association ends

inv: qualifier->notEmpty() inplies association->not Enpty()
9.9.18 RedefinableElement [Abstract Class]

9.9.18.1 Description

A RedefinableElement is an element that, when defined in the context of a Classifier, can be redefined more specifically

or differently in the context of another Classifier that specializes (directly or indirectly) the context Classifier.
9.9.18.2 Diagrams

Classifiers, Classifier Templates, Features, Activities, Use Cases, State Machine Redefinition

9.9.18.3 Generalizations
NamedElement
9.9.18.4 Specializations

Classifier, Feature, RedefinableTemplateSignature, ActivityEdge, ActivityNode, ExtensionPoint, Region,
State, Transition

9.9.18.5 Attributes

* isLeaf: Boolean [1..1] = false
Indicates whether it is possible to further redefine a RedefinableElement. If the value is true, then it is not
possible to further redefine the RedefinableElement.

9.9.18.6 Association Ends

* /redefinedElement : RedefinableElement [0..*]{union} (opposite
A_redefinedElement redefinableElement::redefinableElement)
The RedefinableElement that is being redefined by this element.

* /redefinitionContext : Classifier [0..*]{union} (opposite
A_redefinitionContext redefinableElement::redefinableElement)
The contexts that this element may be redefined from.

9.9.18.7 Operations

* isConsistentWith(redefiningElement : RedefinableElement) : Boolean

The query isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinition is
possible, whether redefinition would be logically consistent. By default, this is false; this operation must be
overridden for subclasses of RedefinableElement to define the consistency conditions.

pre: redefiningEl ement.isRedefinitionContextValid(self)
body: false

* isRedefinitionContextValid(redefinedElement : RedefinableElement) : Boolean
The query isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement
are properly related to the redefinition contexts of the specified RedefinableElement to allow this element to

Unified Modeling Language 2.5 151

redefine the other. By default at least one of the redefinition contexts of this element must be a specialization of
at least one of the redefinition contexts of the specified element.

body: redefinitionContext->exists(c | c.allParents()-
>i ncl udesAl | (redefinedEl enent. redefinitionContext))

9.9.18.8 Constraints

* redefinition_consistent
A redefining element must be consistent with each redefined element.

inv: redefinedEl enent->forAll(re | re.isConsistentWth(self))

* non_leaf redefinition
A RedefinableElement can only redefine non-leaf RedefinableElements.

inv: redefinedEl enent->forAll(re | not re.isLeaf)

e redefinition context valid
At least one of the redefinition contexts of the redefining element must be a specialization of at least one of the
redefinition contexts for each redefined element.

inv: redefinedEl enent->forAll(re | self.isRedefinitionContextValid(re))

9.9.19 RedefinableTemplateSignature [Class]

9.9.19.1 Description

A RedefinableTemplateSignature supports the addition of formal template parameters in a specialization of a template
classifier.

9.9.19.2 Diagrams
Classifier Templates

9.9.19.3 Generalizations
RedefinableElement, TemplateSignature

9.9.19.4 Association Ends

® classifier : Classifier [1..1]{subsets RedefinableElement::redefinitionContext, redefines

TemplateSignature::template} (opposite Classifier::ownedTemplateSignature)
The Classifier that owns this RedefinableTemplateSignature.

* extendedSignature : RedefinableTemplateSignature [0..*]{subsets RedefinableElement::redefinedElement}
(opposite A_extendedSignature_redefinableTemplateSignature::redefinableTemplateSignature)
The signatures extended by this RedefinableTemplateSignature.

® /inheritedParameter : TemplateParameter [0..*]{subsets TemplateSignature::parameter} (opposite

A_inheritedParameter redefinableTemplateSignature::redefinableTemplateSignature)
The formal template parameters of the extended signatures.

152 Unified Modeling Language 2.5

9.9.19.5 Operations

® inheritedParameter() : TemplateParameter [0..*]
Derivation for RedefinableTemplateSignature::/inheritedParameter

body: if extendedSignature->i sEnpty() then Set{} el se extendedSi gnature. paraneter->asSet ()
endi f

* isConsistentWith(redefiningElement : RedefinableElement) : Boolean {redefines
RedefinableElement::isConsistentWith() }
The query isConsistentWith() specifies, for any two RedefinableTemplateSignatures in a context in which
redefinition is possible, whether redefinition would be logically consistent. A redefining template signature is
always consistent with a redefined template signature, as redefinition only adds new formal parameters.

pre: redefiningEl ement.isRedefinitionContextValid(self)
body: redefini ngEl enent. ocl | sKi ndOFf (Redef i nabl eTenpl at eSi gnat ur e)

9.9.19.6 Constraints

¢ redefines_parents
If any of the parent Classifiers are a template, then the extendedSignature must include the signature of that
Classifier.

inv: classifier.allParents()->forAll(c | c.ownedTenpl at eSi gnature->not Enpty() inplies self-
>cl osur e(ext endedSi gnat ur e) - >i ncl udes(c. ownedTenpl at eSi gnature))

9.9.20 Slot [Class]

9.9.20.1 Description

A Slot designates that an entity modeled by an InstanceSpecification has a value or values for a specific
StructuralFeature.

9.9.20.2 Diagrams

Instances

9.9.20.3 Generalizations

Element

9.9.20.4 Association Ends

® definingFeature : StructuralFeature [1..1] (opposite A_definingFeature slot::slot)
The StructuralFeature that specifies the values that may be held by the Slot.

* owninglnstance : InstanceSpecification [1..1]{subsets Element::owner} (opposite InstanceSpecification::slot)
The InstanceSpecification that owns this Slot.

® ¢ value : ValueSpecification [0..*]{ordered, subsets Element::ownedElement} (opposite

A _value owningSlot::owningSlot)
The value or values held by the Slot.

Unified Modeling Language 2.5 153

9.9.21 StructuralFeature [Abstract Class]

9.9.21.1 Description

A StructuralFeature is a typed feature of a Classifier that specifies the structure of instances of the Classifier.

9.9.21.2 Diagrams

Features, Properties, Instances, Structural Feature Actions
9.9.21.3 Generalizations

MultiplicityElement, TypedElement, Feature

9.9.21.4 Specializations

Property

9.9.21.5 Attributes

® isReadOnly : Boolean [1..1] = false
If isReadOnly is true, the StructuralFeature may not be written to after initialization.

9.9.22 Substitution [Class]

9.9.221 Description

A substitution is a relationship between two classifiers signifying that the substituting classifier complies with the
contract specified by the contract classifier. This implies that instances of the substituting classifier are runtime
substitutable where instances of the contract classifier are expected.

9.9.22.2 Diagrams
Classifiers

9.9.22.3 Generalizations
Realization

9.9.22.4 Association Ends

* contract : Classifier [1..1]{subsets Dependency::supplier} (opposite A_contract substitution::substitution)
The contract with which the substituting classifier complies.

* substitutingClassifier : Classifier [1..1]{subsets Dependency::client, subsets Element::owner} (opposite
Classifier::substitution)
Instances of the substituting classifier are runtime substitutable where instances of the contract classifier are
expected.

154 Unified Modeling Language 2.5

9.10 Association Descriptions

9.10.1 A_attribute_classifier [Association]

9.10.1.1 Diagrams
Classifiers
9.10.1.2 Owned Ends

® /classifier : Classifier [0..1]{union, subsets Feature::featuringClassifier, subsets
RedefinableElement::redefinitionContext} (opposite Classifier::attribute)

9.10.2 A_bodyCondition_bodyContext [Association]
9.10.21 Diagrams
Operations

9.10.2.2 Owned Ends

* bodyContext : Operation [0..1]{subsets Constraint::context} (opposite Operation::bodyCondition)

9.10.3 A_classifier_instanceSpecification [Association]

9.10.3.1 Diagrams
Instances
9.10.3.2 Specializations

A_classifier_enumerationLiteral

9.10.3.3 Owned Ends
* instanceSpecification : InstanceSpecification [0..*] (opposite InstanceSpecification::classifier)

9.10.4 A_classifier_templateParameter_parameteredElement [Association]
9.10.4.1 Diagrams

Classifier Templates

9.10.4.2 Member Ends
* (lassifier::templateParameter
® (lassifierTemplateParameter::parameteredElement

9.10.5 A_collaborationUse_classifier [Association]

9.10.51 Diagrams

Classifiers, Collaborations

Unified Modeling Language 2.5 155

9.10.5.2 Specializations

A_representation_classifier

9.10.5.3 Owned Ends

® classifier : Classifier [0..1]{subsets Element::owner} (opposite Classifier::collaborationUse)

9.10.6 A_condition_parameterSet [Association]

9.10.6.1 Diagrams

Features

9.10.6.2 Owned Ends
® parameterSet : ParameterSet [0..1]{subsets Element::owner} (opposite ParameterSet::condition)
9.10.7 A_constrainingClassifier_classifierTemplateParameter [Association]

9.10.71 Diagrams

Classifier Templates

9.10.7.2 Owned Ends

* classifierTemplateParameter : ClassifierTemplateParameter [0..*] (opposite
ClassifierTemplateParameter::constrainingClassifier)

9.10.8 A_contract_substitution [Association]

9.10.8.1 Diagrams
Classifiers
9.10.8.2 Owned Ends

® substitution : Substitution [0..*]{subsets A_supplier_supplierDependency::supplierDependency} (opposite
Substitution::contract)

9.10.9 A_defaultValue_owningParameter [Association]

9.10.9.1 Diagrams

Features

9.10.9.2 Owned Ends

* owningParameter : Parameter [0..1]{subsets Element::owner} (opposite Parameter::defaultValue)

156 Unified Modeling Language 2.5

9.10.10 A_defaultValue_owningProperty [Association]
9.10.10.1 Diagrams
Properties

9.10.10.2 Owned Ends

* owningProperty : Property [0..1]{subsets Element::owner} (opposite Property::defaultValue)

9.10.11 A_definingFeature_slot [Association]

9.10.11.1 Diagrams

Instances

9.10.11.2 Owned Ends
* slot: Slot [0..*] (opposite Slot::definingFeature)

9.10.12 A_extendedSignature_redefinableTemplateSignature [Association]
9.10.12.1 Diagrams
Classifier Templates

9.10.12.2 Owned Ends

* redefinableTemplateSignature : RedefinableTemplateSignature [0..*]{subsets
A_redefinedElement_redefinableElement::redefinableElement} (opposite
RedefinableTemplateSignature::extendedSignature)

9.10.13 A_feature_featuringClassifier [Association]

9.10.13.1 Diagrams

Classifiers, Features

9.10.13.2 Member Ends

® (lassifier::feature

® Feature::featuringClassifier

9.10.14 A_general_classifier [Association]

9.10.14.1 Diagrams

Classifiers

9.10.14.2 Owned Ends

* classifier : Classifier [0..*] (opposite Classifier::general)

Unified Modeling Language 2.5

157

9.10.15 A_general_generalization [Association]

9.10.15.1 Diagrams

Classifiers

9.10.15.2 Owned Ends

* generalization : Generalization [0..*]{subsets A_target directedRelationship::directedRelationship} (opposite
Generalization::general)

9.10.16 A_generalizationSet_generalization [Association]

9.10.16.1 Diagrams

Classifiers, Generalization Sets

9.10.16.2 Member Ends
* Generalization::generalizationSet
* GeneralizationSet::generalization

9.10.17 A_generalization_specific [Association]

9.10.17.1 Diagrams

Classifiers

9.10.17.2 Member Ends
® (lassifier::generalization
* Generalization::specific

9.10.18 A_inheritedMember_inheritingClassifier [Association]

9.10.18.1 Diagrams

Classifiers

9.10.18.2 Owned Ends

* inheritingClassifier : Classifier [0..*]{subsets A_member memberNamespace::memberNamespace} (opposite
Classifier::inheritedMember)

9.10.19 A_inheritedParameter_redefinableTemplateSignature [Association]
9.10.19.1 Diagrams

Classifier Templates

158 Unified Modeling Language 2.5

9.10.19.2 Owned Ends

* redefinableTemplateSignature : RedefinableTemplateSignature [0..*]{subsets

A_parameter_templateSignature::templateSignature} (opposite
RedefinableTemplateSignature::inheritedParameter)

9.10.20 A_instance_instanceValue [Association]

9.10.20.1 Diagrams

Instances

9.10.20.2 Owned Ends

* instanceValue : InstanceValue [0..*] (opposite InstanceValue::instance)

9.10.21 A_method_specification [Association]

9.10.21.1 Diagrams

Features, Behaviors

9.10.21.2 Member Ends
* BehavioralFeature::method
* Behavior::specification

9.10.22 A_operation_templateParameter_parameteredElement [Association]
9.10.22.1 Diagrams

Operations

9.10.22.2 Member Ends
® Operation::templateParameter
® OperationTemplateParameter::parameteredElement

9.10.23 A_opposite_property [Association]
9.10.23.1 Diagrams
Properties

9.10.23.2 Owned Ends

® property : Property [0..1] (opposite Property::opposite)

Unified Modeling Language 2.5

159

9.10.24 A_ownedParameterSet_behavioralFeature [Association]

9.10.24.1 Diagrams

Features

9.10.24.2 Owned Ends

* behavioralFeature : BehavioralFeature [0..1]{subsets NamedElement::namespace} (opposite
BehavioralFeature::ownedParameterSet)

9.10.25 A_ownedParameter_operation [Association]
9.10.25.1 Diagrams
Operations
9.10.25.2 Member Ends
® Operation::ownedParameter

o Parameter: :operation

9.10.26 A_ownedParameter_ownerFormalParam [Association]

9.10.26.1 Diagrams

Features

9.10.26.2 Owned Ends

* ownerFormalParam : BehavioralFeature [0..1]{subsets NamedElement::namespace} (opposite
BehavioralFeature::ownedParameter)

9.10.27 A_ownedTemplateSignature_classifier [Association]
9.10.27.1 Diagrams

Classifier Templates

9.10.27.2 Member Ends
® (lassifier::ownedTemplateSignature
® RedefinableTemplateSignature::classifier

9.10.28 A_ownedUseCase_classifier [Association]

9.10.28.1 Diagrams

Classifiers, Use Cases

160 Unified Modeling Language 2.5

9.10.28.2 Owned Ends

* classifier : Classifier [0..1]{subsets NamedElement::namespace} (opposite Classifier::ownedUseCase)

9.10.29 A_parameterSet_parameter [Association]

9.10.29.1 Diagrams

Features

9.10.29.2 Member Ends
* Parameter::parameterSet
b ParameterSet: ‘parameter

9.10.30 A_postcondition_postContext [Association]
9.10.30.1 Diagrams
Operations

9.10.30.2 Owned Ends

* postContext : Operation [0..1]{subsets Constraint::context} (opposite Operation::postcondition)

9.10.31 A_powertypeExtent_powertype [Association]

9.10.31.1 Diagrams

Classifiers, Generalization Sets

9.10.31.2 Member Ends

® (lassifier::powertypeExtent

* GeneralizationSet::powertype

9.10.32 A_precondition_preContext [Association]
9.10.32.1 Diagrams
Operations

9.10.32.2 Owned Ends

e preContext : Operation [0..1]{subsets Constraint::context} (opposite Operation::precondition)

9.10.33 A_qualifier_associationEnd [Association]

9.10.33.1 Diagrams

Properties, Associations

Unified Modeling Language 2.5

161

9.10.33.2 Member Ends
® Property::qualifier
® Property::associationEnd

9.10.34 A_raisedException_behavioralFeature [Association]

9.10.34.1 Diagrams

Features

9.10.34.2 Owned Ends

* behavioralFeature : BehavioralFeature [0..*] (opposite BehavioralFeature::raisedException)

9.10.35 A_raisedException_operation [Association]
9.10.35.1 Diagrams
Operations

9.10.35.2 Owned Ends

® operation : Operation [0..*]{subsets A_raisedException_behavioralFeature::behavioralFeature} (opposite
Operation::raisedException)

9.10.36 A_redefinedClassifier_classifier [Association]

9.10.36.1 Diagrams

Classifiers

9.10.36.2 Owned Ends

* classifier : Classifier [0..*]{subsets A_redefinedElement redefinableElement::redefinableElement} (opposite
Classifier::redefinedClassifier)

9.10.37 A_redefinedElement_redefinableElement [Association]

9.10.37.1 Diagrams

Classifiers

9.10.37.2 Owned Ends

* /redefinableElement : RedefinableElement [0..*]{union} (opposite RedefinableElement::redefinedElement)

9.10.38 A_redefinedOperation_operation [Association]
9.10.38.1 Diagrams

Operations

162 Unified Modeling Language 2.5

9.10.38.2 Owned Ends

® operation : Operation [0..*]{subsets A_redefinedElement redefinableElement::redefinableElement} (opposite
Operation::redefinedOperation)

9.10.39 A_redefinedProperty_property [Association]
9.10.39.1 Diagrams
Properties

9.10.39.2 Owned Ends

® property : Property [0..*]{subsets A_redefinedElement redefinableElement::redefinableElement} (opposite
Property::redefinedProperty)

9.10.40 A_redefinitionContext_redefinableElement [Association]

9.10.40.1 Diagrams

Classifiers

9.10.40.2 Specializations

A_redefinitionContext transition, A_redefinitionContext state, A redefinitionContext region

9.10.40.3 Owned Ends

* /redefinableElement : RedefinableElement [0..*]{union} (opposite RedefinableElement::redefinitionContext)

9.10.41 A _representation_classifier [Association]
9.10.41.1 Diagrams

Classifiers, Collaborations
9.10.41.2 Generalizations

A_collaborationUse_classifier

9.10.41.3 Owned Ends

® classifier : Classifier [0..1]{redefines A_collaborationUse_classifier::classifier} (opposite
Classifier::representation)

9.10.42 A_slot_owninginstance [Association]

9.10.42.1 Diagrams

Instances

9.10.42.2 Member Ends

* InstanceSpecification::slot

Unified Modeling Language 2.5 163

* Slot::owningInstance

9.10.43 A_specification_owninglnstanceSpec [Association]

9.10.43.1 Diagrams

Instances

9.10.43.2 Owned Ends

* owninglnstanceSpec : InstanceSpecification [0..1]{subsets Element::owner} (opposite

InstanceSpecification::specification)

9.10.44 A_subsettedProperty_property [Association]
9.10.44.1 Diagrams

Properties

9.10.44.2 Owned Ends
® property : Property [0..*] (opposite Property::subsettedProperty)

9.10.45 A_substitution_substitutingClassifier [Association]

9.10.45.1 Diagrams

Classifiers

9.10.45.2 Member Ends

® (lassifier::substitution

® Substitution::substitutingClassifier

9.10.46 A_type_operation [Association]
9.10.46.1 Diagrams

Operations

9.10.46.2 Owned Ends
® operation : Operation [0..*] (opposite Operation::type)

9.10.47 A_value_owningSlot [Association]

9.10.47.1 Diagrams

Instances

9.10.47.2 Owned Ends

* owningSlot : Slot [0..1]{subsets Element::owner} (opposite Slot::value)

164

Unified Modeling Language 2.5

10 Simple Classifiers

10.1 Summary

This clause specifies various kinds of Classifier that do not have complex internal structure.

10.2 DataTypes
10.2.1 Summary

DataTypes model Types whose instances are distinguished only by their value.

10.2.2 Abstract Syntax

/\
{subsets namespace {ordered, subsets attribute,
!
subsets classifier} subsets ownedMember}
+ datatype + ownedAttribute
DataType 0.1 N Property

{subsets featuringClassifier, {ordered, subsets feature, subsets
subsets namespace, subsets redefinableElement, subsets
redefinitionContext} ownedMember}

+ datatype + ownedOperation -
3 =|| Operation

ZF 0.1 *

| InstanceSpecification |

{ordered, subsets

{subsets namespace} ownedMember}
PrimitiveType Enumeration + enumeration + ownedLiteral | EnumerationLiteral
%
1 *
+ /classifier + enumerationLiteral

{readOnly, redefines classifier} {redefines instanceSpecification’

Figure 10.1 DataTypes

10.2.3 Semantics

10.2.3.1 DataTypes

A DataType is a kind of Classifier. DataType differs from Class in that instances of a DataType are identified only by
their value. All instances of a DataType with the same value are considered to be equal instances.

If a DataType has attributes (i.e., Properties owned by it and in its namespace) it is called a structured DataType.
Instances of a structured DataType contain attribute values matching its attributes. Instances of a structured DataType are
considered to be equal if and only if the structure is the same and the values of the corresponding attributes are equal.

Unified Modeling Language 2.5 165

A DataType may be parameterized, bound, and used as TemplateParameters.
10.2.3.2 Primitive Types

A PrimitiveType defines a predefined DataType, without any substructure. A PrimitiveType may have algebra and
operations defined outside of UML, for example, mathematically. The run-time instances of a PrimitiveType are values
that correspond to mathematical elements defined outside of UML (for example, the Integers).

10.2.3.3 Enumerations

Enumeration is a kind of DataType. Each value of an Enumeration corresponds to one of its user-defined
EnumerationLiterals.

As a specialization of Classifier, Enumerations can participate in generalization relationships. An Enumeration that
specializes another may define new EnumerationLiterals that are not defined in the generalizing Enumeration; in such a
case the set of applicable literals comprises inherited literals plus locally-defined ones.

An EnumerationLiteral defines an element of the run-time extension of an Enumeration. Values corresponding to
EnumerationLiterals are immutable and may be compared for equality. EnumerationLiterals may not change during
their existence, so any attributes on an Enumeration shall be read-only.

An EnumerationLiteral has a name that shall be used to identify it within its Enumeration. The EnumerationLiteral
name is scoped within and shall be unique within its Enumeration. EnumerationLiteral names shall be qualified for
general use.

10.2.4 Notation

A DataType is designated using the Classifier notation (a rectangle) with keyword «dataType» or, when it is referenced
(e.g., by an attribute), by the name of the DataType. A compartment listing the attributes is placed below the name
compartment. A compartment listing the Operations is placed below the attribute compartment.

A PrimitiveType is similarly designated with the keyword «primitive» above or before the name of the PrimitiveType.

An Enumeration is similarly designated. The name of the Enumeration is placed in the upper compartment with the
keyword «enumeration» above or before the name. A list of EnumerationLiterals may be placed, one to a line, in a
compartment named “literals” below the operations compartment. The attributes and operations compartments may be
suppressed, and typically are suppressed and empty.

10.2.5 Examples

Figure 10.2 illustrates the notation for defining a PrimitiveType.

«primitive»
Integer

Figure 10.2 PrimitiveType Notation

Figure 10.3 illustrates the notation for defining DataTypes. The FullName type defined on the left is used as the type of
the fullName attribute in the Person type defined on the right.

«dataType» «dataType»
FullName Person
firstName : String fullName : FullName

secondName : String
initial : String

Figure 10.3 DataType Notation

166 Unified Modeling Language 2.5

Figure 10.4 illustrates the notation for defining Enumerations.

«enumeration»
VisibilityKind
public
private
protected
package

Figure 10.4 Enumeration Notation

10.3 Signals

10.3.1 Summary

Signals and Receptions are used to model asynchronous communication between objects.

10.3.2 Abstract Syntax

| BehavioralFeature

T

Signal + signal + reception Reception
1 *

{subsets namespace,
subsets classifier}
0..1| + owningSignal

{ordered, subsets attribute,
subsets ownedMember?}
* | + ownedAttribute

Property

Figure 10.5 Signals

10.3.3 Semantics

10.3.3.1 Signals

A Signal is a specification of a kind of communication between objects in which a reaction is asynchronously triggered
in the receiver without a reply. The receiving object handles Signals as specified by clause 13.3. The data carried by the
communication are represented as attributes of the Signal. A Signal is defined independently of the Classifiers handling
it.

The sender of a Signal will not block waiting for a reply but continue execution immediately. By declaring a Reception
associated to a given Signal, a Classifier specifies that its instances will be able to receive that Signal, or a subtype
thereof, and will respond to it with the designated Behavior.

A Signal may be parameterized, bound, and used as TemplateParameters.

10.3.3.2 Receptions

A Reception specifies that its owning Class or Interface is prepared to react to the receipt of a Signal. A Reception
matches a Signal if the received Signal is a specialization of the Reception’s signal. The details of how the object

Unified Modeling Language 2.5 167

responds to the received Signal depend on the kind of Behavior associated with the Reception and its owning Class or
Interface. See 13.2. The name of the Reception is the same as the name of the Signal. A Reception may only have in
Parameters (see 9.4.3) that match the attributes of the Signal by name, type, and multiplicity.

10.3.4 Notation

A Signal is depicted by a Classifier symbol with the keyword «signaly.

Receptions are shown in the receptions compartment using the same notation as for Operations with the keyword
«signaly.

10.3.5 Examples

Figure 10.6 shows an interface IAlarm that defines two Receptions, each referring to a Signal also shown in the
example.

NOTE. The name of the Reception matches the name of the Signal, and the parameter of the Reception matches the
attribute of the Signal.

. «signal»
«interface» Notify
IAlarm
«signal» Notify() «signal»
«signal» Activate() Activate

Figure 10.6 Reception Notation

104 Interfaces

10.4.1 Summary

Interfaces declare coherent services that are implemented by BehavioredClassifiers that implement the Interfaces via
InterfaceRealizations.

168 Unified Modeling Language 2.5

10.4.2 Abstract Syntax

{ordered, subsets redefinableElement,
subsets ownedMember}

Classifier + nestedClassifier
*

{subsets namespace, subsets

{ordered, subsets attribute, subsets {subsets namespace, redeﬁ:fitionContext}
i + interface
ownedMembe.r} subsets clfs_sTerrf} Interface
Property + ownedAttribute intel Dacle Py 0.1
* ..
{subsets ownedMember}
{ordered, subsets feature, subsets {subsets featuringClassifier, 0.1 + protocol —
redefinableElement, subsets subsets namespace, subsets + intert ProtocolStateMachine
ownedMember} redefinitionContext} {sulbr;eetsancaemes ace} 0.1
:,.r - + ownedOperation + interface o P

* 0.1 {subsets redefinedClassifier}

{subsets feature, subsets {subsets featuringClassifier, t redefinedinterface

ownedMember} subsets namespace} "

- + ownedReception + interface (_subsets Classifier}
|I: = + interface
0.1 *
{subsets supplier}
1 | + contract
{subsets ownedElement,
subsets clientDependency}
+ interfaceRealization
{subsets client, subsets owner} {subsets supplierDependency} *
i Jassifier | e + implementingClassifier + interfaceRealization Inter izati
1 *
{redefines behavioredClassifier} 0{subsets namespace}
+ behavioredClassifier | 0..1 0..1| + behavioredClassifier
\V,
{subsets ownedBehavior} {subsets ownedMember}
+ classifierBehavior | 0..1 % .|+ ownedBehavior

Behavior
Figure 10.7 Interfaces

10.4.3 Semantics

10.4.3.1 Interfaces

An Interface is a kind of Classifier that represents a declaration of a set of public Features and obligations that together
constitute a coherent service. An Interface specifies a contract; any instance of a Classifier that realizes the Interface
shall fulfill that contract. The obligations associated with an Interface are in the form of constraints (such as pre- and
postconditions) or protocol specifications, which may impose ordering restrictions on interactions through the Interface.

Interfaces may not be instantiated. Instead, an Interface specification is implemented or realized by a
BehavioredClassifier, which means that the BehavioredClassifier presents a public facade that conforms to the Interface
specification.

NOTE. A given BehavioredClassifier may implement more than one Interface and that an Interface may be
implemented by a number of different BehavioredClassifiers.

Interfaces provide a way to partition and characterize groups of public Features and obligations that realizing
BehavioredClassifiers shall possess. An Interface does not specify how it is to be implemented, but merely what needs
to be supported by realizing BehavioredClassifiers. That is, such BehavioredClassifiers shall provide a public fagade
consisting of attributes, Operations, and externally observable Behavior that conforms to the Interface.

NOTE. If an Interface declares an attribute, this does not necessarily mean that the realizing BehavioredClassifier will
necessarily have such an attribute in its implementation, but only that it will appear so to external observers.

The set of Interfaces realized by a BehavioredClassifier are its provided Interfaces, which represent the services and
obligations that instances of that BehavioredClassifier offer to their clients. Interfaces may also be used to specify
required Interfaces, which are specified by a Usage dependency between the BehavioredClassifier and the
corresponding Interfaces. Required Interfaces specify services that a BehavioredClassifier needs in order to perform its
function and fulfill its own obligations to its clients.

Unified Modeling Language 2.5 169

Properties owned by Interfaces (including Association ends) imply that the realizing BehavioredClassifier should
maintain information corresponding to the type and multiplicity of the Property and facilitate retrieval and modification
of that information. A Property declared on an Interface does not necessarily imply that there will be such a Property on
a realizing BehavioredClassifier (e.g., it may be realized by equivalent get and set Operations). Interfaces may also own
constraints that impose constraints on the Features of the implementing BehavioredClassifier.

Interfaces may own a ProtocolStateMachine that specifies event sequences and pre/post conditions for the Operations
and Receptions described by the Interface. A BehavioredClassifier realizing an Interface shall comply with the
ProtocolStateMachine owned by the Interface.

An Interface may be parameterized, bound, and used as TemplateParameters.

An InterfaceRealization relationship between a BehavioredClassifier and an Interface implies that the
BehavioredClassifier conforms to the contract specified by the Interface by supporting the set of Features owned by the
Interface, and any of its parent Interfaces. For BehavioralFeatures, the implementing BehavioredClassifier will have an
Operation or Reception for every Operation or Reception, respectively, defined by the Interface. For Properties, the
realizing BehavioredClassifier will provide functionality that maintains the state represented by the Property. While
such may be done by direct mapping to a Property of the realizing BehavioredClassifier, it may also be supported by the
StateMachine of the BehavioredClassifier or by a pair of Operations that support the retrieval of the state information
and an Operation that changes the state information.

10.4.4 Notation

An Interface may be designated using the default notation for Classifier (see 9.2.4) with the keyword «interface».

Alternatively an InterfaceRealization dependency from a BehavioredClassifier to an Interface may be shown by
representing the Interface by a circle or ball, often also called lollipop, labeled with the name of the Interface, attached
by a solid line to the BehavioredClassifier that realizes this Interface.

The Usage dependency from a Classifier to an Interface is shown by representing the Interface by a half-circle or socket,
labeled with the name of the Interface, attached by a solid line to the Classifier that requires this Interface.

Interfaces inherited from a generalization of the BehavioredClassifier may be notated on a diagram through a lollipop.
These Interfaces are indicated on the diagram by preceding the name of the Interface by a caret symbol. Earlier versions
of UML permitted a forward slash preceding the name to indicate inherited Interfaces; this notation is permitted but
discouraged.

If a Dependency is wired from a Usage to an InterfaceRealization that are represented using a socket and a lollipop, the
dependency arrow may be shown joining the socket to the lollipop

10.4.5 Examples

The InterfaceRealization dependency from ProximitySensor to ISensor is shown using ball (lollipop) notation (see
Figure 10.8).

ProximitySensor

O

ISensor

Figure 10.8 ISensor is a provided Interface of ProximitySensor

Figure 10.9 shows the lollipop notation for an inherited provided interface.

170 Unified Modeling Language 2.5

ProximitySensor

A ISensor
CapacitiveSensor |——O

Figure 10.9 ISensor, a provided Interface of ProximitySensor, is shown as inherited by CapacitiveSensor

The Usage dependency from TheftAlarm to ISensor is shown using socket notation (see Figure 10.10).

TheftAlarm

—~
&

Figure 10.10 ISensor is a required Interface of TheftAlarm

Alternatively, in cases where Interfaces are represented using the rectangle notation, InterfaceRealization and Usage
dependencies are denoted with appropriate dependency arrows (see Figure 10.11). The Classifier at the tail of the arrow
implements the Interface at the head of the arrow or uses that Interface, respectively.

«interface»
ISensor

activate ()

read ()

TheftAlarm |- ______€Use>_____-

------------------ ProximitySensor

Figure 10.11 Alternative notation for required and provided Interface

It is often the case in practice that two or more Interfaces are mutually coupled through application-specific
dependencies. In such situations, each Interface represents a specific role in a multi-party “protocol.” These types of
protocol role couplings may be captured by Associations between Interfaces as shown in the example in Figure 10.12.
This shows the specification of three Interfaces, 14/arm, ISensor, and [Buzzer. I4larm and ISensor are shown as
engaged in a bidirectional protocol, meaning that any implementation of ISensor must maintain the information needed
to realize the theAlarm property, and similarly for [Alarm and theSensor. /Buzzer describes an Interface that implementers
of IAlarm must be able to access.

«interface» «interface»

IBuzzer 1 * «interface» | 4 theAlarm + theSensor
IAlarm ISensor
volume : Integer + theBuzzer notify () 1 1 activate ()
start () read ()

reset ()

Figure 10.12 A set of collaborating Interfaces

Unified Modeling Language 2.5 171

10.5 Classifier Descriptions

10.5.1 BehavioredClassifier [Abstract Class]

10.5.1.1 Description

A BehavioredClassifier may have InterfaceRealizations, and owns a set of Behaviors one of which may specify the
behavior of the BehavioredClassifier itself.

10.5.1.2 Diagrams

10.5.1.3 Generalizations
Classifier
10.5.1.4 Specializations

Actor, UseCase, Class, Collaboration

10.5.1.5 Association Ends

* classifierBehavior : Behavior [0..1]{subsets BehavioredClassifier::ownedBehavior} (opposite
A_classifierBehavior _behavioredClassifier::behavioredClassifier)
A Behavior that specifies the behavior of the BehavioredClassifier itself.

* ¢ interfaceRealization : InterfaceRealization [0..*]{subsets Element::ownedElement, subsets

NamedElement::clientDependency } (opposite InterfaceRealization::implementingClassifier)
The set of InterfaceRealizations owned by the BehavioredClassifier. Interface realizations reference the

Interfaces of which the BehavioredClassifier is an implementation.

* ¢ ownedBehavior : Behavior [0..*]{subsets Namespace::ownedMember} (opposite
A_ownedBehavior_behavioredClassifier::behavioredClassifier)
Behaviors owned by a BehavioredClassifier.

10.5.1.6 Constraints

e class behavior
If a behavior is classifier behavior, it does not have a specification.

inv: classifierBehavior->notEnpty() inplies classifierBehavior.specification->i senpty()

10.5.2 DataType [Class]

10.5.2.1 Description

A DataType is a type whose instances are identified only by their value.
10.5.2.2 Diagrams

DataTypes, Properties, Operations
10.5.2.3 Generalizations

Classifier

172 Unified Modeling Language 2.5

10.5.2.4 Specializations

Enumeration, PrimitiveType

10.5.2.5 Association Ends

* ¢ ownedAttribute : Property [0..*]{ordered, subsets Classifier::attribute, subsets Namespace::ownedMember }

(opposite Property::datatype)
The attributes owned by the DataType.

* ¢ ownedOperation : Operation [0..*]{ordered, subsets Classifier::feature, subsets

A_redefinitionContext_redefinableElement::redefinableElement, subsets Namespace::ownedMember}

(opposite Operation::datatype)
The Operations owned by the DataType.

10.5.3 Enumeration [Class]

10.5.3.1 Description

An Enumeration is a DataType whose values are enumerated in the model as EnumerationLiterals.

10.5.3.2 Diagrams
DataTypes
10.5.3.3 Generalizations

DataType
10.5.34 Association Ends

* ¢ ownedLiteral : EnumerationLiteral [0..*]{ordered, subsets Namespace::ownedMember} (opposite

EnumerationLiteral::enumeration)
The ordered set of literals owned by this Enumeration.

10.5.3.5 Constraints

e immutable
inv: ownedAttribute->forAll (i sReadOnly)
10.5.4 EnumerationLiteral [Class]

10.5.4.1 Description

An EnumerationLiteral is a user-defined data value for an Enumeration.
10.5.4.2 Diagrams

DataTypes

10.5.4.3 Generalizations

InstanceSpecification

Unified Modeling Language 2.5

173

10.5.4.4 Association Ends

® /classifier : Enumeration [1..1]{redefines InstanceSpecification::classifier} (opposite
A_classifier enumerationLiteral::enumerationLiteral)
The classifier of this EnumerationLiteral derived to be equal to its Enumeration.

® ecnumeration : Enumeration [1..1]{subsets NamedElement::namespace} (opposite Enumeration::ownedLiteral)
The Enumeration that this EnumerationLiteral is a member of.

10.5.4.5 Operations

® classifier() : Enumeration
Derivation of Enumeration::/classifier

body: enumeration

10.5.5 Interface [Class]

10.5.5.1 Description

Interfaces declare coherent services that are implemented by BehavioredClassifiers that implement the Interfaces via
InterfaceRealizations.

10.5.5.2 Diagrams

Interfaces, Encapsulated Classifiers, Components, Properties, Operations

10.5.5.3 Generalizations
Classifier
10.5.5.4 Association Ends

* ¢ nestedClassifier : Classifier [0..*]{ordered, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Namespace::ownedMember}
(opposite A_nestedClassifier_interface::interface)
References all the Classifiers that are defined (nested) within the Interface.

* ¢ ownedAttribute : Property [0..*]{ordered, subsets Classifier::attribute, subsets Namespace::ownedMember }

(opposite Property::interface)
The attributes (i.e., the Properties) owned by the Interface.

* ¢ ownedOperation : Operation [0..*]{ordered, subsets Classifier::feature, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Namespace::ownedMember}

(opposite Operation::interface)
The Operations owned by the Interface.

* ¢ ownedReception : Reception [0..*]{subsets Classifier::feature, subsets Namespace::ownedMember }

(opposite A_ownedReception_interface::interface)
Receptions that objects providing this Interface are willing to accept.

® ¢ protocol : ProtocolStateMachine [0..1]{subsets Namespace::ownedMember} (opposite
A_protocol_interface::interface)

174 Unified Modeling Language 2.5

References a ProtocolStateMachine specifying the legal sequences of the invocation of the BehavioralFeatures
described in the Interface.

* redefinedInterface : Interface [0..*]{subsets Classifier::redefinedClassifier} (opposite
A_redefinedInterface interface::interface)
References all the Interfaces redefined by this Interface.

10.5.5.5 Constraints
e visibility
The visibility of all Features owned by an Interface must be public.
inv: feature->forAll (visibility = VisibilityKind::public)

10.5.6 InterfaceRealization [Class]

10.5.6.1 Description

An InterfaceRealization is a specialized realization relationship between a BehavioredClassifier and an Interface. This
relationship signifies that the realizing BehavioredClassifier conforms to the contract specified by the Interface.

10.5.6.2 Diagrams
Interfaces

10.5.6.3 Generalizations
Realization

10.5.6.4 Association Ends

* contract : Interface [1..1]{subsets Dependency::supplier} (opposite
A_contract_interfaceRealization::interfaceRealization)
References the Interface specifying the conformance contract.

* implementingClassifier : BehavioredClassifier [1..1]{subsets Dependency::client, subsets Element::owner}
(opposite BehavioredClassifier::interfaceRealization)
References the BehavioredClassifier that owns this InterfaceRealization, i.e., the BehavioredClassifier that
realizes the Interface to which it refers.

10.5.7 PrimitiveType [Class]

10.5.7.1 Description

A PrimitiveType defines a predefined DataType, without any substructure. A PrimitiveType may have an algebra and
operations defined outside of UML, for example, mathematically.

10.5.7.2 Diagrams

DataTypes

10.5.7.3 Generalizations

DataType

Unified Modeling Language 2.5 175

10.5.8 Reception [Class]
10.5.8.1 Description
A Reception is a declaration stating that a Classifier is prepared to react to the receipt of a Signal.
10.5.8.2 Diagrams
Signals, Interfaces, Classes
10.5.8.3 Generalizations
BehavioralFeature

10.5.8.4 Association Ends

® signal : Signal [1..1] (opposite A_signal reception::reception)
The Signal that this Reception handles.

10.5.8.5 Constraints

e same name as_signal
A Reception has the same name as its signal

inv: name = signal.nanme

* same structure as_signal
A Reception's parameters match the ownedAttributes of its signal by name, type, and multiplicity

inv: signal.ownedAttribute->size() = ownedParaneter->size() and
Sequence{l..signal.ownedAttribute->size()}->forAl(i
ownedPar aneter->at (i).direction = ParanmeterDirectionKind::_'in'" and
ownedPar anet er->at (i). name = si gnal . ownedAttribute->at(i).nane and
ownedPar aneter->at (i).type = signal.ownedAttribute->at(i).type and
ownedPar aneter->at (i).l owerBound() = signal.ownedAttribute->at(i).|owerBound() and
ownedPar anet er - >at (i) . upper Bound() = signal.ownedAttribute->at(i).upperBound()

10.5.9 Signal [Class]

10.5.9.1 Description

A Signal is a specification of a kind of communication between objects in which a reaction is asynchronously triggered
in the receiver without a reply.

10.5.9.2 Diagrams

Signals, Events, Invocation Actions

10.5.9.3 Generalizations

Classifier

10.5.9.4 Association Ends

* ¢ ownedAttribute : Property [0..*]{ordered, subsets Classifier::attribute, subsets Namespace::ownedMember }
(opposite A_ownedAttribute_owningSignal::owningSignal)
The attributes owned by the Signal.

176 Unified Modeling Language 2.5

10.6 Association Descriptions

10.6.1 A_classifierBehavior_behavioredClassifier [Association]
10.6.1.1 Diagrams

Interfaces, Behaviors
10.6.1.2 Generalizations

A_ownedBehavior_behavioredClassifier

10.6.1.3 Owned Ends

* behavioredClassifier : BehavioredClassifier [0..1]{redefines
A_ownedBehavior_behavioredClassifier::behavioredClassifier} (opposite
BehavioredClassifier::classifierBehavior)

10.6.2 A_classifier_enumerationLiteral [Association]
10.6.2.1 Diagrams

DataTypes

10.6.2.2 Generalizations

A_classifier_instanceSpecification

10.6.2.3 Owned Ends

* enumerationLiteral : EnumerationLiteral [0..*]{redefines
A classifier instanceSpecification::instanceSpecification } (opposite EnumerationLiteral::classifier)

10.6.3 A_contract_interfaceRealization [Association]

10.6.3.1 Diagrams
Interfaces
10.6.3.2 Owned Ends

* interfaceRealization : InterfaceRealization [0..*]{subsets
A_supplier_supplierDependency::supplierDependency } (opposite InterfaceRealization::contract)

10.6.4 A_interfaceRealization_implementingClassifier [Association]

10.6.4.1 Diagrams
Interfaces
10.6.4.2 Member Ends

* BehavioredClassifier::interfaceRealization

Unified Modeling Language 2.5 177

* InterfaceRealization::implementingClassifier

10.6.5 A_nestedClassifier_interface [Association]

10.6.5.1 Diagrams

Interfaces

10.6.5.2 Owned Ends

* interface : Interface [0..1]{subsets NamedElement::namespace, subsets
RedefinableElement::redefinitionContext} (opposite Interface::nestedClassifier)

10.6.6 A_ownedAttribute_datatype [Association]

10.6.6.1 Diagrams

DataTypes, Properties

10.6.6.2 Member Ends
e DataType::ownedAttribute
* Property::datatype

10.6.7 A_ownedAttribute_interface [Association]

10.6.7.1 Diagrams
Interfaces, Properties

10.6.7.2 Member Ends

* Interface::ownedAttribute

* Property::interface

10.6.8 A_ownedAttribute_owningSignal [Association]
10.6.8.1 Diagrams
Signals

10.6.8.2 Owned Ends

* owningSignal : Signal [0..1]{subsets NamedElement::namespace, subsets A_attribute classifier::classifier}
(opposite Signal::ownedAttribute)

10.6.9 A_ownedBehavior_behavioredClassifier [Association]

10.6.9.1 Diagrams

Interfaces, Behaviors

178 Unified Modeling Language 2.5

10.6.9.2 Specializations

A_classifierBehavior_behavioredClassifier

10.6.9.3 Owned Ends

* behavioredClassifier : BehavioredClassifier [0..1]{subsets NamedElement::namespace} (opposite
BehavioredClassifier::ownedBehavior)

10.6.10 A_ownedLiteral_enumeration [Association]
10.6.10.1 Diagrams

DataTypes

10.6.10.2 Member Ends
* Enumeration::ownedLiteral

* EnumerationLiteral::enumeration

10.6.11 A_ownedOperation_datatype [Association]
10.6.11.1 Diagrams

DataTypes, Operations
10.6.11.2 Member Ends

* DataType::ownedOperation
® QOperation::datatype

10.6.12 A_ownedOperation_interface [Association]
10.6.12.1 Diagrams
Interfaces, Operations

10.6.12.2 Member Ends
* Interface::ownedOperation
® Operation::interface

10.6.13 A_ownedReception_interface [Association]

10.6.13.1 Diagrams

Interfaces

Unified Modeling Language 2.5 179

10.6.13.2 Owned Ends

* interface : Interface [0..1]{subsets Feature::featuringClassifier, subsets NamedElement::namespace} (opposite
Interface::ownedReception)

10.6.14 A_protocol_interface [Association]

10.6.14.1 Diagrams

Interfaces

10.6.14.2 Owned Ends

* interface : Interface [0..1]{subsets NamedElement::namespace} (opposite Interface::protocol)
Specifies the namespace in which the protocol state machine is defined.

10.6.15 A_redefinedinterface_interface [Association]

10.6.15.1 Diagrams

Interfaces

10.6.15.2 Owned Ends

* interface : Interface [0..*]{subsets A_redefinedClassifier classifier::classifier} (opposite
Interface::redefinedInterface)

10.6.16 A_signal_reception [Association]
10.6.16.1 Diagrams

Signals

10.6.16.2 Owned Ends

* reception : Reception [0..*] (opposite Reception::signal)

180 Unified Modeling Language 2.5

11

1.1

Summary

Structured Classifiers

StructuredClassifiers are Classifiers that may have an internal structure comprising a network of linked roles (which can
themselves be instances of structured classifiers) and an external structure consisting of one or more Ports. The Ports of
EncapsulatedClassifiers act as local agents of remote collaborators, allowing EncapsulatedClassifiers to differentiate
between them but without being directly coupled to them. Classes, Components, Associations and Collaborations are
concrete metaclasses that use these capabilities.

11.2

11.2.1

Structured Classifiers

Summary

StructuredClassifiers may contain an internal structure of connected elements each of which plays a role in the overall
behavior modeled by the StructuredClassifier. It may be helpful to read this sub clause in conjunction with sub clause
11.5 - Associations.

11.2.2 Abstract Syntax
JAN
[ConnectableElementTemplateParamete]
l ParameterableElement l l TypedElement l [
A\ {redefines {redefines templateParameter}
{readOnly, union, subsets parameteredElement} 0:1| + templateParameter
4 . readOnly, union
memberNamespace} gubsets n)wl'e mber}' + parameteredElement
StructuredClassifier + /structuredClassifier + Jrole ConnectableElement |*
% . + role
1
{subsets namespace, {ordered, subsets attribute,
subsets classifier, redefines subsets role, subsets
structuredClassifier} ownedMember}
+ structuredClassifier + ownedAttribute
Property {readOnly}
0..1 * + /definingEnd
. {readOnly} 0.1
+ structuredClassifier + /part
0.1 *
{subsets featuringClassifier, {subsets feature, subsets JAN {readOnly}
subsets namespace, subsets redefinableElement, subsets + connectorend |* «| +/end
redefinitionContext} ownedMember}
+ structuredClassifier + ownedConnector Connector {ordered, subsets
subsets owner
0..1 * + /kind : ConnectorKind {readOnly’ _E connector ¥ OwnedElePSRt

{subsets redefinableElement}

«enumeration»
ConnectorKind
assembly
Ldelegation |

Figure 11.1 Structured Classifiers

Unified Modeling Language 2.5

+ connector

*

+ redefinedConnector

{subsets redefinedElement} 4 type

* + connector|

*

0.1

Association

Behavior

ConnectorEnd

AV
MultiplicityElemen:

181

11.2.3 Semantics

11.2.3.1 Connectable Elements

ConnectableElement is an abstract metaclass. Each ConnectableElement represents a participant within the internal
structure of a StructuredClassifier; these participants are called roles. Roles may be joined by Connectors, and specify
configurations of linked instances contained or referenced within an instance of the containing StructuredClassifier.

The detailed semantics of ConnectableElement is given by its concrete subtypes. In general, each ConnectableElement
exhibits a set of effective required Interfaces and a set of effective provided Interfaces. These sets are used to determine
the connectability of ConnectableElements using Connectors, see below.

For ConnectableElements except delegating Ports (see 11.3.3) the effective required Interfaces are the required
Interfaces, and the effective provided Interfaces are the provided Interfaces, derived as follows:

® The provided Interfaces comprises the union of the sets of Interfaces realized by the type of the
ConnectableElement and its supertypes, or the set containing just its type if it is typed by an Interface.

® The required Interfaces comprises the union of the sets of Interfaces used by the type of the
ConnectableElement and its supertypes.

A ConnectableElement may be exposed via a ConnectableElementTemplateParameter as a formal parameter for a
template. The semantics and notation for this are only defined when the ConnectableElement is a Property (see the
semantics and notation for Property in 9.5).

11.2.3.2 Parts and Roles

The Properties of a StructuredClassifier obey the semantics of Property specified in 9.5.

Property is a kind of ConnectableElement. All of the ownedAttributes of a StructuredClassifier are roles and can be
connected using Connectors.

Those ownedAttributes of a StructuredClassifier that have isComposite = true (see 9.5.3) are called its parts. Hence parts
constitute a subset of roles.

11.2.3.3 Connectors

A Connector specifies /inks (see 11.5 Associations) between two or more instances playing owned or inherited roles
within a StructuredClassifier. Each link may be realized by something as simple as a pointer or by something as
complex as a network connection, and may represent the possibility of instances being able to communicate because
their identities are known by virtue of being passed in as parameters, held in variables or slots, or even because the
communicating instances are the same instance.

In contrast to Associations, which specify links between any suitably-typed instance of the associated Classifiers,
Connectors specify links between instances playing the connected roles only.

Each Connector may be attached to two or more ConnectableElements, each representing a set of instances that
contribute to the instantiation of the containing StructuredClassifier.

A ConnectorEnd is an endpoint of a Connector, which attaches the Connector to a ConnectableElement.

Links corresponding to Connectors may be created upon the creation of the instance of the containing
StructuredClassifier. All such links are destroyed when the containing StructuredClassifier instance is destroyed.

A Connector may be typed by an Association, in which case the links specified by the Connector are instances of the
typing Association.

Each feature of each of the effective required Interfaces of each ConnectableElement at the end of a Connector must
have at least one compatible feature among the features of the effective provided Interfaces of ConnectableElements at
the other ends. One feature is compatible with another at least in the cases when the two features are the same or when

182 Unified Modeling Language 2.5

they are both properties or operations and the second feature is a redefinition of the first. However, conforming tools
may allow additional cases of compatible features beyond this.

When there are multiple connectors attached to a single ConnectableElement, the semantics are the same as a single n-
ary Connector connecting the ConnectableElement to all of the ConnectableElements connected via the multiple
connectors.

Connectors have a kind, whose value is assembly or delegation. The semantics of delegation connectors are only related
to Ports and described under Port (see 11.3). All other Connectors are assembly connectors.

ConnectorKind is an enumeration of the following literal values:

assembly Indicates that the Connector is an assembly Connector.
delegation Indicates that the Connector is a delegation Connector.

Behaviors may be associated with Connectors as contracts to specify valid interaction patterns across the Connector.

11.2.3.4 Multiplicities and topologies

The multiplicities on ConnectableElements constrain the number of objects that may be created within an instance of
the containing StructuredClassifier, according to the semantics of MultiplicityElement (see 7.5.3).

For a binary Connector, the ConnectorEnd’s multiplicity indicates the number of instances that may be linked to each
instance of the ConnectableElement on the other end. For an n-ary Connector, the multiplicity of one end constrains the
number of links that may refer to a set containing one particular instance for each of the other ends.

When an instance is removed from a role of an instance of a StructuredClassifier, links that exist due to Connectors
between that role and others are destroyed.

The topologies that result from matching the multiplicities of ConnectorEnds and those of ConnectableElements they
interconnect cannot always be deduced from the model. Specific examples in which the topology can be determined
from the multiplicities are shown in Figure 11.6 and Figure 11.7.

11.24 Notation

The internal structure of a StructuredClassifier is shown in a separate compartment with the name “internal structure.”
This compartment is mandatory: all tools that conform to the concrete syntax of UML must implement it. The internal
structure compartment contains symbols representing the roles and connectors. The internal structure compartment
appears below the attributes and operations compartments.

A part may be shown by graphical nesting of a box symbol with a solid outline representing the part within the internal
structure compartment. A role that is not a composition may be shown by graphical nesting of a box symbol with a
dashed outline. In either case the box may be called a part box, even though strictly-speaking only the compositions are
parts. Lollipop and socket symbols may optionally be shown to indicate the provided and required interfaces of the part,
using the same notation as for the definition of the part’s type (see 10.4.4).

The part box symbol has a name compartment, which contains a string according to the syntax defined in sub clause
9.5.4. Detail may also be shown within the part box indicating specific values for Properties of the part's type when
instances corresponding to the Property are created.

The multiplicity for a Property may also be shown as a multiplicity mark in the top right corner of the part box.

When a role is typed by an EncapsulatedClassifier (see 11.3), any Ports of the type may also be shown as small square
symbols overlapping the boundary of the part box denoting the role. The name of the Port is shown near the Port; the
multiplicity follows the name surrounded by square brackets. Name and multiplicity may be elided. Lollipop and socket
symbols may optionally be shown to indicate the provided and required interfaces of the Port, using the same notation
as for the Port’s definition (see 11.3.4).

Unified Modeling Language 2.5 183

If a role is typed by a classifier other than Class, the name compartment of the part box symbol contains the appropriate
keyword (e.g., «component») above the name. For some kinds of Classifiers, optionally in the right hand corner an icon
denoting the kind of Classifier can be displayed.

A Connector is drawn using similar notation to that for Association (see 11.5.4). The optional name string of the
Connector obeys the following syntax:

<connector> ::= ([<name>] ’:’<associationname>) | ([<name>] ’:’ <associationclassname>) |
[<name> |

where <name> is the name of the Connector, and <associationname> or <associationclassname> is the name of the
Association or AssociationClass, respectively, that is its type. A stereotype keyword within guillemets may be placed
above or in front of the Connector name. A property string may be placed after or below the Connector name.

Adornments may be shown on the ConnectorEnd using the same notation as adornments on Association ends. If no
multiplicity is shown, the multiplicity matches the multiplicity of the role the end is attached to.

If a ConnectorEnd is attached to a Port on a part or role of the internal structure and no multiplicity is shown, the
multiplicity of the ConnectorEnd matches the multiplicity of the Port multiplied by the multiplicity of the role (if any).

The notational specifications in the next three paragraphs are optional: a conforming tool does not need to implement
them. They are useful for scalability in complex systems.

If the parts have simple Ports (Ports with a single required or provided Interface), then ball-and-socket notation may be
used to represent assembly Connectors between those Ports. Ball-and-socket notation may not be used to connect
complex (i.e., non-simple) Ports or parts without Ports.

When connecting simple Ports, normal Connector notation for assembly or delegation may be shown connected to the
ball or socket symbol rather than to the Port symbol itself.

When there is an n-ary Connector connecting more than two simple Ports, and two or more of the Ports provide or
require the same or compatible Interfaces, a single symbol representing the Interface can be shown, and lines from the
Components can be drawn to that symbol, in a “channeled ball-and-socket” notation.

An internal structure compartment may also contain symbols representing CollaborationUses, following the notation
described in 11.7.4.

11.2.5 Examples

w: Wheel

@
m
=)
e,
5
)
=
N
L

Figure 11.2 Parts and roles

Figure 11.2 shows examples of part boxes. On the left, the part box denotes that the containing instance will own four
instances of the Wheel class by composition. The multiplicity is shown in the corner of the part box. The part box on the
right is not composite, and denotes that the containing instance will reference one or two instances of the Engine class.

4 |

|

| |

w : Wheel T &: Engine |
|

Figure 11.3 Parts and roles with Ports

Figure 11.3 shows examples of part boxes for properties typed by EncapsulatedClassifiers with Ports, in this case
simple Ports. The notation for more complex Ports can also be used.

184 Unified Modeling Language 2.5

4)

w : Wheel e: Engine |
| |

L N

4)

w : Wheel —0 e: Engine |
| |

L= d

4 P T T T

) |

w : Wheel @ d] &: Engine |
| |

L d

Figure 11.4 Alternative notations for connecting parts and roles with Ports

Figure 11.4 shows three alternative notations for connecting simple Ports on the parts and roles within a
StructuredClassifier. In the top example, the connector is joined to the Port symbols themselves. This is the only
mandatory notation for connecting Ports in an internal structure. The lollipops and sockets indicate the provided and
required interfaces of the Ports; their appearance is optional.

In the second example, the connector line is attached to the ball and socket symbols; in the third example, ball-and-
socket notation is used. These notations correspond to the same model as the top example.

Car
Car
internal structure
a: Axle P |
rear : Wheel [2] I e: Engine !
rear e 2 1! |
5 1 L |
Axle
Wheel + = Engine
(i) (i)

Figure 11.5 Associations compared with Connectors

Figure 11.5 shows two possible views of the Car Class. In subfigure (i), Car is shown as having a composition
Association with role name rear to a class Wheel and an Association with role name e to a class Engine. In subfigure (ii),
the same is specified. However, in addition, in subfigure (ii) it is specified that rear and e belong to the internal structure
of the class Car. This allows specification of detail that holds only for instances of the Wheel and Engine classes within
the context of the class Car, but which will not hold for wheels and engines in general. For example, subfigure (i)
specifies that any instance of class Engine can be linked to an arbitrary number of instances of class Wheel. Subfigure
(i1), however, specifies that within the context of class Car, the instance playing the role of e may only be connected to
two instances playing the role of rear. In addition, the instances playing the e and rear roles may only be linked if they
are roles of the same instance of class Car. In other words, subfigure (ii) asserts additional constraints on the instances
of the classes Wheel and Engine, when they are playing the respective roles within an instance of class Car. These
constraints are not true for instances of Wheel and Engine in general. Other wheels and engines may be arbitrarily
linked as specified in subfigure (i).

For each instance playing a role in an internal structure, there will initially be as many links as indicated by the lower
multiplicity of the opposite ends of Connectors attached to that role. If the multiplicities of the ends match the
multiplicities of the roles they are attached to as defined in Figure 11.6 (i), the initial configuration that will be created
when an instance of the containing StructuredClassifier is created consists of the set of instances corresponding to the
roles (as specified by the multiplicities on the roles) fully connected by links; see the resultant instance shown in Figure
11.6 (ii).

Unified Modeling Language 2.5 185

(M c
a A 2 b: B 2
2 2
(i)
la:A [b:B
[A [b:B

Figure 11.6 "Star" Connector pattern

Links will be created for each instance playing the connected roles according to their ordering until the minimum
ConnectorEnd multiplicity is reached for both ends of the Connector; see the resultant instance in Figure 11.7 (ii). In

this example, only two links are created.

(M c
a A 2 b: B 2
1 1
:C
(i) —
la:A [b:B
[a: A [b:B

Figure 11.7 "Array" Connector pattern

Figure 11.8 shows example notation for parts typed by Components with simple Ports (Ports with only one interface),
and the optional ball-and-socket notation to represent an assembly Connector between compatible Ports. The
Component definitions are on the left and the corresponding parts on the right.

186 Unified Modeling Language 2.5

OrderEntry
—~ «components @
~ Order

-H\I

)

Orderableltem

«components E
O Product

Orderableltem

Figure 11.8 An assembly Connector maps a simple Port of a Component to a matching simple Port of another

Component.

OrderEntry «components E

O :Order

1

L

)

L

Orderableltem

’J_‘ Orderableltem

| -
«Compol nents
:Product

3]

Figure 11.9 shows “channeled ball-and-socket notation” for a 4-ary Connector. The two simple Ports that require Person

have been channeled into a single socket, and the two simple Ports that provide Person (either directly or indirectly)

have been channeled into a single ball.

«component» gl
:BackOrder
OrderEntry
Person
«COMpOonents @ . Person «components gl
¢ :Order e :Customer
OrderEntry Person
ucomponent» gl
:Organization
Client

Note: Client interface is a subtype of Person interface

Figure 11.9 An n-ary Connector that assembles four simple Ports using channeled ball-and-socket notation.

11.3 Encapsulated Classifiers

11.3.1 Summary

EncapsulatedClassifier extends StructuredClassifier with the ability to own Ports, a mechanism for isolating an

EncapsulatedClassifier from its environment.

Unified Modeling Language 2.5

187

11.3.2 Abstract Syntax

+ partWithPort + connectorEnd
Property Jo<—— 1 connectorend
A ..
{readOnly, subsets ownedAttribute} {readOnly}
lassifier | g O ' + JownedPort Port + port + /required Interf:
" + encapsulatedClassifier * + isBehavior : Boolean = false nterface
N + isConjugated : Boolean = false| * *
{subsets structuredClassifier} M isSer\}icg - Boolean = true

{subsets property} {readOnly}

+ port + port + /provided
* * *

. 2ot ~ PO > protocoistateMachine |
+ redefinedPort * 0.1

{subsets redefinedProperty}

Figure 11.10 Encapsulated Classifiers

11.3.3 Semantics

11.3.3.1 Ports

Ports represent interaction points through which an EncapsulatedClassifier communicates with its environment.
Multiple Ports can be defined for an EncapsulatedClassifier, enabling different communications to be distinguished
based on the Port through which they occur. By decoupling the internals of the EncapsulatedClassifier from its
environment, Ports allow an EncapsulatedClassifier to be defined independently of its environment, making it reusable
in any environment that conforms to the constraints imposed by its Ports.

A Port is a Property of an EncapsulatedClassifier that specifies a distinct interaction point between that
EncapsulatedClassifier and its environment or between the Behavior of the EncapsulatedClassifier and its internal roles.
Ports are connected by Connectors through which requests can be made to invoke the BehavioralFeatures of an
EncapsulatedClassifier. A Port may specify the services an EncapsulatedClassifier provides (offers) to its environment
as well as the services that an EncapsulatedClassifier expects (requires) of its environment.

The property isService, when true, indicates that this Port is used to provide the published functionality of an
EncapsulatedClassifier. If false, this Port is used to implement the EncapsulatedClassifier but is not part of the essential
externally-visible functionality of the EncapsulatedClassifier and can, therefore, be altered or deleted along with the
internal implementation of the EncapsulatedClassifier and other properties that are considered part of its
implementation.

The phrase Port on Part or more generally Port on Property signifies the situation where a Property playing a role in a
StructuredClassifier is typed by an EncapsulatedClassifier that has Ports. A Connector within the containing
StructuredClassifier may be connected to one of these Ports. In such a case, the property partwithPort of the applicable
ConnectorEnd references the actual Property being connected: in general, there might be many Properties in the
structure typed by the same EncapsulatedClassifier, and partwithPort is used to signify the right one.

The Interfaces associated with a Port specify the nature of the interactions that may occur over it. The required Interfaces
of a Port characterize the requests that may be made from the EncapsulatedClassifier to its environment through this
Port. Instances of this EncapsulatedClassifier expect that the Features owned by its required Interfaces will be offered by
one or more instances in its environment. The provided Interfaces of a Port characterize requests to the
EncapsulatedClassifier that its environment may make through this Port. The owning EncapsulatedClassifier must offer
the Features owned by the provided Interfaces.

As a kind of Property, a Port has a type. The provided and required interfaces of the Port are related to its type mediated by
the value of isConjugated as follows:

* IfisConjugated is false, provided is derived as the union of the sets of Interfaces realized by the type of the Port
and its supertypes, or directly from the type of the Port if the Port is typed by an Interface; required is derived as
the union of the sets of Interfaces used by the type of the Port and its supertypes.

188 Unified Modeling Language 2.5

* IfisConjugated is true, provided is derived as the union of the sets of Interfaces used by the type of the Port and
its supertypes; required is derived as the union of the sets of Interfaces realized by the type of the Port and its
supertypes, or directly from the type of the Port if the Port is typed by an Interface.

The Interfaces do not necessarily establish the exact sequences of interactions across the Port. A Port’s protocol may
reference a ProtocolStateMachine that describes valid sequences of Operation and Reception invocations that may occur
at this Port.

When an instance of an EncapsulatedClassifier is created, instances corresponding to each of its Ports are created and
held in the slots specified by each Port, in accordance with its type and multiplicity. These instances are referred to as
“Interaction points” and provide unique references. It is, therefore, possible for an EncapsulatedClassifier instance to
differentiate between requests for the invocation of a BehavioralFeature targeted at its different Ports. Similarly, it is
possible to direct such requests at a Port, and the requests will be routed as specified by the links corresponding to
Connectors attached to this Port.

NOTE. In the following, “requests arriving at a Port” shall mean “request occurrences arriving at the interaction point
of this instance corresponding to this Port.”

A Port has the ability, by setting the property isBehavior to true, to specify that any requests arriving at this Port are
handled by the Behavior of the instance of the owning EncapsulatedClassifier, rather than being forwarded to any
contained instances, if any. Such a Port is called a behavior Port. If there is no Behavior defined for this
EncapsulatedClassifier, any communication arriving at a behavior Port is lost.

A delegation Connector is a Connector that links a Port to a role within the owning EncapsulatedClassifier. It represents
the forwarding of requests (Operation invocations and Signals). A request that arrives at a Port that has a delegation
Connector to one or more Properties or Ports on Properties will be passed on to those targets for handling.

Delegation Connectors can be used to model the hierarchical decomposition of behavior, where services provided by an
EncapsulatedClassifier may ultimately be realized by one that is nested multiple levels deep within it.

As a ConnectableElement, the effective provided Interfaces (see 11.2.3) of a Port are its provided interfaces, and the
effective required Interfaces are its required Interfaces. However, for a delegating Port, i.e., a Port that is at an end of a
delegation Connector and is not on a role and that is not a behavior Port, the effective provided Interfaces are its required
interfaces and its effective required Interfaces are its provided interfaces. Consequently a delegating Port behaves, for
connection, as though it had an internal “face” that is the conjugate of its external “face.”

If several Connectors are attached on one side of a Port, then any request arriving at this Port on a link derived from a
Connector on the other side of the Port will be forwarded on links corresponding to these Connectors. It is not defined
whether these requests will be forwarded on all links, or on only one of those links.

11.34 Notation

A Port of an EncapsulatedClassifier is shown as a small square symbol. The name of the Port is placed near the square
symbol. The Port symbol may be placed either overlapping the boundary of the rectangle symbol denoting that
EncapsulatedClassifier or it may be shown inside the rectangle symbol. When the Port is connected to elements visually
contained in a compartment of the EncapsulatedClassifier, such as parts or roles in the internal structure compartment,
the Port symbol must be placed within or overlapping the boundary of that compartment.

The type of a Port may be shown following the Port name, separated by colon (“:”’). When isConjugated is true for the
Port, the type of the Port is shown with a tilde “~” prepended. A provided Interface may be shown using the lollipop
notation (see Interface — 10.4) attached to the Port. A required Interface may be shown by the socket notation attached to
the Port.

A behavior Port is indicated by a Port being connected through a line to a small state symbol drawn inside the symbol
representing the containing EncapsulatedClassifier. The small state symbol indicates the Behavior of the containing
EncapsulatedClassifier.

Unified Modeling Language 2.5 189

The name of a Port may be suppressed. Every depiction of an unnamed Port denotes a different Port from any other
Port.

If there are multiple Interfaces associated with a Port, these Interfaces may be listed on the one Interface lollipop,
separated by commas.

In the case of a Dependency wired from a simple Port with a required Interface to a simple Port to a provided Interface
it is a notational option to show the dependency arrow joining the socket to the lollipop.

11.3.5 Examples

Figure 11.11 illustrates the notation for Ports. At the top of the figure is the definition of a class PowerTrain, together
with an interface /PowerTrain that it realizes, and an interface /Feedback that it uses.

On the lower left figure, p is a Port on the Engine Class which is typed by PowerTrain. As a consequence, the provided
Interface of Port p is IPowerTrain and the required Interface is /Feedback. The multiplicity of p is 1, and isConjugated is
false. On the right figure, e is a Port of the Class Wheel, which also has the type PowerTrain and isConjugated set to true,
which results in the reversal of the provided and required Interfaces.

«interface» . “use» «interface»
P PowerTrain
IPowerTrain = owerlra IFeedback
Engine |lPowerTrain IPowerTrain Wheel
L ?]e : ~PowerTrain
p : PowerTrain ‘
IFeedback IFeedback

Figure 11.11 Port notation

Figure 11.12 illustrates a behavior port p, as indicated by its connection to the small state symbol representing the
Behavior of the Engine Class. Its type is PowerTrain, as in the earlier example.

Eng ine IPowerTrain

——[x P : PowerTrain

[Feedback

Figure 11.12 Behavior Port notation

Figure 11.13 below shows a Port OnlineServices on the OrderProcess Class with two provided Interfaces, OrderEntry
and Tracking listed on the same interface lollipop, as well as a required Interface Payment.

190 Unified Modeling Language 2.5

Online

h OrderEntry,
Services

Tracking

OrderProcess
Payment

Figure 11.13 Port notation showing multiple provided Interfaces

Engine Car
axle]
1/ eng engl? rear : Wheel[2] ; eng : Engine
0.1 0.1
Car Boat
[] [] Boat
rear| 2 prop | 1 shaft
e :~|PowerTrain prop : PI‘OPE”EI’ eng : Engine
Wheel Propeller %J—(e P

Figure 11.14 Port examples

Figure 11.14 shows a Class Engine with a Port p typed by its provided Interface /PowerTrain. This Interface specifies the
services that the Engine offers at this Port (i.e., the Operations and Receptions that are accessible by communication
arriving at this Port).

Two uses of the Engine Class are depicted: Both a Boat and a Car contain a part that is an Engine. The Car Class
connects Port p of the Engine to a pair of Wheels via the axle. The Boat Class connects Port p of the engine to a
Propeller via the shaft. As long as the interaction between the Engine and the part linked to its Port p obeys the
constraints specified by its Interface, the Engine will function as specified, whether it is in a Car or a Boat. This
example also shows that Connectors need not necessarily attach to parts via Ports (as shown in the Car Class).

Because the Ports are simple, the depiction of the connector within Boat could have been shown using any of the
notational options shown in Figure 11.4.

Unified Modeling Language 2.5 191

1.4 Classes

11.4.1 Summary

Class is the concrete realization of EncapsulatedClassifier and BehavioredClassifier. The purpose of a Class is to
specify a classification of objects and to specify the Features that characterize the structure and behavior of those
objects.

11.4.2 Abstract Syntax

| EncapsulatedClassifier | | BehavioredClassifier

Class *

+ isAbstract : Boolean = false {redefines isAbstract}
+ isActive : Boolean = false

+ class
{subsets classifier}

*

+ /superClass
{redefines general}
{ordered, subsets

{subsets namespace, subsets redefinableElement,
redefinitionContext} subsets ownedMember}
+ nestingClass + nestedClassifier
0..1 *
{subsets namespace, {ordered, subsets attribute, subsets
subsets structuredClassifier, ownedMember, redefines
subsets classifier} ownedAttribute}
+ class i
+ ownedAttribute
2 2 =|| Property
0..1 *
i " {ordered, subsets
{subsets featuringClassifier, feature, subsets
subsets namespace, subsets redefinableElement,
redefinitionContext} subsets ownedMember}
+ class + ownedOperation
- -J| Operation
0..1 *
{subsets featuringClassifier, {subsets feature, subsets
subsets namespace} ownedMember}
+ class + ownedReception
0.1 *
{readOnly} {readOnly}

+ /metaclass + /extension
" JI Ex

1

Figure 11.15 Classes

1.4.3 Semantics

11.4.31 Classes

Class is a kind of EncapsulatedClassifier whose Features are Properties, Operations, Receptions, Ports and Connectors.
Attributes of a Class are Properties that are owned by the Class. Some of these attributes may represent the ends of
binary Associations.

Objects of a Class must contain values for each attribute that is a member of that Class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

192 Unified Modeling Language 2.5

When an object is instantiated in a Class, for every attribute of the Class that has a specified default, if an initial value of
the attribute is not specified explicitly for the instantiation, then the default ValueSpecification is evaluated to set the
initial value of the attribute for the object.

Operations of a Class can be invoked on an object, given a particular set of values for the parameters of the Operation,
according to the semantics specified in 9.6.3.

A Class cannot access private Features of another Class, or protected Features on another Class that is not its ancestor.

A Class acts as the namespace for various kinds of Classifiers defined within its scope, including Classes. Nested
Classifiers are members of the namespace of the containing Class. Classifier nesting is used for reasons of information
hiding.

A Class may be designated by setting isActive to true as active (i.e., each of its instances is an active object). When
isActive is false the Class is passive (i.e., each of its instances executes within the context of some other object).

An active object is an object that, as a direct consequence of its creation, commences to execute its classifierBehavior, and
does not cease until either the complete Behavior is executed or the object is terminated by some external object. (This
is sometimes referred to as “the object having its own thread of control.””) The points at which an active object responds
to communications from other objects is determined solely by the Behavior of the active object and not by the invoking
object. If the classifierBehavior of an active object completes, the object is terminated.

A Class’s Receptions specify which Signals the instances of this Class handle.
An InstanceSpecification may be used to specify the initial value to be created for a Class.

All instances corresponding to parts and ports of a Class are destroyed recursively, when an instance of that Class is
deleted.

A Class may act as a metaclass in the definition of Profiles and metamodels. See Profiles in 12.3.

1144 Notation

A Class is shown using the Classifier symbol. As Class is the most widely used Classifier, no keyword is needed to
indicate that the metaclass is Class.

A Class has four mandatory compartments: attributes, operations, receptions (see 9.2.4) and internal structure (see
11.2.4). A Class may also have optional compartments as described for Classifiers in general (see 9.2.4).

The operations compartment of a Class contains notation for its ownedOperations using the notation specified in 9.6.4.
The receptions compartment contains ownedReceptions using the notation specified in 10.3.4.

A usage dependency may relate an InstanceSpecification to a constructor for a Class, describing the single value
returned by the constructor Operation. The Operation is the client, the created instance the supplier. The
InstanceSpecification may reference parameters declared by the Operation. A constructor is an Operation having a
single return result parameter of the type of the owning Class, and marked with the standard stereotype «Create». The
InstanceSpecification that is the supplier of the usage dependency represents the default value of the single return result
parameter of a constructor Operation.

A Class with the Property isActive = true can be shown by a Class box with an additional vertical bar on either side.

A Class that represents a metaclass may be extended by the optional stereotype «Metaclass» (see StandardProfile in
clause 22) shown above or before its name.

11.4.5 Examples

Figure 11.16 shows three ways of displaying the Class Window, according to the options set out for Classifier notation
in 9.2.4. The top left symbol shows all compartments suppressed. The lower left symbol shows the attributes and
operations compartments, each listing the features but suppressing details such as default values, parameters, and
visibility markings. The right symbol shows these details, as well as the optional compartment headers.

Unified Modeling Language 2.5 193

NOTE. The display() and hide() operations have no visibility specified.

Window Window
attributes
+size: Area = (100, 100)
#visibility: Boolean = true
Window +defaultSize: Rectangle
-xWin: XWindow
size: Area ,
A operations
bility: Bool
w.5| ility: Boolean display()
d!splay() hide()
hide() -attachX(xWin: XWindow)

Figure 11.16 Class notation variants

Figure 11.17 shows the visibility grouping option (see 9.2.4) applied to the attributes and operations compartments in
the Class Window.

Window

attributes

public

size: Area = (100, 100)

defaultSize: Rectangle
protected

visibility: Boolean = true
private

XWin: XWindow

operations
public
display()
hide()
private
attachX(xWin: XWindow)

Figure 11.17 Class notation: attributes and Operations grouped according to visibility

Figure 11.18 shows an example of an active class.

EngineControl

Figure 11.18 Active Class

The following example uses two Classes, Car and Wheel. The Car Class has four parts, all of type Wheel, representing
the four wheels of the car. The front wheels and the rear wheels are linked via Connectors representing the front and
rear axle, respectively. Figure 11.19 specifies that whenever an instance of the Car Class is created, four instances of the
Wheel Class are created and held by composition within the car instance. In addition, one link each is created between
the front wheel instances and the rear wheel instances.

194 Unified Modeling Language 2.5

Car

internal structure

frontaxle

eftFront: Whee rightFront: Whee

rearaxle
eftRear: Wheel

rightRear: Whee

Figure 11.19 Connectors and Parts

Figure 11.20 specifies an equivalent system, but relies on multiplicities to show the replication of the wheel and axle
arrangement. This diagram specifies that there will be exactly two instances of the left wheel and exactly two instances
of the right wheel, with each matching instance connected by a link deriving from the Connector representing the axle.

Car

internal structure

axle

left: Wheel [2] right: Wheel [2]

Figure 11.20 Connectors and Parts in a structure diagram using multiplicities

Figure 11.21 shows an InstanceSpecification (see 9.8) for an instance of the Car Class (as specified in Figure 11.19). It
describes the internal structure of the Car that it creates and how the four contained instances of Wheel will be
initialized. In this case, every instance of Wheel will have the predefined size and use the brand of tire as specified. The
left wheel instances are given names, and all wheel instances are shown as playing the respective roles. The types of the
wheel instances have been suppressed.

: Car Wheel
11 / leftFront frontaxle / rightFront tire : String
tire = "Michelin" tire = "Michelin" size . String
size = "215x95" size = "215x95"
12 / leftRear rearaxle 12 / rightRear
tire = "Firestone" tire = "Firestone"
size = "215x95" size = "215x95"

Figure 11.21 An Instance of the Car Class

Figure 11.22 shows a constructor for the Window class, illustrating how the standard stereotype «Createy is applied to
the makeWindow Operation to mark it as a constructor.

Unified Modeling Language 2.5 195

Window

«Create» makeWindow(...) : Window --_] _
"~ theW : Window

Figure 11.22 InstanceSpecification indicating a constructor

Figure 11.23 shows a constructor for the Car Class. This constructor takes a parameter brand of type String. It describes
the internal structure of the Car that it creates and how the four contained instances of Wheel will be initialized. In this
case, every instance of Wheel will have the predefined size and use the brand of tire passed as parameter. The left wheel
instances are given names, and all wheel instances are shown as playing the parts. The types of the wheel instances have
been suppressed.

: Car
Car
«Create» createCar(brand: String) ~f-___ 11 / leftFront / rightFront
T frontaxle
tire = "Michelin" tire = "Michelin"
size = "215x95" size = "215x95"
12 / leftRear 12 / rightRear
tire = "Firestone" tire = "Firestone"
size = "215x95" size = "215x95"

Figure 11.23 A constructor for the Car Class

In Figure 11.24, it is made explicit that the extended Class Interface is in fact a metaclass (from a reference metamodel).

«Metaclass»
Interface

«stereotype»

- Remote

Figure 11.24 Showing that the extended Class is a metaclass

196 Unified Modeling Language 2.5

11.5 Associations

11.5.1 Summary

An Association classifies a set of tuples representing links between typed instances. An AssociationClass is both an
Association and a Class.

11.5.2 Abstract Syntax

) " Relationship | | Classifier
{ordered, subsets feature, subsets {sgbsgs featurlngCIassg |ert,
redefinableElement, subsets Subsets namespace, supsets
memberEnd, subsets assoc_la_tl_on, subsets
ownedM emt;er} redefinitionContext}
Property + ownedEnd + owningAssociatior Association
N 0.1 + isDerived : Boolean = fal
{subsets ownedEnd} {subsets owningAssociation)
+ navigableOwnedEnd + association
* 0..1
{ordered, subsets member} {subsets memberNamespace}
+ memberEnd + association
2% 0.1
{subsets relationship}
: * + association
*
+ associationEnd | 0..1 zogdu;rlgziersubsets
' A
{subsets owner} ownedElement} {readOnly, subsets
relatedElement}
LX)/ + JendType

AssociationClass Type

Figure 11.25 Associations

11.5.3 Semantics

11.5.3.1 Associations

An Association specifies a semantic relationship that can occur between typed instances. It has at least two memberEnds
represented by Properties, each of which has the type of the end. More than one end of the Association may have the
same type.

An Association declares that there can be links between instances whose types conform to or implement the associated
types. A link is a tuple with one value for each memberEnd of the Association, where each value is an instance whose
type conforms to or implements the type at the end.

Not all links need to be classified by an Association.

When one or more ends of the Association have isUnique=false, it is possible to have several links associating the same
set of instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the Association are ordered, links carry ordering information in addition to their end values.

For an Association with N memberEnds, choose any N-1 ends. Let the Property that constitutes the other end be called
oep, so that the Classifiers at the chosen N-1 ends are the context for oep (see 9.5.3). Associate specific instances with
the context ends. Then the collection of links of the Association that refer to these specific instances will identify a set

Unified Modeling Language 2.5 197

of instances at oep. The value represented by oep (see 9.5.3) is a collection calculated from this set as follows: All of the
instances in the set occur in the collection, and nothing else does. If oep is marked as unique, each instance will occur in
the collection just once, regardless of how many links connect to it. If oep is marked as nonunique, each instance will
occur in the collection once for each link that connects to it. If oep is marked as ordered, the collection will be ordered
in accordance with the ordering information in the links. The cardinality of this collection is its size. The multiplicity of
oep constrains this cardinality, or in the case of qualified associations, the size of the collection partition that may be
associated with a qualifier value.

Subsetting of Association ends has the meaning specified for Property (see 9.5.3).

Specialization is, in contrast to subsetting, a relationship in the domain of intentional semantics, which is to say it
characterizes the criteria whereby membership in the collection is defined, not by the membership. In the case of
Associations, specialization means that a link classified by the specializing Association is also classified by the
specialized Association. Semantically this implies that sets calculated by eliminating duplicates from the collections
representing the ends of the specializing Association are subsets of the corresponding sets calculated by eliminating
duplicates from collections representing the ends of the specialized Association; this fact of subsetting may or may not
be explicitly declared in a model.

NOTE. For n-ary Associations, the lower multiplicity of an end is typically 0. A lower multiplicity for an end of an n-
ary Association of 1 (or more) implies that one link (or more) must exist for every possible combination of values for
the other ends.

A binary Association may represent a composite aggregation (i.e., a whole/part relationship). Composition is
represented by the isComposite attribute on the part end of the Association being set to true. See the semantics of
composition in 9.5.3. An end Property of an Association may only be marked as a shared or composite aggregation if
the Association is binary and the other end is not marked as a shared or composite aggregation.

An end Property of an Association that is owned by an end Class or that is a navigableOwnedEnd of the Association
indicates that the Association is navigable from the opposite ends; otherwise, the Association is not navigable from the
opposite ends. Navigability means that instances participating in links at runtime (instances of an Association) can be
accessed efficiently from instances at the other ends of the Association. The precise mechanism by which such efficient
access is achieved is implementation specific. If an end is not navigable, access from the other ends may or may not be
possible, and if it is, it might not be efficient.

NOTE. Tools operating on UML models are not prevented from navigating Associations from non-navigable ends.

A qualified Association end has qualifiers that partition the instances associated with an instance at that end, the qualified
instance. Each partition is designated by a qualifier value, which is a tuple comprising one value for each qualifier. The
multiplicities at the other ends of the association determine the number of instances in each partition. So, for example,
0..1 means there is at most one instance per qualifier value. If the lower bounds are non-zero, the qualifier values must be a
finite set, for example because the qualifiers are typed by enumerations.

The existence of an association may be derived from other information in the model. The logical relationship between
the derivation of an Association and the derivation of its ends is model-specific.

11.5.3.2 Association Classes

An AssociationClass is a declaration of an Association that has a set of Features of its own. An AssociationClass is both
an Association and a Class, and preserves the static and dynamic semantics of both. An AssociationClass describes a set
of objects that each share the same specifications of Features, Constraints, and semantics entailed by the
AssociationClass as a kind of Class, and correspond to a unique link instantiating the AssociationClass as a kind of
Association.

Both Association and Class are Classifiers and hence have a set of common properties, like being able to have Features,
having a name, etc. These properties are multiply inherited from the same construct (Classifier), and are not duplicated.
Therefore, an AssociationClass has only one name, and has the set of Features that are defined for Classes and
Associations. The constraints defined for Class and Association also are applicable for AssociationClass, which implies
for example that the attributes of the AssociationClass, the memberEnds of the AssociationClass, and the opposite ends of
Associations connected to the AssociationClass must all have distinct names. Moreover, the specialization and

198 Unified Modeling Language 2.5

refinement rules defined for Class and Association are also applicable to AssociationClass. Redefinition is applicable to
an AssociationClass nested in the context of a Classifier just as it is applicable to a nested Class.

An AssociationClass inherits the composite Properties Class::ownedAttribute and Association::ownedEnd. Values of
ownedAttribute are Properties that are attributes of the Class, not ends of the AssociationClass owned through
Association::ownedEnd. Values of Association::ownedEnd are the ends of the Association owned by the AssociationClass, not
attributes of the AssociationClass. As Association ends, they can be used for navigation between end objects, as in all
Associations, depending on whether they are navigable (see Navigability in the semantics of Association).

An instance of an AssociationClass has the characteristics both of a link representing an instantiation of the
AssociationClass as a kind of Association, and of an object representing an instantiation of the AssociationClass as a
kind of Class.

NOTE. Even when all ends of the AssociationClass have isUnique=true, it is possible to have several instances
associating the same set of instances of the end Classes.

An AssociationClass cannot be a generalization of an Association or a Class.

11.54 Notation

Any Association may be drawn as a diamond (larger than a terminator on a line) with a solid line for each Association
memberEnd connecting the diamond to the Classifier that is the end’s type. An Association with more than two ends can
only be drawn this way.

A binary Association is normally drawn as a solid line connecting two Classifiers, or a solid line connecting a single
Classifier to itself (the two ends are distinct). A line may consist of one or more connected segments. The individual
segments of the line itself have no semantic significance, but they may be graphically meaningful to a tool in dragging
or resizing an Association symbol.

An Association symbol may be adorned as follows:

* The Association’s name can be shown as a name string near the Association symbol, but not near enough to an
end to be confused with the end’s name.

e Aslash appearing in front of the name of an Association, or in place of the name if no name is shown, marks
the Association as being derived.

e A property string may be placed near the Association symbol, but far enough from any end to not be confused
with a property string on an end.

On a binary Association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
Association and pointing along the line in the direction of one end indicates that end to be the last in the order of the
ends of the Association. The arrow indicates that the Association is to be read as associating the end away from the
direction of the arrow with the end to which the arrow is pointing (see Figure 11.27). This notation is for documentation
purposes only and has no general semantic interpretation. It is used to capture some application-specific detail of the
relationship between the associated Classifiers.

Generalizations between Associations can be shown using a generalization arrow between the Association symbols.
Other notational options for Generalizations such as “shared target style” (see 9.2.4) and the notations defined in 9.7.4
may be used for Generalizations between Associations, but a conforming tool is not required to support those options.

An Association end is the connection between the line depicting an Association and the icon (often a box) depicting the
connected Classifier. A name string may be placed near the end of the line to show the name of the Association end. The
name is optional and suppressible.

Various other notations can be placed near the end of the line as follows:

e A multiplicity

Unified Modeling Language 2.5 199

e A <prop-modifier> enclosed in curly braces, where <prop-modifier> is defined in Property (see 9.5.4).
e A <visibility> symbol (see 9.5.4).

NOTE. If no multiplicity is shown on the diagram, no conclusion may be drawn about the multiplicity in the model.

An open arrowhead on the end of an Association indicates the end is navigable. A small x on the end of an Association
indicates the end is not navigable.

If the Association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is shown.

A binary Association may have one end with aggregation = AggregationKind::shared or aggregation =
AggregationKind::composite. When one end has aggregation = AggregationKind::shared a hollow diamond is added as a
terminal adornment at the end of the Association line opposite the end marked with aggregation =
AggregationKind::shared. The diamond shall be noticeably smaller than the diamond notation for Associations. An
Association with aggregation = AggregationKind::composite likewise has a diamond at the corresponding end, but
differs in having the diamond filled in.

Ownership of Association ends by an associated Classifier may be indicated graphically by a small filled circle, which
for brevity we will term a dot. The dot is to be drawn integral to the graphic path of the line, at the point where it meets
the Classifier, inserted between the end of the line and the side of the node representing the Classifier. The diameter of
the dot shall not exceed half the height of the aggregation diamond, and shall be larger than the width of the line. This
avoids visual confusion with the filled diamond notation while ensuring that it can be distinguished from the line. The
dot shows that the model includes a Property of the type represented by the Classifier touched by the dot. This Property
is owned by the Classifier at the other end. In such a case it is normal to suppress the Property from the attributes
compartment of the owning Classifier.

The dot may be used in combination with the other graphic line-path notations for Properties of Associations and
Association ends. These include aggregation type and navigability.

Explicit end-ownership notation is not mandatory, i.e., a conforming tool may not support it. Where the dot notation is
used, it shall be applied consistently throughout each diagram, so that the absence of the dot signifies ownership by the
Association. Stated otherwise, when applying this notation to a binary Association in a user model, the dot will be
omitted only for ends which are not owned by a Classifier. In this way, in contexts where the notation is used, the
absence of the dot on certain ends does not leave the ownership of those ends ambiguous.

The dot is illustrated in Figure 11.26, at the maximum allowed size. The diagram shows endA to be owned by Classifier
B, and because the notation must be applied consistently throughout the diagram, this diagram also shows
unambiguously that endB is owned by BinaryAssociationAB.

endA endB
A B

BinaryAssociationAB

Figure 11.26 Graphic notation indicating exactly one Association end owned by the Association

Navigability notation was often used in the past according to an informal convention, whereby non-navigable ends were
assumed to be owned by the Association whereas navigable ends were assumed to be owned by the Classifier at the
opposite end. This convention is now deprecated. Aggregation type, navigability, and end ownership are separate
concepts, each with their own explicit notation. Association ends owned by classes are always navigable, while those
owned by associations may be navigable or not.

An AssociationClass is shown as a Class symbol attached to the Association path by a dashed line. The Association path
may include a diamond, in which case the Class symbol shall be shown attached to the diamond by a dashed line. The
Association path and the AssociationClass symbol represent the same underlying model element, which has a single
name. The name may be placed on the path, in the Class symbol, or on both, but they must be the same name.

200 Unified Modeling Language 2.5

Association end names appear in the same position as regular Associations, not in the attribute compartment of the
AssociationClass.

Logically, the AssociationClass and the Association are the same semantic entity; however, they are graphically distinct.
The AssociationClass symbol can be dragged away from the line, but the dashed line must remain attached to both the
path and the Class symbol.

When two association lines cross, a conforming tool may provide the option to show a small semicircular jog to indicate
that the lines do not intersect (as in electrical circuit diagrams).

In practice, it is often convenient to suppress some of the arrows and crosses that signify navigability of association
ends. A conforming tool may provide various options for showing navigation arrows and crosses. As with dot notation,
these options apply at the level of complete diagrams.

* Show all arrows and crosses. Navigation and its absence are made completely explicit.
e Suppress all arrows and crosses. No inference can be drawn about navigation.

* Suppress all crosses. Suppress arrows for Associations with navigability in both directions, and show arrows
only for Associations with one-way navigability. In this case, the two-way navigability cannot be distinguished
from situations where there is no navigation at all; however, the latter case occurs rarely in practice.

If there are two or more aggregations to the same aggregate, a conforming tool may as a purely presentational option
show them as a tree by merging the aggregation ends into a single segment adorned by the solid or hollow aggregation
diamond symbol. Any adornments on that single segment apply to all of the aggregation ends. The absence of an
adornment on a merged segment does not imply that the properties corresponding to the suppressed adornment have
equal values for all of the aggregation ends.

A qualifier is shown as a small rectangle attached to the end of an association path between the final path segment and the
symbol of the Classifier that it connects to. The qualifier rectangle should be smaller than the attached class rectangle,
unless this is not practical. The qualifier rectangle is part of the association path, not part of the Classifier. The qualifier
rectangle is attached to the end of the association path that represents the memberEnd that owns the qualifier.

The multiplicity attached to the target end denotes the possible cardinalities of the set of target instances selected by the
pairing of a qualified instance and a qualifier value.

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes, shown one to a line.
Qualifier attributes have the same notation as Classifier attributes, except that initial value expressions are not
meaningful.

It is permissible (although somewhat rare), to have a qualifier on every end of a single association.

A qualifier may not be suppressed.

11.5.5 Examples

Figure 11.27 shows a binary Association from Player to Year named PlayedinYear.

Unified Modeling Language 2.5 201

Team

Figure 11.27 Binary and ternary Associations

Year

4 PlayedInYear

*

season

team

year

goalie

Player

The solid triangle indicates the order of reading: Player PlayedInYear Year. The figure further shows a ternary
Association between Team, Year, and Player with ends named team, season, and goalie respectively.

The following example shows Association ends with various adornments.

+a

+b {ordered}

Cc

0.1

ES

+d {ordered, subsets b}

0.1

D

Figure 11.28 Association ends with various adornments

The following adornments are shown on the four Association ends in Figure 11.28.

e Names a, b, and d on three of the ends.

¢ Public visibility marked on the ends a, b and d.

e Multiplicities 0..1 on a, * on b, and 0..1 on d.

e Specification of ordering on b and d.

e Subsetting on d. For an instance of Class C, the collection d is a subset of the collection b. This is equivalent to
the OCL constraint:

context C inv: b->includesAll(d)

The following examples show notation for ends owned by an association (no dots).

202

Unified Modeling Language 2.5

a b
A B
1.4 2.5
c d
C a > D
1.4 2.5
e f
E F
1.4 2.5
g h
G H
1.4 2.5
i J
J
1.4 2.5

Figure 11.29 Examples of navigable association-owned ends

In Figure 11.29:

The top pair AB shows a binary Association with two navigable ends.
The second pair CD shows a binary Association with two non-navigable ends.

The third pair EF shows a binary Association with unspecified navigability. In a diagram where arrows are
only shown for one-way navigable associations, this probably signifies bidirectional navigability.

The fourth pair GH shows a binary Association with one end navigable and the other non-navigable.

The fifth pair 1J shows a binary Association with one end navigable and the other non-navigable, in a diagram
where arrows are only shown for one-way navigable associations, and crosses are suppressed.

The following examples show some class-owned ends, where class ownership is indicated by the dot. In Figure 11.30:

In the top pair AB, end b is owned by Class A and end a is owned by Class B. Because the ends are class-
owned, they are navigable.

In the second pair CD, end d is owned by Class C, and hence is navigable. End c is owned by the Association,
and is marked as navigable.

In the third pair EF, end f is owned by Class E, and hence is navigable. End e is owned by the Association, and
is marked as not navigable, in a diagram where arrows are only shown for one-way navigable associations, and
crosses are suppressed.

In the fourth pair GH, end h is owned by Class G and end g is owned by Class H. Because the ends are class-
owned, they are navigable. This is in a diagram where arrows are only shown for one-way navigable
associations.

Unified Modeling Language 2.5 203

a b
A B
1.4 2.5
o d
C D
1.4 2.5
e f
E F
1.4 2.5
g h
G H
1.4 2.5

Figure 11.30 Examples of class-owned ends

Figure 11.31 shows that the attribute notation can be used for an Association end owned by a Class, because an
Association end owned by a Class is also an attribute. Although it would typically be suppressed on grounds of
redundancy, this notation may be used in conjunction with the association notation to make it perfectly clear that the
attribute is also an Association end.

b: B[']

Figure 11.31 Example of attribute notation for navigable end owned by an end Class

Figure 11.32 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the
attributes that subset it. In this case there is just one of these, C::d. So for an instance of the Class C, d is a subset of b,
and b is derived from d.

+3 +/b {union}

0.1 *

C +d {subsets b} D

Figure 11.32 Derived supersets (union)

Figure 11.33 shows the black diamond notation for composite aggregation. The names of the composite ends have been
suppressed in the diagram.

204 Unified Modeling Language 2.5

+scrollbar

Slider
Panel

Header

Figure 11.33 Composite aggregation is depicted as a black diamond

Figure 11.34 shows a similar model using the notational option of sharing the same source segment between multiple
compositions. The multiplicity and name adornments on the shared end apply to all of the compositions. The model
values for absent adornments on the merged segment, such as property modifiers or visibility, may differ.

Window

+window | 1

+scrollban) 2 +title| 1 *body | 1

Slider Header Panel

Figure 11.34 Composite aggregation sharing a source segment

Figure 11.35 shows the notation for an AssociationClass. In this example the name of the AssociationClass appears
twice, once on the Class rectangle and once on the Association. These are both renderings of the same model element.

Person Company

person company

salary

Figure 11.35 Example AssociationClass Job, which is defined between the two Classes Person and Company

Figure 11.36 shows the same model using the diamond notation for the AssociationClass.

Unified Modeling Language 2.5 205

Job

* 1..
Person —<>— Company
person company

Job

salary

Figure 11.36 Example AssociationClass using diamond symbol

Figure 11.37 illustrates some qualified Associations. The left diagram shows that given a Bank, a particular accountNo
identifies zero or one Person. The qualifier is the Property accountNo, and the qualified object is the Bank. The qualifier is
owned by the unnamed Property at the Bank end of the Association, i.e., the Property whose type is Bank.

The right diagram shows how an individual Square on the Chessboard may be identified by rank and file; in this case
because the multiplicity is 1, the diagram shows that every possible value for Rank and File indicates an individual
Square. In this case the qualifiers are owned by the unnamed association end Property whose type is Chessboard, while
the opposite Property whose type is Square is marked with aggregation = composite.

Bank Chessboard

accountNo rank : Rank
N file : File
1
0..1 1
Person Square

Figure 11.37 Qualified associations

1.6 Components

11.6.1 Summary

This sub clause specifies a set of constructs that can be used to define software systems of arbitrary size and complexity.
In particular, it specifies a Component as a modular unit with well-defined Interfaces that is replaceable within its
environment. The Component concept addresses the area of component-based development and component-based
system structuring, where a Component is modeled throughout the development life cycle and successively refined into
deployment and run-time.

An important aspect of component-based development is the reuse of previously constructed Components. A
Component can always be considered an autonomous unit within a system or subsystem. It has one or more provided
and/or required Interfaces (potentially exposed via Ports), and its internals are hidden and inaccessible other than as
provided by its Interfaces. Although it may be dependent on other elements in terms of Interfaces that are required, a
Component is encapsulated and its Dependencies are designed such that it can be treated as independently as possible.
As aresult, Components and subsystems can be flexibly reused and replaced by connecting (“wiring”) them together.

206 Unified Modeling Language 2.5

The aspects of autonomy and reuse also extend to Components at deployment time. The artifacts that implement
Component are intended to be capable of being deployed and re-deployed independently, for instance to update an
existing system.

The Components package supports the specification of both logical Components (e.g., business components, process
components) and physical Components (e.g., EJB components, CORBA components, COM+ and .NET components,
WSDL components, etc.), along with the artifacts that implement them and the nodes on which they are deployed and
executed. It is anticipated that profiles based around Components will be developed for specific component
technologies and associated hardware and software environments.

11.6.2 Abstract Syntax

| class |
/\

{subsets supplier, {subsets ownedElement,

subsets owner} subsets supplierDependency?}
Component + abstraction + realization ComponentRealization
+ isIndirectlyInstantiated : Boolean = true 0.1 *
+ component | * * | + component {subsets clientDependency}

{subsets namespace}

% | + componentRealization
0..1 | + component

{readOnly} {readOnly} {subsets ownedMember} . {subsets client}
+ required | * x | + /provided « | + packagedElement 1.* |+ realizingClassifie

Interface | PackageableElement Classifier

Figure 11.38 Components

11.6.3 Semantics

11.6.3.1 Components

A Component represents a modular part of a system that encapsulates its contents and whose manifestation is
replaceable within its environment.

A Component is a self~contained unit that encapsulates the state and behavior of a number of Classifiers. A Component
specifies a formal contract of the services that it provides to its clients and those that it requires from other Components
or services in the system in terms of its provided and required Interfaces.

A Component is a substitutable unit that can be replaced at design time or run-time by a Component that offers
equivalent functionality based on compatibility of its Interfaces. As long as the environment is fully compatible with the
provided and required Interfaces of a Component, it will be able to interact with this environment. Similarly, a system can
be extended by adding new Component types that add new functionality. Larger pieces of a system’s functionality may
be assembled by reusing Components as parts in an encompassing Component or assembly of Components, and wiring
them together.

A Component is modeled throughout the development life cycle and successively refined into deployment and run-time.
A Component may be manifested by one or more Artifacts, and in turn, that Artifact may be deployed to its execution
environment. A DeploymentSpecification may define values that parameterize the Component’s execution. (See
Deployments — Clause 19).

The required and provided Interfaces of a Component allow for the specification of StructuralFeatures such as attributes
and Association ends, as well as BehavioralFeatures such as Operations and Receptions. A Component may implement
a provided Interface directly, or its realizing Classifiers may do so, or they may be inherited. The required and provided
Interfaces may optionally be organized through Ports; these enable the definition of named sets of provided and required
Interfaces that are typically (but not always) addressed at run-time.

Unified Modeling Language 2.5 207

A Component has an external view (or “black-box” view) by means of its publicly visible Properties and Operations.
Optionally, a Behavior such as a ProtocolStateMachine may be attached to an Interface, Port, and to the Component
itself, to define the external view more precisely by making dynamic constraints in the sequence of Operation calls
explicit.

The wiring between Components in a system or other context can be structurally defined by using Dependencies
between compatible simple Ports, or between Usages and matching InterfaceRealizations that are represented by
sockets and lollipops (see 10.4.4) on Components on Component diagrams. Creating a wiring Dependency between a
Usage and a matching InterfaceRealization, or between compatible simple Ports, means that there may be some
additional information, such as performance requirements, transport bindings, or other policies that determine that the
Interface is realized in a way that is suitable for consumption by the depending Component. Such additional information
could be captured in a profile by means of stereotypes.

A Component also has an internal view (or “white-box” view) by means of its private Properties and realizing
Classifiers. This view shows how the external Behavior is realized internally. Dependencies on the external view
provide a convenient overview of what may happen in the internal view; they do not prescribe what must happen. More
detailed behavior specifications such as Interactions and Activities may be used to detail the mapping from external to
internal behavior.

The execution time semantics for an assembly Connector in a Component are that requests (signals and operation
invocations) travel along an instance of a Connector. The execution semantics for multiple Connectors directed to and
from different roles, or n-ary Connectors where n> 2, indicates that the instance that will originate or handle the request
will be determined at execution time.

A number of UML standard stereotypes exist that apply to Component. For example, «Subsystem» to model large-scale
Components, and «Specification» and «Realization» to model Components with distinct specification and realization
definitions, where one specification may have multiple realizations (see the Standard Profiles).

A Component may be realized (or implemented) by a number of Classifiers. In that case, a Component owns a set of
ComponentRealizations to these Classifiers.

A component acts like a Package for all model elements that are involved in or related to its definition, which should be
either owned or imported explicitly. Typically the Classifiers that realize a Component are owned by it.

The isDirectlyinstantiated property specifies the kind of instantiation that applies to a Component. If false, the Component
is instantiated as an addressable object. If true, the Component is defined at design-time, but at run-time (or execution-
time) an object specified by the Component does not exist, that is, the Component is instantiated indirectly, through the
instantiation of its realizing Classifiers or parts.

11.6.4 Notation

A Component is shown as a Classifier rectangle with the keyword «component». Optionally, in the right hand corner a
Component icon can be displayed. This is a Classifier rectangle with two smaller rectangles protruding from its left
hand side. If the icon symbol is shown, the keyword «component» may be hidden.

The attributes, operations and internal structure compartments all have their normal meaning. The internal structure uses
the notation defined in StructuredClassifiers (11.2).

The provided and required Interfaces of a Component may be shown by means of ball (lollipop) and socket notation
(see 10.4.4), where the lollipops and sockets stick out of the Component rectangle.

For displaying the full signature of a provided or required Interface of a Component, the Interfaces can also be
displayed as normal expandable Classifier rectangles. For this option, the Interface rectangles are connected to the
Component rectangle by appropriate dependency arrows, as specified in 7.7.4 and 10.4.4.

A conforming tool may optionally support compartments named “provided interfaces” and “required interfaces” listing
the provided and required Interfaces by name. This may be a useful option in scenarios in which a Component has a
large number of provided or required Interfaces.

208 Unified Modeling Language 2.5

Additional optional compartments “realizations” and “artifacts” may be used to list the realizing Classifiers (Classifiers
reached by following the realization property) and manifesting Artifacts (Artifacts that manifest this component — see
19.3).

A ComponentRealization is notated in the same way as a Realization dependency (i.e., as a general dashed line with a
hollow triangle as an arrowhead).

The packagedElements of a Component may be displayed in an optional compartment named “packaged elements,”
according to the specification for optional compartments for ownedMembers set out in 9.2.4.

11.6.5 Examples

An overview diagram can show Components related by Dependencies, which signify some further unspecified kind of
dependency between the components, and by implication a lack of dependency where there are no Dependency arrows.

«component» @ «components
Order = f---------—----- > Account

1

|

1

I

|

|

|

v/

«component»
Product “%j

Figure 11.39 Example of an overview diagram showing Components and their general Dependencies

Figure 11.40 shows an external (“black-box”) view of a Component by means of interface lollipops and sockets sticking
out of the Component rectangle.

ltemAllocation

: «component» @ Person C

Tracking Order

: | Invoice :

Orderableltem

Figure 11.40 A Component with two provided and three required Interfaces

Figure 11.41 shows provided and required interfaces listed in optional compartments.

Unified Modeling Language 2.5 209

«components g1
Order

provided interfaces
ItemAllocation
Tracking

reguired interfaces
Person
Invoice
Orderableltem

Figure 11.41 Black box notation showing a listing of provided and required interfaces

Figure 11.42 shows a “white box” view of a Component listing realizing Classifiers and manifesting Artifacts in
additional optional compartments.

«components &

Order

provided interfaces
ItemAllocation
Tracking

required interfaces
Person
Invoice
Orderableltem

realizations
OrderHeader
Lineltem

artifacts
Order.jar

Figure 11.42 Optional “white-box” representation of a Component

Figure 11.43 shows explicit representation of the provided and required Interfaces using Dependency notations,
allowing Interface details such as Operations to be displayed.

«interface» 2 « cumponent»gj wUses «interface» &]
OrderEntry [—~~~ """ Order [~ = Person
operations operations
Create() Create()
Validate() FindByName()
AddOrderLine() GetDetails()

Figure 11.43 Explicit representation of provided and required Interfaces using Dependency notation.

Figure 11.44 shows a set of Classifiers that realize a Component with realization arrows representing the
ComponentRealizations.

210 Unified Modeling Language 2.5

5]

«component»
Customer

Customerimpl CustomerColl CustomerDef

Figure 11.44 A representation of the realization of a complex Component

Figure 11.45 shows owned Classes that realize a Component nested within an optional “packaged elements”
compartment of the Component shape.

«components
Order

packaged elements

OrderHeader

OrderEntry Person
- order T 1 C

item| *

LineItem

Figure 11.45 An alternative nested representation of a complex Component

Figure 11.46 shows various ways of wiring Components using Dependencies.

The Dependency on the right of the figure is from the Usage of Orderableltem to the InterfaceRealization of
Orderableltem. This also shows that “/Orderableltem” is an Interface that is implemented by a supertype of Product,
following the notation specified in 10.4.4.

The Dependency between the AccountPayable Ports illustrates the notational option of showing the dependency arrow
joining the socket to the lollipop, when a Dependency is wired between simple Ports.

When realizing Classifiers are shown in a packaged elements compartment, a Dependency may be shown from a simple
Port to a realizing Classifier to indicate that the Interface provided or required by the Port is dependent in some way
upon the Classifier. This is illustrated by the Dependency from AccountPayable to OrderHeader, which indicates that
something about the fact that the Component requires AccountPayable is dependent upon OrderHeader.

Unified Modeling Language 2.5 211

] «component»
«component» AccountPayable Order
Account

i\

\ packaged elements

kY

S «Focus»
N)_[—_——
+ Z OrderHeader

AccountPayable
4 Orderableltem
1

order

\\\3 «compoﬂent»{‘
Product

item| *

/Orderableltem

LineItem

Figure 11.46 Example model of a Component, its provided and required Interfaces, and wiring through
Dependencies

Figure 11.47 shows an internal or white-box view of the internal structure of a Component that contains other
Components with simple Ports as parts of its internal assembly. The assembly Connectors use ball-and-socket notation.
The delegation connectors use the notational option that the Connector line can end on the ball or socket, rather than the
simple port itself.

«component» g]
Store

internal structure

«component»%j Person «component» &
L] :Order Customer
0}

o—
OrderEntry

OrderEntry
ﬁccuunt Account
—C
IOH:I erableltemn
«com puon ent»3]
:Product

Figure 11.47 Internal structure of a Component

Figure 11.48 shows delegation Connectors from delegating Ports to handling parts; in this example the parts in the
internal structure compartment are typed by Classes shown in the optional packaged elements compartment.

212 Unified Modeling Language 2.5

«component»
Order

OrderEntry
o—7_

internal structure

:OrderHeader

Person

Lineltem |———— 7 -

OrderHeader

.

packaged elements

! - LineItem

order item

Figure 11.48 Delegation Connectors connect externally provided Interfaces to the parts that realize or require

them.

11.7 Collaborations

11.71 Summary

The primary purpose of Collaborations is to explain how a system of communicating elements collectively accomplish
a specific task or set of tasks without necessarily having to incorporate detail that is irrelevant to the explanation.
Collaborations are one way that UML may be used to capture design patterns.

A CollaborationUse represents the application of the pattern described by a Collaboration to a specific situation

involving specific elements playing its collaborationRoles.

11.7.2 Abstract Syntax

StructuredClassifier | | BehavioredClassifier
\Z N

{subsets structuredClassifier} | x
+ collaboration

{subsets role}
+ collaborationRole| *

NamedElement

CollaborationUse

+ collaborationUse

1 *

+ collaborationUse
{subsets ownedElement}

*

+ classifier

{subsets owner}
0.1

0.1

| ConnectableElement

Figure 11.49 Collaborations

Unified Modeling Language 2.5

+ representation
{subsets collaborationUse}

{subsets owner}
0..1 | + collaborationUse

{subsets ownedElement}
* + roleBinding

Dependency

Classifier

213

11.7.3 Semantics

11.7.3.1 Collaborations

Collaborations may be used to explain how a collection of cooperating instances achieve a joint task or set of tasks.
Therefore, a Collaboration typically incorporates only those aspects that are necessary for its explanation and
suppresses everything else. Thus, a given object may be simultaneously playing collaborationRoles in multiple different
Collaborations, but each Collaboration would only represent those aspects of that object that are relevant to its purpose.

A Collaboration defines a set of cooperating participants that are needed for a given task. The collaborationRoles of a
Collaboration will be played by instances when interacting with each other. Their relationships relevant for the given
task are shown as Connectors between the collaborationRoles. CollaborationRoles of Collaborations define a usage of
instances, while the Classifiers typing these collaborationRoles specify all required Properties of these instances. Thus, a
Collaboration specifies what Properties instances must have to be able to participate in the Collaboration. The
Connectors between the collaborationRoles specify what communication paths must exist between the participating
instances.

Neither all Features nor all contents of the participating instances nor all links between these instances are always
required in a particular Collaboration. Therefore, a Collaboration is often defined in terms of collaborationRoles typed by
Interfaces.

Collaborations may be specialized from other Collaborations. If a collaborationRole is extended in the specialization, its
type in the specialized Collaboration must conform to its type in the general Collaboration. The specialization of the
types of the collaborationRoles does not imply corresponding specialization of the Classifiers that realize those
collaborationRoles. It is sufficient that they conform to the constraints defined by those collaborationRoles.

A Collaboration is not directly instantiable. Instead, the cooperation defined by the Collaboration comes about as a
consequence of the actual cooperation between the instances that play the collaborationRoles defined in the Collaboration.

11.7.3.2 CollaborationUses

A CollaborationUse represents a particular use of a Collaboration to explain the relationships between a set of elements.
A CollaborationUse shows how the pattern described by a Collaboration is applied in a given confext Classifier, by
binding specific ConnectableElements from that context to the collaborationRoles of the Collaboration. There may be
multiple CollaborationUses related to a given Collaboration within a Classifier, each bound differently. A given
collaborationRole or Connector may be involved in multiple uses of the same or different Collaborations.

The roleBindings are implemented using Dependencies owned by the CollaborationUse. Each collaborationRole in the
Collaboration is bound by a distinct Dependency and is its supplier. The client of the Dependency is a
ConnectableElement that relates in some way to the context Classifier: it may be a direct collaborationRole of the context
Classifier, or an element reachable by some set of references from the context Classifier. These roleBindings indicate
which ConnectableElement from the context Classifier plays which collaborationRole in the Collaboration.

Connectors in a Collaboration typing a CollaborationUse must have corresponding Connectors between elements bound
in the context Classifier, and these corresponding Connectors must have the same or more general type than the
Collaboration Connectors.

One of the CollaborationUses owned by a Classifier may be singled out as representing the Behavior of the Classifier as
a whole. This is called the Classifier’s representation. The Collaboration that is related to the Classifier by its
representation shows how the instances corresponding to the StructuralFeatures of this Classifier (e.g., its attributes and
parts) interact to generate the overall Behavior of the Classifier. The representing Collaboration may be used to provide
a description of the Behavior of the Classifier at a different level of abstraction than is offered by the internal structure
of the Classifier. The Properties of the Classifier are mapped to collaborationRoles in the Collaboration by the roleBindings
of the CollaborationUse.

Any Behavior attached to the Collaboration applies to the set of collaborationRoles and Connectors bound within a given
CollaborationUse. For example, an interaction among parts of a Collaboration applies to the Classifier parts bound to a
single CollaborationUse.

214 Unified Modeling Language 2.5

If the same ConnectableElement is used in both the Collaboration and the represented element, no roleBinding is
required.

It is not specified further when client and supplier elements in roleBindings are compatible.

11.74 Notation

A Collaboration is shown as a dashed ellipse shape containing the name of the Collaboration. The internal structure of a
Collaboration as comprised by collaborationRoles and Connectors may be shown in a compartment within the dashed
ellipse shape. This compartment follows the same notational specification as for the internal structure compartment of a
normal Classifier rectangle.

Alternatively, a composite structure diagram can be used, or a normal Classifier rectangle with the keyword
«collaboration».

There is no notation defined for a Collaboration whose collaborationRoles are not Properties.

Using an alternative notation for Properties, a line may be drawn from the elliptical Collaboration shape to rectangles
denoting Classifiers that are the types of Properties of the Collaboration. Each line is labeled by the name of the
Property. In this manner, a diagram can show the definition of a Collaboration together with the actual Classifiers that
type the collaborationRoles in that definition

A CollaborationUse is shown within an internal structure compartment of the context Classifier by a dashed ellipse
containing the name of the occurrence, a colon, and the name of the Collaboration type. For every roleBinding, there is a
dashed line from the ellipse to the client element; the dashed line is labeled on the client end with the name of the supplier
element. With this notation the Connectors that must exist in the context Classifier as a consequence of the bindings
may be suppressed.

An optional notation for CollaborationUse is as a dashed arrow with the keyword «occurrence» pointing from the using
Classifier to the used Collaboration. In conjunction with this the roleBindings are shown as normal Dependency arrows.
With this option any Connectors that must exist in the context Classifier as a consequence of the bindings should be
shown.

11.7.5 Examples

Figure 11.50 shows the internal structure of the Collaboration named Observer, with two parts that are collaborationRoles
named subject and observer, and a Connector between them.

=TT Observer T
-~ .
- M
- .

s by
! A
I subject: CallQueue observer: SlidingBarlcon |
\

Y ,,

A -
. - - -

Figure 11.50 The internal structure of the Observer Collaboration

Figure 11.51 shows the alternative notation for definition of the parts of the Observer Collaboration, which allows the
details of the Classes CallQueue and SlidingBarlcon to be shown in the same definition. Any instance playing the
Subject collaborationRole must possess the Properties specified by CallQueue, and similarly for the Observer
collaborationRole. The example also shows a Constraint on Observer.

Unified Modeling Language 2.5 215

CallQueue —
e cubject o - sbeerver SlidingBarIcon
e | Observer ———readng e
capacity: Integer N -7 rangé: Interval

~—————
I
|
I
1
|
]

observer.reading = length{subject.queue)
observer.range = (0..subject.capacity)

Figure 11.51 Alternative notation for the parts of the Observer Collaboration.

The next example shows the definition of two Collaborations, Sale (Figure 11.52) and BrokeredSale (Figure 11.53).
Sale is used twice as part of the definition of BrokeredSale. Sale is a Collaboration among two collaborationRoles
(actually parts), a seller and a buyer. An interaction, or other Behavior specification, could be attached to Sale to specify
the steps involved in making a Sale.

Figure 11.52 The Sale Collaboration

BrokeredSale is a Collaboration among three collaborationRoles, a producer, a broker, and a consumer. The specification
of BrokeredSale shows that it consists of two CollaborationUses of the Sale Collaboration, indicated by the dashed
ellipses. The occurrence wholesale indicates a Sale in which the producer is the seller and the broker is the buyer. The
occurrence retail indicates a Sale in which the broker is the seller and the consumer is the buyer. The Connectors
between sellers and buyers are not shown in the two occurrences; these Connectors must exist in the BrokeredSale
Collaboration as a consequence of the Connector defined in Sale. The BrokeredSale Collaboration could itself be used
as part of a larger Collaboration.

// //77 n N N
y ___{ wholesale: N N
/ — \ sale ~ N
, broker Ny g ~ AN
buyer T -~
/ T Ve ~_ seller N
! >~
| seller
\ producer
\ \
\
\ -4 - ’
. . /
A 4 retail: N 7
~ J v
S Sale <L buyer 7

\\:\ ~——| consumer

Figure 11.53 The BrokeredSale Collaboration

216 Unified Modeling Language 2.5

Figure 11.54 shows part of the BrokeredSale Collaboration using the optional «occurrence» notation.

U «occurrence» i T
P ~~ e Sale ~
_-~~ BrokeredSale "< , ~
< X ~ !
e S, i __| buyer —— seller /
/s NTE
7 PSS L, L T ,,/
’ =TT | e P
broker
.
| ~ e
N .| producer |-~
N e
N e

Figure 11.54 A subset of the BrokeredSale Collaboration using «occurrence» and Dependency arrows

11.8 Classifier Descriptions

11.8.1 Association [Class]

11.8.1.1 Description

A link is a tuple of values that refer to typed objects. An Association classifies a set of links, each of which is an
instance of the Association. Each value in the link refers to an instance of the type of the corresponding end of the
Association.

11.8.1.2 Diagrams

Structured Classifiers, Associations, Profiles, Nodes, Properties, Link Actions

11.8.1.3 Generalizations
Relationship, Classifier
11.8.1.4 Specializations
AssociationClass, Extension, CommunicationPath

11.8.1.5 Attributes

® isDerived : Boolean [1..1] = false
Specifies whether the Association is derived from other model elements such as other Associations.

11.8.1.6 Association Ends

* /endType : Type [1..*]{subsets Relationship::relatedElement} (opposite A_endType association::association)
The Classifiers that are used as types of the ends of the Association.

* memberEnd : Property [2..*]{ordered, subsets Namespace::member} (opposite Property::association)
Each end represents participation of instances of the Classifier connected to the end in links of the Association.

* navigableOwnedEnd : Property [0..*]{subsets Association::ownedEnd} (opposite

A navigableOwnedEnd association::association)
The navigable ends that are owned by the Association itself.

Unified Modeling Language 2.5 217

* ¢ ownedEnd : Property [0..*]{ordered, subsets Classifier::feature, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Association::memberEnd, subsets

Namespace::ownedMember} (opposite Property::owningAssociation)
The ends that are owned by the Association itself.

11.8.1.7 Operations

* endType() : Type [1..*]
endType is derived from the types of the member ends.

body: nenber End- >col | ect (type) - >asSet ()

11.8.1.8 Constraints

e specialized end number
An Association specializing another Association has the same number of ends as the other Association.

inv: parents()->sel ect(ocl!sKindO (Association)).ocl AsType(Associ ation)->forAll(p |
p. menber End- >si ze() = sel f. menber End- >si ze())

e specialized end types
When an Association specializes another Association, every end of the specific Association corresponds to an
end of the general Association, and the specific end reaches the same type or a subtype of the corresponding
general end.

inv: Sequence{l..nenberEnd->size()}->
forAll (i | general ->sel ect(ocl|sKi ndO (Associ ation)).ocl AsType(Associ ati on)->
forAll (ga | self.menberEnd->at(i).type.confornsTo(ga. nenber End->at(i).type)))

e binary associations
Only binary Associations can be aggregations.

i nv: nmenber End- >exi st s(aggregati on <> AggregationKi nd:: none) inplies (menberEnd->size() = 2
and nmenber End- >exi st s(aggregati on = Aggregati onKi nd: : none))

e association_ends
Ends of Associations with more than two ends must be owned by the Association itself.

inv: nenber End->size() > 2 inplies ownedEnd- >i ncl udesAl | (menber End)
e ends_must be typed
inv: nmenber End- >for Al | (type->not Enpty())
11.8.2 AssociationClass [Class]

11.8.2.1 Description

A model element that has both Association and Class properties. An AssociationClass can be seen as an Association that
also has Class properties, or as a Class that also has Association properties. It not only connects a set of Classifiers but
also defines a set of Features that belong to the Association itself and not to any of the associated Classifiers.

11.8.2.2 Diagrams

Associations

218 Unified Modeling Language 2.5

11.8.2.3 Generalizations

Class, Association

11.8.2.4 Constraints

e cannot_be defined
An AssociationClass cannot be defined between itself and something else.

inv: self.endType()->excludes(self) and sel f.endType()->collect(et]|
et.ocl AsType(Cl assifier).allParents())->flatten()->excl udes(self)

e disjoint_attributes_ends
The owned attributes and owned ends of an AssociationClass are disjoint.

inv: ownedAttribute->intersection(ownedEnd)->i sEnpty()

11.8.3 Class [Class]

11.8.3.1 Description

A Class classifies a set of objects and specifies the features that characterize the structure and behavior of those objects.
A Class may have an internal structure and Ports.

11.8.3.2 Diagrams

Classes, Associations, Components, Profiles, Nodes, Behaviors, Properties, Operations

11.8.3.3 Generalizations
BehavioredClassifier, EncapsulatedClassifier
11.8.3.4 Specializations
AssociationClass, Component, Behavior, Stereotype, Node

11.8.3.5 Attributes

® isAbstract : Boolean [1..1] = false
If true, the Class does not provide a complete declaration and cannot be instantiated. An abstract Class is
typically used as a target of Associations or Generalizations.

® isActive : Boolean [1..1] = false
Determines whether an object specified by this Class is active or not. If true, then the owning Class is referred
to as an active Class. If false, then such a Class is referred to as a passive Class.

11.8.3.6 Association Ends

* /extension : Extension [0..*]{} (opposite Extension::metaclass)
This property is used when the Class is acting as a metaclass. It references the Extensions that specify
additional properties of the metaclass. The property is derived from the Extensions whose memberEnds are
typed by the Class.

* ¢ nestedClassifier : Classifier [0..*]{ordered, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Namespace::ownedMember}

Unified Modeling Language 2.5 219

11.8.3.7

11.8.3.8

(opposite A_nestedClassifier_nestingClass::nestingClass)
The Classifiers owned by the Class that are not ownedBehaviors.

¢ ownedAttribute : Property [0..*]{ordered, subsets Classifier::attribute, subsets Namespace::ownedMember,
redefines StructuredClassifier::ownedAttribute} (opposite Property::class)
The attributes (i.e., the Properties) owned by the Class.

4 ownedOperation : Operation [0..*]{ordered, subsets Classifier::feature, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Namespace::ownedMember }

(opposite Operation::class)
The Operations owned by the Class.

+ ownedReception : Reception [0..*]{subsets Classifier::feature, subsets Namespace::ownedMember }

(opposite A_ownedReception_class::class)
The Receptions owned by the Class.

/superClass : Class [0..*]{redefines Classifier::general} (opposite A_superClass class::class)
The superclasses of a Class, derived from its Generalizations.

Operations

extension() : Extension [0..*]
Derivation for Class::/extension : Extension

body: Extension.alllnstances()->sel ect(ext |
~ let endTypes : Sequence(C assifier) = ext.menberEnd->collect(type.ocl AsType(C assifier))
in

endTypes->i ncl udes(sel f) or endTypes. al | Parents()->i ncl udes(self))

superClass() : Class [0..*]
Derivation for Class::/superClass : Class

body: self.general ()->sel ect(ocllsKindO(C ass))->collect(ocl AsType(d ass))->asSet ()

Constraints

passive_class
Only an active Class may own Receptions and have a classifierBehavior.

inv: not isActive inplies (ownedReception->i senpty() and classifierBehavior = null)

11.8.4 Collaboration [Class]
11.8.4.1 Description
A Collaboration describes a structure of collaborating elements (roles), each performing a specialized function, which
collectively accomplish some desired functionality.
11.8.4.2 Diagrams
Collaborations
11.8.4.3 Generalizations

220

StructuredClassifier, BehavioredClassifier

Unified Modeling Language 2.5

11.8.4.4 Association Ends

® collaborationRole : ConnectableElement [0..*]{subsets StructuredClassifier::role} (opposite
A_collaborationRole_collaboration::collaboration)
Represents the participants in the Collaboration.

11.8.5 CollaborationUse [Class]

11.8.5.1 Description

A CollaborationUse is used to specify the application of a pattern specified by a Collaboration to a specific situation.

11.8.5.2 Diagrams

Collaborations, Classifiers

11.8.5.3 Generalizations
NamedElement
11.8.5.4 Association Ends

* ¢ roleBinding : Dependency [0..*]{subsets Element::ownedElement} (opposite
A_roleBinding_collaborationUse::collaborationUse)
A mapping between features of the Collaboration and features of the owning Classifier. This mapping indicates
which ConnectableElement of the Classifier plays which role(s) in the Collaboration. A ConnectableElement
may be bound to multiple roles in the same CollaborationUse (that is, it may play multiple roles).

* type : Collaboration [1..1] (opposite A_type collaborationUse::collaborationUse)
The Collaboration which is used in this CollaborationUse. The Collaboration defines the cooperation between
its roles which are mapped to ConnectableElements relating to the Classifier owning the CollaborationUse.

11.8.5.5 Constraints

e client_elements
All the client elements of a roleBinding are in one Classifier and all supplier elements of a roleBinding are in
one Collaboration.

inv: rol eBindi ng->collect(client)->forAll(nel, ne2 |
nel. ocl | ski ndOF (Connect abl eEl enent) and ne2. ocl | sKi ndOF (Connect abl eEl enent) and
let cel : Connectabl eEl enent = nel. ocl AsType(Connect abl eEl enent), ce2 :
Connect abl eEl ement = ne2. ocl AsType(Connect abl eEl enent) in
cel.structuredC assifier = ce2.structuredC assifier)
and
rol eBi ndi ng- >col | ect (supplier)->forAll(nel, ne2 |
nel. ocl | sKi ndOF (Connect abl eEl enent) and ne2. ocl | sKi ndOF (Connect abl eEl enment) and
let cel : Connectabl eEl enent = nel. ocl AsType(Connect abl eEl enent), ce2 :
Connect abl eEl ement = ne2. ocl AsType(Connect abl eEl enent) in
cel. col | aboration = ce2. col |l aboration)

e every role
Every collaborationRole in the Collaboration is bound within the CollaborationUse.

inv: type.collaborationRole->forAll(role | rol eBinding->exists(rb | rb.supplier-
>i ncl udes(role)))

* connectors
Connectors in a Collaboration typing a CollaborationUse must have corresponding Connectors between

Unified Modeling Language 2.5 221

elements bound in the context Classifier, and these corresponding Connectors must have the same or more
general type than the Collaboration Connectors.

inv: type.ownedConnector->forAll (connector
| et rol esConnectedl nCol | ab : Set (Connect abl eEl ement) = connector. end. rol e- >asSet (),
rel evant Bi ndi ngs : Set (Dependency) = rol eBi ndi ng->select(rb | rb.supplier-
>i ntersection(rol esConnect edl nCol | ab) - >not Enpt y()),
boundRol es : Set (Connect abl eEl enent) = rel evant Bi ndi ngs-
>col I ect(client.ocl AsType(Connect abl eEl ement)) - >asSet (),
contextClassifier : Structuredd assifier = boundRol es-
>any(true).structuredC assifier->any(true) in
cont ext G assi fi er. ownedConnect or - >exi st s(correspondi ngConnect or |
correspondi ngConnector.end.role->forAll(role | boundRol es->i ncl udes(role))
and (connector.type->not Enpty() and correspondi ngConnector. type->not Enmpty())
i mplies connector.type->forAll (confornsTo(correspondi ngConnector.type)))

11.8.6 Component [Class]

11.8.6.1 Description

A Component represents a modular part of a system that encapsulates its contents and whose manifestation is
replaceable within its environment.

11.8.6.2 Diagrams

Components
11.8.6.3 Generalizations

Class

11.8.6.4 Attributes

* isIndirectlyInstantiated : Boolean [1..1] = true
If true, the Component is defined at design-time, but at run-time (or execution-time) an object specified by the
Component does not exist, that is, the Component is instantiated indirectly, through the instantiation of its
realizing Classifiers or parts.

11.8.6.5 Association Ends

* ¢ packagedElement : PackageableElement [0..*]{subsets Namespace::ownedMember} (opposite
A_packagedElement component::component)
The set of PackageableElements that a Component owns. In the namespace of a Component, all model
elements that are involved in or related to its definition may be owned or imported explicitly. These may
include e.g., Classes, Interfaces, Components, Packages, UseCases, Dependencies (e.g., mappings), and
Artifacts.

* /provided : Interface [0..*]{} (opposite A_provided component::component)
The Interfaces that the Component exposes to its environment. These Interfaces may be Realized by the
Component or any of its realizingClassifiers, or they may be the Interfaces that are provided by its public Ports.

* ¢ realization : ComponentRealization [0..*]{subsets Element::ownedElement, subsets

A_supplier_supplierDependency::supplierDependency } (opposite ComponentRealization::abstraction)
The set of Realizations owned by the Component. Realizations reference the Classifiers of which the

Component is an abstraction; i.e., that realize its behavior.

® /required : Interface [0..*]{} (opposite A_required component::component)
The Interfaces that the Component requires from other Components in its environment in order to be able to

222 Unified Modeling Language 2.5

offer its full set of provided functionality. These Interfaces may be used by the Component or any of its
realizingClassifiers, or they may be the Interfaces that are required by its public Ports.

11.8.6.6 Operations

* provided() : Interface [0..*]
Derivation for Component::/provided

body: |et ris : Set(lnterface) = allRealizedlnterfaces(),

realizingC assifiers : Set(Classifier) = self.realization.realizingd assifier-
>union(sel f.all Parents()->collect(realization.realizingdassifier))->asSet(),

al | RealizingC assifiers : Set(Classifier) = realizingdassifiers-
>uni on(realizingCassifiers.allParents())->asSet(),

realizingCOassifierlnterfaces : Set(Interface) = all Realizingdassifiers->iterate(c;

rci @ Set(Interface) = Set{} | rci->union(c.allRealizedlnterfaces())),

ports : Set(Port) = self.ownedPort->union(all Parents()->collect(ownedPort))-
>asSet (),

provi dedByPorts : Set(Interface) = ports.provided->asSet ()
in ris->union(realizingC assifierlnterfaces) ->union(providedByPorts)->asSet ()

* required() : Interface [0..*]
Derivation for Component::/required

body: let uis : Set(Interface) = all Usedlnterfaces(),

realizingCassifiers : Set(Classifier) = self.realization.realizingCd assifier-
>uni on(sel f.all Parents()->collect(realization.realizingdassifier))->asSet(),

al | RealizingC assifiers : Set(Classifier) = realizingCassifiers-
>union(realizingdassifiers.allParents())->asSet(),

realizingCOassifierlnterfaces : Set(Interface) = all Realizingdassifiers->iterate(c;

rci : Set(Interface) = Set{} | rci->union(c.allUsedlnterfaces())),
ports : Set(Port) = self.ownedPort->union(all Parents()->collect(ownedPort))-
>asSet (),
usedByPorts : Set(lInterface) = ports.required->asSet()
in ui s->uni on(realizingC assifierlnterfaces)->uni on(usedByPorts)->asSet ()
11.8.6.7 Constraints

e no nested classifiers
A Component cannot nest Classifiers.

inv: nestedd assifier->i seEnpty()

* no packaged elements
A Component nested in a Class cannot have any packaged elements.

inv: nestingCass <> null inplies packagedEl enent->i sEmpty()

11.8.7 ComponentRealization [Class]

11.8.71 Description

Realization is specialized to (optionally) define the Classifiers that realize the contract offered by a Component in terms
of its provided and required Interfaces. The Component forms an abstraction from these various Classifiers.

11.8.7.2 Diagrams

Components
11.8.7.3 Generalizations

Realization

Unified Modeling Language 2.5 223

11.8.7.4 Association Ends

® abstraction : Component [0..1]{subsets Dependency::supplier, subsets Element::owner} (opposite

Component::realization)
The Component that owns this ComponentRealization and which is implemented by its realizing Classifiers.

* realizingClassifier : Classifier [1..*]{subsets Dependency::client} (opposite

A_realizingClassifier componentRealization::componentRealization)

The Classifiers that are involved in the implementation of the Component that owns this Realization.

11.8.8 ConnectableElement [Abstract Class]

11.8.8.1 Description

ConnectableElement is an abstract metaclass representing a set of instances that play roles of a StructuredClassifier.
ConnectableElements may be joined by attached Connectors and specify configurations of linked instances to be
created within an instance of the containing StructuredClassifier.

11.8.8.2 Diagrams

Structured Classifiers, Collaborations, Activities, Lifelines, Features, Properties

11.8.8.3 Generalizations

TypedElement, ParameterableElement

11.8.8.4 Specializations

Variable, Parameter, Property

11.8.8.5 Association Ends

® /end : ConnectorEnd [0..*]{} (opposite ConnectorEnd::role)
A set of ConnectorEnds that attach to this ConnectableElement.

* templateParameter : ConnectableElementTemplateParameter [0..1]{redefines

ParameterableElement::templateParameter} (opposite
ConnectableElementTemplateParameter::parameteredElement)

The ConnectableElementTemplateParameter for this ConnectableElement parameter.
11.8.8.6 Operations

* end() : ConnectorEnd [0..*]
Derivation for ConnectableElement::/end : ConnectorEnd

body: ConnectorEnd. al | | nstances()->select(role = self)
11.8.9 ConnectableElementTemplateParameter [Class]

11.8.9.1 Description

A ConnectableElementTemplateParameter exposes a ConnectableElement as a formal parameter for a template.

224 Unified Modeling Language 2.5

11.8.9.2 Diagrams

Structured Classifiers

11.8.9.3 Generalizations
TemplateParameter
11.8.9.4 Association Ends

* parameteredElement : ConnectableElement [1..1]{redefines TemplateParameter::parameteredElement}

(opposite ConnectableElement::templateParameter)
The ConnectableElement for this ConnectableElementTemplateParameter.

11.8.10 Connector [Class]

11.8.10.1 Description

A Connector specifies links that enables communication between two or more instances. In contrast to Associations,
which specify links between any instance of the associated Classifiers, Connectors specify links between instances
playing the connected parts only.

11.8.10.2 Diagrams

Structured Classifiers, Messages, Information Flows

11.8.10.3 Generalizations

Feature

11.8.10.4 Attributes

* /kind : ConnectorKind [1..1]
Indicates the kind of Connector. This is derived: a Connector with one or more ends connected to a Port which
is not on a Part and which is not a behavior port is a delegation; otherwise it is an assembly.

11.8.10.5 Association Ends

* contract : Behavior [0..*] (opposite A_contract connector::connector)
The set of Behaviors that specify the valid interaction patterns across the Connector.

* ¢ecnd: ConnectorEnd [2..*]{ordered, subsets Element::ownedElement} (opposite
A_end connector::connector)
A Connector has at least two ConnectorEnds, each representing the participation of instances of the Classifiers
typing the ConnectableElements attached to the end. The set of ConnectorEnds is ordered.

* redefinedConnector : Connector [0..*]{subsets RedefinableElement::redefinedElement} (opposite
A_redefinedConnector_connector::connector)
A Connector may be redefined when its containing Classifier is specialized. The redefining Connector may
have a type that specializes the type of the redefined Connector. The types of the ConnectorEnds of the
redefining Connector may specialize the types of the ConnectorEnds of the redefined Connector. The
properties of the ConnectorEnds of the redefining Connector may be replaced.

* type : Association [0..1] (opposite A_type connector::connector)
An optional Association that classifies links corresponding to this Connector.

Unified Modeling Language 2.5 225

11.8.10.6 Operations

* kind() : ConnectorKind
Derivation for Connector::/kind : ConnectorKind

body: if end->exists(
rol e. ocl | ski ndOf (Port)
and part Wt hPort->i senpty()
and not rol e.ocl AsType(Port).isBehavior)
then ConnectorKi nd: : del egati on
el se ConnectorKind: : assenbl y
endi f

11.8.10.7 Constraints

* types
The types of the ConnectableElements that the ends of a Connector are attached to must conform to the types
of the ends of the Association that types the Connector, if any.

inv: type<>null inplies

| et noOFEnds : Integer = end->size() in

(type. nenber End- >si ze() = noOf Ends) and Sequence{l..noCf Ends}->forAll (i | end-
>at(i).role.type.confornsTo(type. menber End->at (i).type))

e roles
The ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be owned or
inherited roles of the Classifier that owned the Connector, or they must be Ports of such roles.

inv: structuredd assifier <> null
and
end->forAll (e | structuredC assifier.allRoles()->includes(e.role)
or
e.role.ocl | sKindO (Port) and structuredC assifier.allRoles()->includes(e.partWthPort))

11.8.11 ConnectorEnd [Class]
11.8.11.1 Description
A ConnectorEnd is an endpoint of a Connector, which attaches the Connector to a ConnectableElement.
11.8.11.2 Diagrams
Encapsulated Classifiers, Structured Classifiers
11.8.11.3 Generalizations

MultiplicityElement

11.8.11.4 Association Ends
® /definingEnd : Property [0..1]{} (opposite A_definingEnd connectorEnd::connectorEnd)
A derived property referencing the corresponding end on the Association which types the Connector owing this

ConnectorEnd, if any. It is derived by selecting the end at the same place in the ordering of Association ends as
this ConnectorEnd.

* partWithPort : Property [0..1] (opposite A_partWithPort connectorEnd::connectorEnd)
Indicates the role of the internal structure of a Classifier with the Port to which the ConnectorEnd is attached.

226 Unified Modeling Language 2.5

* role: ConnectableElement [1..1] (opposite ConnectableElement::end)
The ConnectableElement attached at this ConnectorEnd. When an instance of the containing Classifier is
created, a link may (depending on the multiplicities) be created to an instance of the Classifier that types this
ConnectableElement.

11.8.11.5 Operations

® definingEnd() : Property [0..1]
Derivation for ConnectorEnd::/definingEnd : Property

body: if connector.type = null

then
nul |
el se
let index : Integer = connector.end->i ndexOf(self) in
connect or . t ype. menber End- >at (i ndex)
endi f

11.8.11.6 Constraints

e role and part with port
If a ConnectorEnd references a partWithPort, then the role must be a Port that is defined or inherited by the
type of the partWithPort.

inv: partWthPort->notEnpty() inplies
(role.ocllsKindO (Port) and partWthPort.type. ocl AsType(Nanmespace) . menber - >i ncl udes(rol e))

e part_with _port empty
If a ConnectorEnd is attached to a Port of the containing Classifier, partWithPort will be empty.

inv: (role.ocllsKindO(Port) and rol e.owner = connector.owner) inplies partWthPort -
>i sEmpty ()

e multiplicity
The multiplicity of the ConnectorEnd may not be more general than the multiplicity of the corresponding end

of the Association typing the owning Connector, if any.

inv: self.conpatibleWth(defini ngénd)

e self part with port
The Property held in self.partWithPort must not be a Port.

inv: partWthPort->notEnpty() inplies not partWthPort.ocl|sKindOf (Port)
11.8.12 ConnectorKind [Enumeration]

11.8.12.1 Description

ConnectorKind is an enumeration that defines whether a Connector is an assembly or a delegation.

11.8.12.2 Diagrams

* Structured Classifiers

Unified Modeling Language 2.5 227

11.8.12.3 Literals

e assembly
Indicates that the Connector is an assembly Connector.

e delegation
Indicates that the Connector is a delegation Connector.

11.8.13 EncapsulatedClassifier [Abstract Class]

11.8.13.1 Description

An EncapsulatedClassifier may own Ports to specify typed interaction points.

11.8.13.2 Diagrams

Encapsulated Classifiers, Classes

11.8.13.3 Generalizations
StructuredClassifier

11.8.13.4 Specializations
Class

11.8.13.5 Association Ends

* ¢ /ownedPort : Port [0..*]{subsets StructuredClassifier::ownedAttribute} (opposite
A_ownedPort_encapsulatedClassifier::encapsulatedClassifier)
The Ports owned by the EncapsulatedClassifier.

11.8.13.6 Operations

* ownedPort() : Port [0..*]{ordered}
Derivation for EncapsulatedClassifier::/ownedPort : Port

body: ownedAttribute->sel ect(ocl|sKindO (Port))->collect(ocl AsType(Port))->asO deredSet ()

11.8.14 Port [Class]

11.8.14.1 Description

A Port is a property of an EncapsulatedClassifier that specifies a distinct interaction point between that
EncapsulatedClassifier and its environment or between the (behavior of the) EncapsulatedClassifier and its internal
parts. Ports are connected to Properties of the EncapsulatedClassifier by Connectors through which requests can be
made to invoke BehavioralFeatures. A Port may specify the services an EncapsulatedClassifier provides (offers) to its
environment as well as the services that an EncapsulatedClassifier expects (requires) of its environment. A Port may
have an associated ProtocolStateMachine.

11.8.14.2 Diagrams

Encapsulated Classifiers, Events, Invocation Actions

228 Unified Modeling Language 2.5

11.8.14.3 Generalizations

Property

11.8.14.4 Attributes

* isBehavior : Boolean [1..1] = false
Specifies whether requests arriving at this Port are sent to the classifier behavior of this EncapsulatedClassifier.
Such a Port is referred to as a behavior Port. Any invocation of a BehavioralFeature targeted at a behavior Port
will be handled by the instance of the owning EncapsulatedClassifier itself, rather than by any instances that it
may contain.

* isConjugated : Boolean [1..1] = false
Specifies the way that the provided and required Interfaces are derived from the Port’s Type.

® isService : Boolean [1..1] = true
If true, indicates that this Port is used to provide the published functionality of an EncapsulatedClassifier. If
false, this Port is used to implement the EncapsulatedClassifier but is not part of the essential externally-visible
functionality of the EncapsulatedClassifier and can, therefore, be altered or deleted along with the internal
implementation of the EncapsulatedClassifier and other properties that are considered part of its
implementation.

11.8.14.5 Association Ends

® protocol : ProtocolStateMachine [0..1] (opposite A_protocol_port::port)
An optional ProtocolStateMachine which describes valid interactions at this interaction point.

* /provided : Interface [0..*]{} (opposite A_provided port::port)
The Interfaces specifying the set of Operations and Receptions that the EncapsulatedClassifier offers to its
environment via this Port, and which it will handle either directly or by forwarding it to a part of its internal
structure. This association is derived according to the value of isConjugated. If isConjugated is false, provided
is derived as the union of the sets of Interfaces realized by the type of the port and its supertypes, or directly
from the type of the Port if the Port is typed by an Interface. If isConjugated is true, it is derived as the union of
the sets of Interfaces used by the type of the Port and its supertypes.

* redefinedPort : Port [0..*]{subsets Property::redefinedProperty} (opposite A_redefinedPort port::port)
A Port may be redefined when its containing EncapsulatedClassifier is specialized. The redefining Port may
have additional Interfaces to those that are associated with the redefined Port or it may replace an Interface by
one of its subtypes.

® /required : Interface [0..*]{} (opposite A_required port::port)
The Interfaces specifying the set of Operations and Receptions that the EncapsulatedCassifier expects its
environment to handle via this port. This association is derived according to the value of isConjugated. If
isConjugated is false, required is derived as the union of the sets of Interfaces used by the type of the Port and
its supertypes. If isConjugated is true, it is derived as the union of the sets of Interfaces realized by the type of
the Port and its supertypes, or directly from the type of the Port if the Port is typed by an Interface.

11.8.14.6 Operations

* provided() : Interface [0..¥]
Derivation for Port::/provided

body: if isConjugated then basicRequired() el se basicProvided() endif

Unified Modeling Language 2.5 229

* required() : Interface [0..*]
Derivation for Port::/required

body: if isConjugated then basicProvided() el se basicRequired() endif

® DbasicProvided() : Interface [0..*]

The union of the sets of Interfaces realized by the type of the Port and its supertypes, or directly the type of the
Port if the Port is typed by an Interface.

body: if type.ocl|sKindO(Interface)

then type. ocl AsType(Interface)->asSet()

el se type.ocl AsType(Cd assifier).all Realizedlnterfaces()
endi f

® basicRequired() : Interface [0..*]
The union of the sets of Interfaces used by the type of the Port and its supertypes.

body: type.ocl AsType(Cd assifier).allUsedlnterfaces()

11.8.14.7 Constraints

e port aggregation
Port.aggregation must be composite.

inv: aggregation = AggregationKind::conposite

e default value
A defaultValue for port cannot be specified when the type of the Port is an Interface.

inv: type.ocl!lsKindO (Interface) inplies defaultValue->i sEnpty()

e encapsulated_owner
All Ports are owned by an EncapsulatedClassifier.

inv: owner = encapsul atedd assifier

11.8.15 StructuredClassifier [Abstract Class]

11.8.15.1 Description

StructuredClassifiers may contain an internal structure of connected elements each of which plays a role in the overall
Behavior modeled by the StructuredClassifier.

11.8.15.2 Diagrams

Encapsulated Classifiers, Structured Classifiers, Collaborations

11.8.15.3 Generalizations

Classifier

11.8.15.4 Specializations

Collaboration, EncapsulatedClassifier

230 Unified Modeling Language 2.5

11.8.15.5 Association Ends

* ¢ ownedAttribute : Property [0..*]{ordered, subsets Classifier::attribute, subsets StructuredClassifier::role,
subsets Namespace::ownedMember} (opposite A_ownedAttribute structuredClassifier::structuredClassifier)
The Properties owned by the StructuredClassifier.

* ¢ ownedConnector : Connector [0..*]{subsets Classifier::feature, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Namespace::ownedMember }
(opposite A_ownedConnector_structuredClassifier::structuredClassifier)
The connectors owned by the StructuredClassifier.

* /part: Property [0..*]{} (opposite A_part_structuredClassifier::structuredClassifier)
The Properties specifying instances that the StructuredClassifier owns by composition. This collection is
derived, selecting those owned Properties where isComposite is true.

* /role : ConnectableElement [0..*]{union, subsets Namespace::member} (opposite
A role_ structuredClassifier::structuredClassifier)
The roles that instances may play in this StructuredClassifier.

11.8.15.6 Operations

* part() : Property [0..¥]
Derivation for StructuredClassifier::/part

body: ownedAttribute->sel ect (i sConposite)

¢ allRoles() : ConnectableElement [0..*]
All features of type ConnectableElement, equivalent to all direct and inherited roles.

body: all Features()->sel ect(ocl|sKi ndO (Connect abl eEl emrent)) -
>col | ect (ocl AsType(Connect abl eEl enent)) - >asSet ()

11.9 Association Descriptions

11.9.1 A_collaborationRole_collaboration [Association]

11.9.1.1 Diagrams
Collaborations
11.9.1.2 Owned Ends

® collaboration : Collaboration [0..*]{subsets A_role_structuredClassifier::structuredClassifier} (opposite
Collaboration::collaborationRole)

11.9.2 A_connectableElement_templateParameter_parameteredElement
[Association]

11.9.21 Diagrams

Structured Classifiers

Unified Modeling Language 2.5 231

11.9.2.2 Member Ends
* ConnectableElement::templateParameter
* ConnectableElementTemplateParameter::parameteredElement

11.9.3 A_contract_connector [Association]

11.9.3.1 Diagrams

Structured Classifiers

11.9.3.2 Owned Ends

* connector : Connector [0..*] (opposite Connector::contract)

11.94 A_definingEnd_connectorEnd [Association]

11.9.4.1 Diagrams

Structured Classifiers

11.9.4.2 Owned Ends

* connectorEnd : ConnectorEnd [0..*] (opposite ConnectorEnd::definingEnd)

11.9.5 A_endType_association [Association]

11.9.5.1 Diagrams
Associations
11.9.5.2 Owned Ends

® association : Association [0..*]{subsets A_relatedElement relationship::relationship} (opposite
Association::endType)

11.9.6 A_end_connector [Association]

11.9.6.1 Diagrams

Structured Classifiers

11.9.6.2 Owned Ends

® connector : Connector [1..1]{subsets Element::owner} (opposite Connector::end)

11.9.7 A_end_role [Association]

11.9.71 Diagrams

Structured Classifiers

232 Unified Modeling Language 2.5

11.9.7.2 Member Ends

* ConnectableElement::end

* ConnectorEnd::role

11.9.8 A_extension_metaclass [Association]

11.9.8.1 Diagrams

Classes, Profiles

11.9.8.2 Member Ends
* (lass::extension
e Extension::metaclass

11.9.9 A_memberEnd_association [Association]

11.9.9.1 Diagrams

Associations, Properties

11.9.9.2 Member Ends

* Association::memberEnd

* Property::association

11.9.10 A_navigableOwnedEnd_association [Association]

11.9.10.1 Diagrams

Associations

11.9.10.2 Owned Ends

® association : Association [0..1]{subsets Property::owningAssociation} (opposite
Association::navigableOwnedEnd)

11.9.11 A_nestedClassifier_nestingClass [Association]

11.9.11.1 Diagrams

Classes

11.9.11.2 Owned Ends

* nestingClass : Class [0..1]{subsets NamedElement::namespace, subsets
RedefinableElement::redefinitionContext} (opposite Class::nestedClassifier)

Unified Modeling Language 2.5 233

11.9.12 A_ownedAttribute_class [Association]
11.9.12.1 Diagrams
Classes, Properties

11.9.12.2 Member Ends

® (lass::ownedAttribute

* Property::class

11.9.13 A_ownedAttribute_structuredClassifier [Association]

11.9.13.1 Diagrams

Structured Classifiers

11.9.13.2 Generalizations

A_role_structuredClassifier

11.9.13.3 Owned Ends

* structuredClassifier : StructuredClassifier [0..1]{subsets NamedElement::namespace, subsets
A_attribute classifier::classifier, redefines A_role structuredClassifier::structuredClassifier} (opposite
StructuredClassifier::ownedAttribute)

11.9.14 A_ownedConnector_structuredClassifier [Association]

11.9.14.1 Diagrams

Structured Classifiers

11.9.14.2 Owned Ends

* structuredClassifier : StructuredClassifier [0..1]{subsets Feature::featuringClassifier, subsets
NamedElement::namespace, subsets RedefinableElement::redefinitionContext} (opposite
StructuredClassifier::ownedConnector)

11.9.15 A_ownedEnd_owningAssociation [Association]

11.9.15.1 Diagrams

Associations, Properties

11.9.15.2 Member Ends

* Association::ownedEnd

* Property::owningAssociation

234 Unified Modeling Language 2.5

11.9.16 A_ownedOperation_class [Association]

11.9.16.1 Diagrams
Classes, Operations

11.9.16.2 Member Ends
® (lass::ownedOperation
® Operation::class

11.9.17 A_ownedPort_encapsulatedClassifier [Association]
11.9.17.1 Diagrams
Encapsulated Classifiers

11.9.17.2 Owned Ends

* encapsulatedClassifier : EncapsulatedClassifier [0..1]{subsets
A_ownedAttribute structuredClassifier::structuredClassifier} (opposite EncapsulatedClassifier::ownedPort)

11.9.18 A_ownedReception_class [Association]

11.9.18.1 Diagrams

Classes

11.9.18.2 Owned Ends

® class: Class [0..1]{subsets Feature::featuringClassifier, subsets NamedElement::namespace} (opposite
Class::ownedReception)

11.9.19 A_packagedElement_component [Association]
11.9.19.1 Diagrams

Components
11.9.19.2 Owned Ends

* component : Component [0..1]{subsets NamedElement::namespace} (opposite Component::packagedElement)

11.9.20 A_partWithPort_connectorEnd [Association]
11.9.20.1 Diagrams
Encapsulated Classifiers

11.9.20.2 Owned Ends

* connectorEnd : ConnectorEnd [0..*] (opposite ConnectorEnd::partWithPort)

Unified Modeling Language 2.5 235

11.9.21 A_part_structuredClassifier [Association]

11.9.21.1 Diagrams

Structured Classifiers

11.9.21.2 Owned Ends

* structuredClassifier : StructuredClassifier [0..1] (opposite StructuredClassifier::part)

11.9.22 A_protocol_port [Association]
11.9.22.1 Diagrams

Encapsulated Classifiers
11.9.22.2 Owned Ends

® port: Port [0..*] (opposite Port::protocol)

11.9.23 A_provided_component [Association]
11.9.23.1 Diagrams
Components

11.9.23.2 Owned Ends

* component : Component [0..*] (opposite Component::provided)

11.9.24 A_provided_port [Association]

11.9.24.1 Diagrams

Encapsulated Classifiers

11.9.24.2 Owned Ends
® port: Port [0..*] (opposite Port::provided)

11.9.25 A_realization_abstraction_component [Association]
11.9.25.1 Diagrams

Components
11.9.25.2 Member Ends

¢ Component::realization

* ComponentRealization::abstraction

236 Unified Modeling Language 2.5

11.9.26 A_realizingClassifier_componentRealization [Association]
11.9.26.1 Diagrams
Components

11.9.26.2 Owned Ends

* componentRealization : ComponentRealization [0..*]{subsets NamedElement::clientDependency } (opposite
ComponentRealization::realizingClassifier)

11.9.27 A_redefinedConnector_connector [Association]

11.9.27.1 Diagrams

Structured Classifiers

11.9.27.2 Owned Ends

® connector : Connector [0..*]{subsets A_redefinedElement redefinableElement::redefinableElement} (opposite
Connector::redefinedConnector)

11.9.28 A_redefinedPort_port [Association]
11.9.28.1 Diagrams
Encapsulated Classifiers

11.9.28.2 Owned Ends
® port: Port [0..*]{subsets A_redefinedProperty property::property} (opposite Port::redefinedPort)
11.9.29 A_required_component [Association]

11.9.29.1 Diagrams

Components
11.9.29.2 Owned Ends

* component : Component [0..*] (opposite Component::required)

11.9.30 A_required_port [Association]
11.9.30.1 Diagrams

Encapsulated Classifiers
11.9.30.2 Owned Ends

® port : Port [0..*] (opposite Port::required)

Unified Modeling Language 2.5 237

11.9.31 A_roleBinding_collaborationUse [Association]

11.9.31.1 Diagrams

Collaborations

11.9.31.2 Owned Ends

® collaborationUse : CollaborationUse [0..1]{subsets Element::owner} (opposite CollaborationUse::roleBinding)

11.9.32 A_role_structuredClassifier [Association]

11.9.32.1 Diagrams

Structured Classifiers

11.9.32.2 Specializations

A _ownedAttribute structuredClassifier

11.9.32.3 Owned Ends

e /structuredClassifier : StructuredClassifier [0..*]{union, subsets
A_member_memberNamespace::memberNamespace } (opposite StructuredClassifier::role)

11.9.33 A_superClass_class [Association]

11.9.33.1 Diagrams

Classes

11.9.33.2 Owned Ends
® class: Class [0..*]{subsets A_general classifier::classifier} (opposite Class::superClass)

11.9.34 A_type_collaborationUse [Association]

11.9.34.1 Diagrams

Collaborations

11.9.34.2 Owned Ends
* collaborationUse : CollaborationUse [0..*] (opposite CollaborationUse::type)

11.9.35 A_type_connector [Association]

11.9.35.1 Diagrams

Structured Classifiers

11.9.35.2 Owned Ends

® connector : Connector [0..*] (opposite Connector::type)

238 Unified Modeling Language 2.5

12 Packages

121 Summary

Packages provide the main generic structuring and organizing capability of UML. There are specializations for Models
and for Profiles which organize extensions to UML.

12.2 Packages

12.2.1 Summary

This sub clause provides the specification for Packages and Models.

12.2.2 Abstract Syntax

| TemplateableElement | | Namespace | | PackageableElement |

{subsets ownedMember}
+ packagedElement

*

Package {subsets namespace}
+ URL: String [0..1] owningPackage
0..1
{subsets owningPackage} {subsets packagedElement}
+ package + /ownedType
- =y Tvee |
0.1 *
| pirectedrelationship
{subsets packagedElement}
+ /nestedPackage {subsets source, {subsets ownedElement,
" subsets owner} subsets directedRelationship}
+ receivingPackage + packageMerge
3) ” PackageMerge
0.1 & {subsets target} {subsets directedRelationship}
. + mergedPackage + packageMerge
+ nestingPackage 1
{subsets owningPackage} *

Model
+ viewpoint : String [0..1]

Figure 12.1 Packages

12.2.3 Semantics

12.2.3.1 Package

A Package is a namespace for its members, which comprise those elements associated via packagedElement (which are
said to be owned or contained), and those imported.

A Package definition can extend the contents of other Packages through the merging of the contained elements.

Unified Modeling Language 2.5 239

A Package may be defined as a template and bound to other templates: see sub clause 7.3, Templates, for further
information.

The URI can be specified to provide a unique identifier for a Package. Within UML there is no predetermined usage for
this, with the exception of profiles (see sub clause 12.3.3). It may, for example, be used by model management facilities
for model identification. The URI should hence be unique and unchanged once assigned. There is no requirement that
the URI be dereferenceable (though this is of course permitted).

12.2.3.2 PackageMerge

A PackageMerge is a directed relationship between two Packages that indicates that the contents of the target
mergedPackage are combined into the source receivingPackage according to a set of rules defined below. It is very similar
to Generalization in the sense that the source element conceptually adds the characteristics of the target element to its
own characteristics resulting in an element that combines the characteristics of both. Just as a subclass is not normally
depicted with its inherited features, a receiving Package is not normally depicted with the merged elements from its
mergedPackages. In terms of model semantics, there is no difference between a model with explicit PackageMerges, and
a model in which all the merges have been performed. Likewise XMI files containing PackageMerge are semantically
equivalent to the same XMI files with the PackageMerges expanded.

Also, as with Generalization, a Package may not merge itself (directly or indirectly).

This capability is designed to be used when elements defined in different Packages have the same name and are intended
to represent the same concept. A given base concept may be merged for different purposes, with each purpose defined in
a separate receiving Package. By selecting different receiving packages, it is possible to obtain a custom definition of a
concept for a specific end.

Thus, any reference to a model element contained in the receiving Package implies a reference to the results of the
merge rather than to the increment that is contained in that Package. This is illustrated by the example in Figure 12.2 in
which Package P2 defines an increment of Class A originally defined in P1. Package P2 merges the contents of Package
P1, which implies the merging of P1::A into increment P2::A. Package P3 defines a subclass of P2::A called SubA. In
this case, element A in Package P2 (P2::A) represents the result of the merge of P1::A into P2::A and not just the
increment P2::A.

NOTE. If another package were to import P1, then a reference to A in the importing package would represent P1::A
rather than the A resulting from merge.

EX] o

«merge» «import»
A | A ez oo A <+——- SubA

Figure 12.2 lllustration of the Meaning of Package Merge

A PackageMerge can be viewed as an operation (that is itself a set of transformations) whereby the contents of the
Package to be merged are combined with the contents of the receiving Package. In cases in which certain elements in
the two Packages match (according to defined rules), their contents are (conceptually) merged into a single resulting
element according to the formal rules of PackageMerge specified below. This operation is akin to “copying down” the
features of superclasses into a subclass: the fully expanded subclass is the equivalent to the resulting package.

To understand the rules of PackageMerge, it is necessary to clearly distinguish between three distinct entities: the
mergedPackage (e.g., P1 in Figure 12.2), the receivingPackage (e.g., P2), and the result of the merge transformations (also
P2). The receivingPackage also plays the role of resultingPackage. This dual interpretation of the same model element can
be confusing, so it is useful to introduce the following terminology that aids understanding:

e merged package - the package that is to be merged into the receiving package (this is the package that is the
target of the merge arrow in the diagrams).

240 Unified Modeling Language 2.5

e receiving package - the package that, conceptually, contains the results of the merge (and which is the source
of the merge arrow in the diagrams). However, this term is used to refer to the package and its contents before
the merge transformations have been performed.

* resulting package - the package that, conceptually, contains the results of the merge. In the model, this is, of
course, the same package as the receiving package, but this particular term is used to refer to the package and
its contents after the merge has been performed.

* merged element - refers to a model element that exists in the merged package.

* receiving element - is a model element in the receiving package. If the element has a matching (as defined
below) merged element, the two are combined to produce the resulting element (see below). This term is used
to refer to the element before the merge has been performed.

* resulting element - is a model element in the resulting package affer the merge was performed. For receiving
elements that have a matching merged element, this is the combined element affer the merge was performed.
For merged elements that have no matching receiving element, this is the same as the merged element. For
receiving elements that have no matching merged element, this is the same as the receiving element.

e element type - refers to the type of any kind of TypedElement, such as the type of a Parameter or
StructuralFeature.

e element metatype - is the MOF type of a model element (e.g., Classifier, Association, Feature).

This terminology is based on a conceptual view of PackageMerge that is represented by the schematic diagram in
Figure 12.3 (NB: this is not a UML diagram). The packagedElements (direct and indirect) of Packages A and B are all
incorporated into the namespace of Package B'. However, it is important to emphasize that this view is merely a
convenience for describing the semantics of PackageMerge and is not reflected in the stored model, that is, the physical
model itself is not transformed in any way by the presence of PackageMerges.

merged receiving
package package

Criing| 0/
| package | + M

|

B I B’
I
I

A A B
fT\ N 77
| N N e 4 /
|
| /
| package /
amerges ! merge
: abecomess
|
|
|
|
|
|

-

Figure 12.3 Conceptual View of the Package Merge Semantics

The semantics of PackageMerge are defined by a set of constraints and transformations. The constraints specify the
preconditions for a valid PackageMerge, while the transformations describe its semantic effects (i.e., postconditions). If
any constraints are violated, the PackageMerge is ill-formed and the model that contains it is invalid. Different element
metatypes have different semantics, but the general principle is always the same: a resulting element will not be any less

Unified Modeling Language 2.5 241

capable than it was prior to the merge: meaning, for instance, that the resulting navigability, multiplicity, visibility, etc.
of a receiving model element will not be reduced as a result of a PackageMerge. One of the key consequences of this is
that model elements in the resulting Package are compatible extensions of the corresponding elements in the
(unmerged) receiving package.

In this specification, explicit merge transformations are only defined for certain general element metatypes found
mostly in metamodels (Packages, Classes, Associations, Properties, etc.), as the semantics of merging other kinds of
element metatypes (e.g., state machines, interactions) are complex and domain specific. Elements of all other kinds of
metatypes are transformed according to the default rule: they are simply deep copied into the resulting package. (This
rule can be superseded for specific metatypes through profiles or other kinds of language extensions.)

12.2.3.3 General Package Merge Rules

A merged element and a receiving element match if they satisfy the matching rules for their metatype.
CONSTRAINTS:

1 There can be no cycles in the «merge» directed graph.
2 A Package cannot merge a Package in which it is contained (via owningPackage — direct or indirect).
3 A Package cannot merge a Package that it contains (via packagedElement — direct or indirect).

4 A merged element whose metatype is not a kind of Package, Class, DataType, Property, Association,
Operation, Constraint, Enumeration, or EnumerationLiteral cannot have a receiving element with the same
name and metatype unless that receiving element is an exact copy of the merged element (i.e., they are the
same).

5 A PackageMerge is valid if and only if all the constraints (in this clause) required to perform the merge are
satisfied.

6 Matching typed elements (e.g., Properties, Parameters) must have conforming types. For types that are Classes
or Datatypes, a conforming type is either the same type or a common supertype. For all other cases,
conformance means that the types must be the same.

7 Areceiving element cannot have explicit references to any merged element.
8 Any redefinitions associated with matching RedefinableElements must not be conflicting.

TRANSFORMATIONS:

1 (The default rule) Merged or receiving elements for which there is no matching element are deep copied into
the resulting package.

2 The result of merging two elements with matching names and metatypes that are exact copies of each other is
the receiving element.

3 Matching elements are combined according to the transformation rules specific to their metatype and the
results included in the resulting Package.

4 All type references to typed elements that end up in the resulting package are transformed into references to the
corresponding resulting TypedElements (i.e., not to their respective increments).

5 For all matching elements: if both matching elements have private visibility, the resulting element will have
private visibility; otherwise, the resulting element will have public visibility.

242 Unified Modeling Language 2.5

6 For all matching Classifier elements: if both matching elements have isAbstract = true, the resulting element
has isAbstract = true; otherwise, the resulting element has isAbstract = false.

7 For all matching Classifier elements: if both matching elements has isFinalSpecialization = true, the resulting
element has isFinalSpecialization = true; otherwise, the resulting element has isFinalSpecialization = false.

8 For all matching elements: if both matching elements are not derived, the resulting element is also not derived;
otherwise, the resulting element is derived.

9 For all matching MultiplicityElements: the lower bound of the resulting element is the lesser of the lower bounds
of the matching elements.

10 For all matching MultiplicityElements: the upper bound of the resulting element is the greater of the upper
bounds of the matching elements.

11 Any stereotypes applied to a model element in either a merged or receiving element are also applied to the
corresponding resulting element.

12 For matching RedefinableElements: different redefinitions of matching RedefinableElements are all applied to
the resulting element.

13 For matching RedefinableElements: if both matching elements have isLeaf = true, the resulting element also
has isLeaf = true; otherwise, the resulting element has isLeaf = false.

12.2.34 Package Rules
Elements that are kinds of Package match by name and metatype
CONSTRAINTS:

1 All Classifiers in the merged Package must have a non-empty qualifiedName and have isDistinguishableFrom() =
true in the merged Package.

2 All Classifiers in the receiving Package must have a non-empty qualifiedName and have isDistinguishableFrom() =
true in the receiving Package.

TRANSFORMATIONS:

1 A nestedPackage from the merged Package is transformed into a nestedPackage with the same name and contents
in the resulting Package, unless the receiving Package already contains a nestedPackage that matches. In the
latter case, the merged nestedPackage is recursively merged with the matching receiving nestedPackage.

2 An ElementImport which is an elementimport of the receiving Package is transformed into a corresponding
ElementImport in the resulting Package. Imported elements are not merged (unless there is also a
PackageMerge to the Package owning the imported element).

12.2.3.5 Class and DataType Rules
Elements that are kinds of Class or DataType match by name and metatype.
TRANSFORMATIONS:

1 All Properties that are ownedAttributes of the merged Classifier are merged with the receiving Classifier to
produce the resulting Classifier according to the Property transformation rules specified below.

Unified Modeling Language 2.5 243

2 nestedClassifiers are merged recursively according to the same rules.

12.2.3.6 Property Rules

Elements that are kinds of Property match by name and metatype.
CONSTRAINTS:

1 The value of isStatic of matching Properties must be the same.
2 The value of isUnique of matching Properties must be the same.
3 Any Constraints associated with matching Properties must not be conflicting.

TRANSFORMATIONS:

1 For merged Properties that do not have a matching receiving Property, the resulting Property is a Property in
the resulting Classifier that is the same as the merged Property.

2 For merged Properties that have a matching receiving Property, the resulting Property is a Property with the
same name and characteristics except where these characteristics are different. Where these characteristics are
different, the resulting Property characteristics are determined by application of the appropriate transformation
rules.

3 For matching Properties: if both Properties have isReadOnly = true, the resulting Property also has isReadOnly =
true; otherwise, the resulting Property has isReadOnly = false.

4 For matching Properties: if both Properties have isOrdered = false, then the resulting Property also has isOrdered
= false; otherwise, the resulting Property has isOrdered = true.

5 For matching Properties: if neither Property is designated as a subset of some derived union, then the resulting
Property will not be designated as a subset; otherwise, the resulting Property will be designated as a subset of
that derived union.

6 For matching Properties: different Constraints of matching Properties are all applied to the resulting Property.

7 For matching Properties: if either the merged and/or receiving elements have isUnique = false, the resulting
element has isUnique = false; otherwise, the resulting element has isUnique = true.

8 The value of type for the resulting Property is transformed to refer to the corresponding type in the resulting
Package.

12.2.3.7 Association Rules
Elements that are kinds of Association match by name and metatype.
CONSTRAINTS:

1 These rules only apply to binary Associations. (For merging n-ary associations the default rule is used)

2 The receiving association end must have aggregation = composite if the matching merged association end has
aggregation = composite.

3 The receiving association end must be owned by the Association if the matching merged association end is
owned by the Association.

244 Unified Modeling Language 2.5

TRANSFORMATIONS:

1 A merge of matching Associations is accomplished by merging the Association classifiers (using the merge
rules for Classifiers) and merging their corresponding ownedEnd Properties according to the rules for Properties
and the following rule for association ends.

2 For matching association ends: if neither association end is in ownedNavigableEnd, then the resulting association
end is also not in ownedNavigableEnd. In all other cases, the resulting association end is in ownedNavigableEnd.

12.2.3.8 Operation Rules

Elements that are kinds of Operation match by name, Parameter order, and Parameter types, not including any return
type.

CONSTRAINTS:

1 Operation Parameters and their types must conform to the same rules for type and multiplicity as were defined
for Properties.

2 The receiving Operation must have isQuery = true if the matching merged Operation has isQuery = true.

TRANSFORMATIONS:

1 For merged Operations that do not have a matching receiving Operation, the resulting Operation is an
Operation with the same name and signature in the resulting classifier.

2 For merged Operations that have a matching receiving Operation, the resulting Operation is the outcome of a
merge of the matching merged and receiving Operations, with Parameter transformations performed according
to the Property transformations defined above.

12.2.3.9 Enumeration Rules

Elements that are kinds of EnumerationLiteral match by owning Enumeration and Literal name.
CONSTRAINTS:

1 Matching EnumerationLiterals must be in the same order.

TRANSFORMATIONS:

1 Non-matching EnumerationLiterals from the merged Enumeration are included in the receiving Enumeration.

12.2.3.10 Constraint Rules

CONSTRAINTS:

1 Constraints must be mutually non-contradictory.

TRANSFORMATIONS:

1 The Constraints of the merged model elements are all added to the Constraints of the matching receiving
model elements.

12.2.3.11 Model

A Model is a description of a system, where ‘system’ is meant in the broadest sense and may include not only software
and hardware but organizations and processes. It describes the system from a certain viewpoint (or vantage point) for a

Unified Modeling Language 2.5 245

certain category of stakeholders (e.g., designers, users, or customers of the system) and at a certain level of abstraction.
A Model is complete in the sense that it covers the whole system, although only those aspects relevant to its purpose
(i.e., within the given level of abstraction and viewpoint) are represented in the Model.

As a Package, a Model has a set of members that together describe the system being modeled. The organization of these
elements varies by the modeling method being used. One approach is one or more composition hierarchies where a top-
most Package/Component represents the boundary of the system. A Model may also contain elements describing
relevant parts of the system’s environment. The environment is typically modeled by Actors and their Interfaces. As
these are external to the system, they reside outside the Package/Component hierarchy. They may be collected in a
separate Package, or owned directly by the Model as packagedElements.

Different Models can be defined for the same system, where typically the different Models are complementary and
defined from the perspectives (viewpoints) of different system stakeholders. With composition of Models, a container
model represents a comprehensive view of the system given by the different views defined by the contained Models.

Models can have Abstraction Dependencies between them: refinement (stereotyped by «Refine» from the Standard
Profile) or mapping (for example stereotyped by «Trace» from the Standard Profile). These are typically represented in
more detail by Dependencies between the elements contained in the Models. Relationships between elements in
different Models generally no direct impact on the contents of the Models because each Model is meant to be complete.
However, they are useful for tracing refinements and for keeping track of cross-references between models.

12.2.4 Notation

A Package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side of the top of the large
rectangle: collectively this represents a ‘folder icon.” The members of the Package may be shown within the large
rectangle. Members may also be shown by branching lines to member elements, drawn outside the package. A plus sign
(+) within a circle is drawn at the end attached to the Package.

Conformant tools may restrict the use of these notations to packagedElements. Optionally, elements that become
available for use in an importing Package through a Packagelmport or an ElementImport may have a distinct color or be
dimmed to indicate that they are not packagedElements.

e If the members of the Package are not shown within the large rectangle, then the name of the Package should be

placed within the large rectangle.

e If the members of the Package are shown within the large rectangle, then the name of the Package should be
placed within the tab.

The visibility of a packagedElement may be indicated by preceding the name by a visibility symbol (‘+° for public and °-’
for private). Packages may not have protected or package visibility.

A tool may show visibility by a graphic marker, such as color or font. A tool may also show visibility by selectively
displaying those elements that meet a given visibility level (e.g., only public elements). A diagram showing a Package
with members need not necessarily show all its members; it may show a subset of the members according to some
criterion.

The URI for a Package may be indicated with the text {uri = <uri>} following the Package name.

A PackageMerge is shown using a dashed line with an open arrowhead pointing from the receivingPackage (the source)
to the mergedPackage (the target). In addition, the keyword «merge» is shown near the dashed line.

246 Unified Modeling Language 2.5

Target ==

"w-ﬂ_x_ﬂ«merge»

T Source

Figure 12.4 Notation for Package Merge

A Model is notated using the ordinary Package symbol (a folder icon) with a small triangle in the upper right corner of
the large rectangle.

Optionally, especially if the members of the Model are shown within the large rectangle, the triangle may be drawn to
the right of the Model name in the tab.

A Model may also be notated as a Package, using the ordinary Package symbol with the keyword «model» placed above
the name of the Model.

12.2.5 Examples

There are three alternative representations of the same Package named Types in Figure 12.5. The one on the left just
shows the Package without revealing any of its members. The middle one shows some of the members within the borders
of the Package rectangle (and also its URI), and the one to the right shows some of the members using the alternative
ownership notation.

1
. Types
] {uri=http://www.abc.com/models/Types} Types
Types g
Integer
Time
Shape Point

Figure 12.5 Examples of a Package with Members

In Figure 12.6, packages P and Q are being merged by package R, while package S merges only package Q.

Unified Modeling Language 2.5 247

P Q
A A c
T 7
4
[amerges» h
B J
i/
¥
|l)'
A ;
i i
«merge» / S / «merge»
H“ :
4
R \ ! D
A L‘
A B

Figure 12.6 Simple Example of Package Merge

The conceptually resulting packages R and S are shown in Figure 12.7. The expressions in square brackets indicate
which individual elements were merged to produce the final result, with the “@” character denoting the conceptual
merge ‘transformation’ as an operator, where X@Y signifies the resulting element from the merge transformation

applied to matching receiving element X and merged element Y.

NOTE. These expressions are not part of the standard notation, but are included here for explanatory purposes.

R S
D
[S::D]
A | ¢ B
[PA@(Q:A@R:ZA)] [Q::C]
\ c
’T’ [QC]
A
B [Q:A@S:-A] 5
[P=:B] [S:B]

Figure 12.7 Simple Example of Transformed Packages Following the Merges

In Figure 12.8, additional PackageMerges are introduced by having Package T, which has no packagedElements of its
own, merge Packages R and S defined previously.

248

Unified Modeling Language 2.5

R
R~._ «mergen
."1-
. 1““ _I
I . T
S “e «merges

Figure 12.8 Introducing Additional Package Merges

In Figure 12.9, the conceptually resulting Package T is depicted. In this Package, the definitions of A, B, C, and D have
all been brought together.

NOTE. The types of the ends of the Associations that were originally in the packages Q and S have all been updated to
refer to the appropriate elements in Package T.

D
[5::D]

?

A

[(PrA@(Q:-A@R:A))

@S:-A]

[Q::C]

B
[P:B@5S::B]

Figure 12.9 Result of the Additional Package Merges

[1

Client tier

VAN

1

Business

AN

tier

1

Data tier

VAN

Figure 12.10 Three Models Representing Parts of a System

Unified Modeling Language 2.5

249

«model»
OrderEntry

VAN I\
Analysis Design
Model Model

Figure 12.11 Two Views of One System Collected in a Container Model

12.3 Profiles
12.3.1 Summary

The Profiles clause describes capabilities that allow metaclasses to be extended to adapt them for different purposes.
This includes the ability to tailor the UML metamodel for different platforms (such as J2EE or .NET) or domains (such
as real-time or Service Oriented Architecture). The Profiles clause is consistent with the OMG Meta Object Facility
(MOF).

12.3.1.1 Positioning Profiles versus Metamodels, MOF and UML

UML is reused at several meta-levels in various OMG specifications that deal with modeling. For example, MOF uses it
to provide the ability to model metamodels. This clause deals with use cases comparable to the MOF at the meta-meta-
level, which is one level higher than the rest of the superstructure specification. In order to allow this, the reference
metamodel must be defined as an instance of UML that corresponds to its definition using MOF. Thus when defining a
UML profile, the profile’s stereotypes are defined to extend the UML classes in the normative version of the UML
metamodel whose XMI serialization is referenced in Annex E.

Profiles are not a first-class extension capability (i.e., it does not allow for creating new metamodels). Rather, the
intention of Profiles is to give a straightforward mechanism for adapting an existing metamodel with constructs that are
specific to a particular domain, platform, or method. Each such adaptation is grouped in a Profile. It is not possible to
remove any of the Constraints that apply to UML using a Profile, but it is possible to add new Constraints that are
specific to the Profile. The only other restrictions are those inherent in this Profiles clause; there is nothing else that is
intended to limit the way in which a metamodel is customized.

First-class extensibility is handled through MOF, where there are no restrictions at the metamodel level: it is possible to
add subclasses and associations as necessary.

There are several reasons why you may want to extend UML:

* Give a terminology that is adapted to a particular platform or domain (for example EJB terminology like
Home interfaces, Enterprise Java Beans, and Archives).

* Give a syntax for constructs that do not have a notation (such as in the case of Actions).

* Give a different notation for already existing symbols (such as being able to use a picture of a computer
instead of the ordinary Node symbol to represent a computer in a network).

e Add additional semantics to UML or specific metaclasses.

e Add types that do not exist in UML (such as defining a timer, clock, or continuous time).

250 Unified Modeling Language 2.5

e Add Constraints that restrict the way UML’s constructs are used (such as disallowing multiple
inheritance).

e Add information that can be used when transforming a model to another model or code (such as defining
mapping rules between a model and Java code).

There is no simple answer for when to create a new metamodel, when to create a new profile, and when to create both
(one for UML tooling, the other for MOF-based tooling).

12.3.2 Abstract Syntax
{subsets ownedElement, subsets

DirectedRelationship
directedRelationship}

profil T + profileApplicatiot
+ isStrict : Boolean = false| x

{subsets directedRelationship]
+ profileApplicatior | * {subsets source,

subsets owner}
+ applyingPackage

_Association

-

{subsets target}
+ appliedProfile\[/1

{readOnly} {readOnly}
+ /metaclass + /extension J

Profile Package
1 *x
{redefines owni_ngPacl?(age} {subsets owningAssociation}
+ owningPackage |1 it extension
{readOnly, T%evﬁ g;ggggﬁeen'egt} {redefines ownedEnd}
{redefines type} 1|, +ownedEnd
+ /profile + stereotype r + type X[
yp |
1 P e— + extensionEnd| + /lower : Integer [0..1] {redefines lower} |
{readOnly} {) {subsets owner} {subsets typedElement}
{subsets subsets 0..1 | + stereotype
mportmgNamespacg} importingNamespace} v
+ profile [0..1 0.1 | + profile
{subsets ownedElement}
{subsets packageImport} {subsets elementImport} ¥y +icon
+ metamodelReference || * *|, + metaclassReference Image

+ content : String [0..1]
+ format : String [0..1]
+ location : String [0..1

[Ementimpor]

[t

Figure 12.12 Profiles

12.3.3 Semantics

12.3.3.1 Profiles

A Profile is a restricted form of metamodel that can be used to extend UML, as described below. The primary extension
construct is the Stereotype.

12.3.3.11 Restricting Availability of UML Elements

The metaclassReference ElementImports and metamodelReference Packagelmports may be used to specify the Profile’s
filtering rules. The filtering rules determine which UML elements are available when the Profile is applied and which
ones are hidden.

NOTE. Applying a Profile to a model does not change that model in any way; it merely defines a view of the
underlying model.

The effects of a metaclass being hidden (not available) are as follows:

Unified Modeling Language 2.5 251

e Itis not possible to create new instances of that metaclass (or its subclasses).

¢ Existing instances of that metaclass (or its subclasses) can no longer be seen in diagrams or selected in lists,
including browser panes.

* Relationships with existing instances of that metaclass (or its subclasses) can no longer be seen in diagrams or
selected in lists, including browser panes.

Tools may vary in how they implement the above — for example they may hide the metaclass/instances completely in
selection lists or make them grayed out/unselectable .

In order for the filtering rules (described further below) on a Profile to be activated, the Profile must be applied in Strict
mode: specifically the isStrict attribute on the ProfileApplication must be set to true; otherwise the filtering rules are
ignored for this profile application.

The most common case is when a Profile imports UML itself using a metamodelReference. A conformant tool may
provide this as built-in behavior when the user creates a Profile. In that case, every UML metaclass is available.
Alternatively, specific metaclasses could be referenced through metaclassReferences and only those would then be
available. A further option is to use one or more metamodelReferences to Package(s) that contain ElementImports for a
subset of UML metaclasses. This allows the set to be reusable across many Profiles without having to specify individual
metaclassReferences each time.

The visibility and alias properties of ElementImports are ignored when it is used as a metaclassReference.

Where both a metaclassReference and a metamodelReference are present on a profile, the latter is ignored and only the
specific metaclasses are available.

In detail, the following rules are used to determine whether a model element is available after a Profile has been applied
in Strict mode. Metaclasses and their instances are available if they are:

1 referenced by an explicit metaclassReference, or

2 (in the absence of a metaclassReference) members (directly or transitively) of a Package that is referenced by an
explicit metamodelReference, or

3 extended by a Stereotype which is a member of the applied profile (even if the extended metaclass itself is not
available).

All other model elements are hidden (not available) when the Profile is applied in Strict mode.

This makes invalid the combination of applied profiles that specify non-overlapping (disjoint) sets of available
metaclasses.

If a Profile P1 imports another Profile P2, then all metaclassReference and metamodelReference associations will be
combined at the P1 level, and the filtering rules apply to this union. Stereotypes imported from another Profile using
ElementImport or PackageImport are added to the namespace members of the importing profile.Profile Contents.

A Profile can define or import Classes, Associations, DataTypes, PrimitiveTypes and Enumerations as well as
Stereotypes. More precisely all the constraints of a CMOF-compliant metamodel apply to a UML Profile. These are
defined in detail in Section 14.4 of the MOF Core Specification. The effect of these constraints is that, except for
Stereotypes and Extensions, all other Types defined or imported in a Profile must be exactly one of the Types explicitly
mentioned in the above subset and that no specialization outside this subset is allowed. The term Profile-defined Type
corresponds to a CMOF-compliant Class, Association, DataType, PrimitiveType or Enumeration defined or imported in
a Profile.

Profile-defined Types can only be used as the type of Properties in that Profile or as a general classifier of another
Profile-defined Type. They cannot be used as Types in models the Profile is applied to, such as the type of a
TypedElement, the classifier of an InstanceSpecification or the general or specific classifier in a Generalization

252 Unified Modeling Language 2.5

relationship. It is however possible to define these types in separate Packages and import them as needed in both
Profiles and model Packages in order to use them for both purposes.

Stereotypes can participate only in binary Associations. The opposite class can be another Stereotype, a non-Stereotype
Class that is a packagedElement of a Profile (directly or indirectly), or a UML metaclass. For these Associations there
must be an ownedAttribute Property typed by the opposite class. Where the opposite class is not a stereotype, the opposite
property must be an ownedMember of the Association itself rather than the other class/metaclass. The effect of these rules
is that Associations in a Profile are not required to involve a Stereotype but may not own both of their Ends. According
to CMOF-compliant metamodel constraints, Profile-defined binary Associations may have at most one end with
aggregation = AggregationKind::composite; other ends shall have aggregation = AggregationKind::none. Furthermore,
a Property of a Stereotype or Profile-defined Class can have composite aggregation if and only if its type is a Profile-
defined Class whereas a Property of a Stereotype or Profile-defined Class or DataType shall have aggregation =
AggregationKind::none if its type is a Profile-defined DataType, PrimitiveType, or Enumeration.

The most direct implementation of the Profile capability that a tool can provide is by having a metamodel based
implementation, similar to the Profile metamodel. However, this is not a requirement of the current standard, which
requires only the support of the specification, and the standard XMI based interchange capacities. The Profile capability
has been designed to be implementable by tools that do not have a metamodel-based implementation. Practically any
mechanism used to attach new values to model elements can serve as a valid profile implementation; however, creating
such values requires a limited metamodel-like capability for creating and referring to instances of Profile-defined
Classes and DataTypes as the values of Properties typed by such Classes or DataTypes and for referring to instances of
Profile-defined Classes for creating link instances of Profile-defined Associations. As an example, the UML1.4 profile
metamodel could be the basis for implementing a UML2-compliant profile tool.

12.3.3.1.2 Integrating and Extending Profiles

There is a number of ways to create, extend, and integrate Profiles. These are described briefly in this sub clause in
order to foster better profile integration and reuse.

The simplest form of Profile integration is to simply apply multiple Profiles to the same Package. This requires no
integration between the Profiles at all. Such Profiles might be designed to complement each other, addressing different
concerns.

It is also possible for one Profile to reuse all of or parts of another, and to extend other Profiles. Like any other Class,
Stereotypes can be defined in Packages or Profiles that can be factored for reuse. These Stereotypes can be directly
reused by being referenced or specialized in other Profiles. Normal rules apply as to whether a referenced Stereotype is
visible to users of the extending Profile.: a public import is needed to ensure that Stereotypes from other profiles are
visible after applying the extending one.

For example, the Unified Profile for DoDAF and MODAF (UPDM) Profile could integrate with the SysML Profile to
reuse Stereotypes such as Requirement and ViewPoint. UPDM could be designed to use ViewPoint in a manner that is
semantically consistent with SysML. However UPDM could extend ViewPoint with additional properties and
associations for its purposes. The UPDM specification could note to users that ViewPoint is a stereotype in UPDM that
represents a "placeholder” to ViewPoint in SysML. Users could then apply UPDM to a model, and get UPDM's
ViewPoint capabilities without any coupling with, or need for SysML. UPDM could then provide another compliance
point that merges with the SysML profile resulting in stereotypes Requirement and ViewPoint having the capabilities of
both profiles. The SysML::ViewPoint would be merged with the UPDM::ViewPoint allowing the shared semantics to be
supported without making any changes to the existing model. Users who want UPDM with SysML would then apply
this merged profile.

12.3.3.1.3 MOF-Equivalent Semantics

This sub clause specifies the semantics of Stereotypes and their instances using MOF. That does not mean that tools
need implement Profiles using MOF, but that a non-MOF-based implementation must do whatever is necessary under
the covers to ensure it behaves, in all observable ways, as if it were a MOF implementation.

The same mapping to MOF is used to determine how to serialize applied profiles using XMI. A Profile is an instance of
the UML2 metamodel, not a CMOF metamodel. Therefore the MOF to XMI mapping rules do not directly apply for
instances of a Profile. Figure 12.15 is an example of a mapping between a UML?2 Profile and an equivalent CMOF

Unified Modeling Language 2.5 253

model. This mapping is used as a means to explain and formally specify how Profiles are serialized and exchanged as
XMI. Using the following Profile to CMOF mapping rules, the XMI specification can be used to determine how
Profiles, and models with Profiles applied, are represented in XMI. In the mapping:

e A Profile maps to a CMOF Package.

¢ A Stereotype maps to a CMOF class with the same name and properties.

¢ A Metaclass is already a CMOF class so it maps to itself.

* An Extension maps to an Association as described in the Semantics sub clause of Extension.

* Any other elements in the Profile (i.e., non-Stereotype Classes, DataTypes, PrimitiveTypes, Enumerations and
Associations) are treated as MOF elements.

* An instance of a Stereotype (created when the Stereotype is applied to an Element) maps to an instance of the
CMOF class representing the Stereotype. This stereotype instance is compositionally associated with the
Element to which it applies using a Link that is an instance of the composite Association to which the
Extension is mapped.

For a Profile the URI Property (inherited from Package) is used to determine the nsURI to be used to identify instances
of the Profile in XMI.

NOTE. By default the name attribute of the Profile is used for the nsPrefix in XMI but this can be overridden by the
CMOF tag org.omg.xmi.nsPrefix.

OMG normative Profiles, such as the UML Standard Profile, follow an OMG normative naming scheme for URIs. For
non-standard profiles a recommended convention is:

nsUri = http://<profileParentQualifiedName>/<version>/<profileName>.xmi
nsPrefix = <profileName>
where:

e <profileParentQualifiedName>is the qualified name of the Package containing the Profile (if any)
with / (forward slash) substituted for ::, and all other illegal XML QName characters removed.

e <version> is a version identifier.

NOTE. For OMG normative profiles this is a date in the format YYYYMMnn where nn is a serial number
within the month, and represents the version of the Profile XMI not that of the specification which might be re-
issued without affecting the XMI.

e <profileName> is the name of the Profile.

A Profile can be exchanged just like any model, as an XMI file, and models that have a Profile applied can also be
interchanged.

Figure 12.19 shows a Stereotype named Home extending the Interface UML2 metaclass. Figure 12.15 illustrates the
MOF correspondence for that example, basically by introducing an Association from the Home MOF class to the
Interface MOF class. For illustration purposes, we add a Property “magic:String” to the Home Stereotype.

The first serialization below shows how the model in Figure 12.19 (definition of the Profile extending the UML2
metamodel) can be exchanged.

<?xm version="1.0" encodi ng="UTF-8"?>

254 Unified Modeling Language 2.5

<xm : XM xm ns: xm =http: //ww. ong. or g/ spec/ XM / YYYYMVhn>
xm ns: nof ext =ht t p: / / www. ong. or g/ spec/ MOF/ YYYYMvhn xm ns: um =htt p: //wwv. ong. or g/ spec/ UML/ YYYYMVhn
<um :Profile xm:id="id0" xm:type="umnl:Profile” name="HonmeExanpl e">
<met anodel Ref erence xm :type="unl : Packagel nport” xm :id="id2">
<i nport edPackage href="http://wwm. ong. or g/ spec/ UMLYYYYMvhn/ UM.. xmi #_0"/ >
</ met anodel Ref erence >
<packagedEl ement xm :type="umnl: Stereotype" xm:id="id3" name="Hone">
<ownedAttribute xm:type="um :Property" xm:id="id5" nane="base_lnterface"
associ ati on="id6">
<type href="http://ww. ong. or g/ spec/ UM/ YYYYMVhn/ UML. xm #I nt er f ace"/ >
</ ownedAttri but e>
</ packagedEl enent >
<packagedEl enment xm :type="umnl : Extension" xm:id="id6" name="A_|nterface_Hone"
nmenber End="i d7 i d5">
<ownedEnd xmi:type="unl : Ext ensi onEnd" xm :id="id7" nane="extensi on_Honme" type="id3"
aggr egati on="conposi te">
</ ownedEnd>
</ packagedEl enent >
</um : Profile>
<mof ext: Tag xm :type="nof ext: Tag” nanme="org. ong. xm . nsPrefix" val ue="HomeExanpl e"/ >
<nof ext: Tag xm :type="nof ext: Tag” name="org. ong. xm . nsURl "
val ue="ht t p: // HomeExanpl e/ 20120501/ HomreExanpl e. xm "/ >
</ xm : XM >

Figure 12.13 is an example model that includes an instance of Interface extended by the Home stereotype.

ClientPackagze

==<Home="
Client

O

Figure 12.13 Using the HomeExample Profile to Extend a Model

The XMI serialization of a model to which zero or more Profiles are applied is an XMI file organized in two
logical parts (which may be physically organized in any order within a file or in separate files):

1 the XMI serialization of the model,

2 the XMl serialization of the instances corresponding to each application of a Profile to the model or
some part of it.

Since deleting the application of Profiles applied to the model or some parts of it must not modify the XMI
serialization of the model itself, all XMI elements in Part (1) cannot have any XMI reference to any XMI
element in Part (2). Typically, the values of the applied Stereotype’s “base” properties and of properties typed
by metaclasses cause XMI elements corresponding to instances of Stereotypes in Part (2) to make reference
to XMI elements in Part (1). In general, Part (2) contains the following kinds of instances:

* Instances of Stereotypes (see the example in Figure 12.13).

« Optionally, instances of Extensions according to their MOF-equivalent mapping as composite
Associations.

* Instances of Profile-defined Classes and DataTypes. In particular, such instances should not be
confused, replaced, or substituted with InstanceSpecifications, which are a UML-based model
representation of instances but are not the same as, substitutable with or equivalent to the instances
that they represent.

« Optionally, instances of Profile-defined composite and non-composite Associations.

The XMI below shows how the model of Figure 12.13 is serialized in XMI. A tool importing that XMI file can filter out
the elements related to the HomeExample Profile, if the tool does not have this Profile definition.

<?xm version="1.0" encodi ng="UTF-8"?>

Unified Modeling Language 2.5 255

<xm : XM xm ns: xm ="http://ww. ong. or g/ spec/ XM / YYYYMvhn"
xm ns:um ="http://ww. ong. or g/ spec/ UM/ YYYYMVhn"
xm ns: HomeExanpl e="ht t p: / / HoneExanpl e/ 20120501/ HoneExanpl e. xm " >
<uml : Package xm :type="umnl : Package” xm :id="idl" name="d i ent Package">
<profil eApplication xm:type="um :ProfileApplication” xm:id="id3">
<appliedProfile href="http://HomeExanpl e/ 20120501/ HomeExanpl e. xm #i d0"/ >
</ profil eApplication>
<packagedEl ement xmi:type="unl:Interface" xm:id="id2" name="Cient"/>
</ um : Package>

<!-- applied stereotypes -->

<HoneExanpl e: Hone xm :id= "id4" base_lnterface="id2"/>
</ xm : XM >
12.3.3.2 Defining Profiles for Non-UML Metamodels

In theory the Profiles capability can be used to define extensions for metamodels other than UML, though this
capability has rarely, if at all, been used in practice. It would require any tooling implementing that metamodel to also
support some kind of profile application mechanism — that is outside the scope of this specification. The following
describes how the Profile definition mechanism may be used in this way.

In addition to UML, a Profile may be related to another MOF-compliant reference metamodel. In general a reference
metamodel typically consists of metaclasses that are either imported or locally owned. All metaclasses that are extended
by a profile have to be members (directly or indirectly) of the same reference metamodel. The metaclassReference
ElementImports and metamodelReference Packagelmports serve two purposes: (1) they identify the reference metamodel
elements that are imported by the profile and (2) they specify the Profile’s filtering rules. The filtering rules determine
which elements of the metamodel are available when the Profile is applied and which ones are Aidden.

NOTE. Applying a Profile does not change the underlying model in any way; it merely defines a view of the underlying
model.

In general, only model elements that are instances of imported reference metaclasses will be visible when the profile is
applied. Instances of all other metaclasses will be hidden and further instances may not be created. By default, model
elements whose metaclasses are owned by the reference metamodel are visible. This applies transitively to any
subpackages of the reference metamodel according to the default rules of package import. If any metaclass is imported
using a metaclassReference ElementImport, then model elements whose metaclasses are the same as that metaclass are
available. However, a metaclassReference blocks a metamodelReference whenever an element or Package of the referenced
metamodel is also referenced by a metaclass reference. In such cases, only the elements that are explicitly referenced by
the metaclassReference will be visible, while all other elements of the metamodel Package will be hidden.

The following rules are used to determine whether a model element is available or hidden after a Profile has been
applied. Model elements are available if they are instances of metaclasses that are:

1 referenced by an explicit metaclassReference, or

2 contained (directly or transitively) in a Package that is referenced by an explicit metamodelReference; unless
there are other elements of subpackages of that Package that are explicitly referenced by a MetaclassReference,
or

3 extended by a Stereotype owned by the applied profile (even if the extended metaclass itself is not visible).

All other model elements are hidden (not available) when the Profile is applied.

The most common case is when a Profile just imports an entire metamodel using a metamodelReference. In that case,
every element instantiating a metaclass in the metamodel is visible.

In the example in Figure 12.14, MyMetamodel is a metamodel containing two metaclasses: Metaclass1 and Metaclass2.
MyProfile is a profile that references MyMetamodel and Metaclass2. However, there is also an explicit metaclass
reference to Metaclass2, which overrides the metamodel reference. An application of MyProfile to some model based
on MyMetamodel will show instances of Metaclass2 (because it is referenced by an explicit metaclass reference). Also,
those instances of Metaclass| that are extended by an instance of MyStereotype will be visible. However, instances of
Metaclass] that are not extended by MyStereotype remain hidden.

256 Unified Modeling Language 2.5

1

wreferences | MyMetamodel

—

aprofiles MyProfile sreferences

«Metaclasss
Metaclass2

astereotypes
MyStereotype «Metaclasss
Metaclassi

A

Figure 12.14 Specification of an Available Metaclass

If a Profile P1 imports another Profile P2, then all metaclassReference and metamodelReference associations will be
combined at the P2 level, and the filtering rules apply to this union.

The filtering rules defined at the Profile level are, in essence, merely a suggestion to modeling tools on what to do when
a profile is applied to a model.

The isStrict attribute on a ProfileApplication specifies that the filtering rules have to be applied strictly. If isStrict is true
on a ProfileApplication, then no other metaclasses than the accessible one defined by the profile shall be accessible
when the Profile is applied on a model. This prohibits the combination of applied profiles that specify different
accessible metaclasses.

12.3.3.3 ProfileApplication
A ProfileApplication is used to record which Profiles have been applied to a Package.

One or more Profiles that extend UML may be applied at will to a model Package. Applying a Profile means that it is
possible to apply the Stereotypes that are defined as part of the Profile. It is possible to apply multiple Profiles to a
Package, though this could make the Package invalid if they have conflicting Constraints. Applying a Profile means
recursively applying all its nested and imported Profiles. Stereotypes that are public members of a Profile may be applied
to applicable model elements in Packages to which the Profile has been applied.

When a Profile is applied, instances of the appropriate Stereotypes must be created for those elements that are instances
of metaclasses with ExtensionEnds which have isRequired = true. The model is not well-formed without these instances.

Once a Profile has been applied to a Package, it is allowed to remove the applied Profile at will. Removing a Profile
implies that all elements that are instances of Stereotypes defined in the Profile are deleted including the instances of
Profile-defined Classes they compositionally aggregate and the instances of Profile-defined composite Associations
linking them. Other instances that are not compositionally aggregated must also be deleted if their defining type is no
longer accessible from any other Profile applied to the same model. The removal of an applied Profile leaves the
instances of elements from the referenced metamodel intact. It is only the instances of the elements from the Profile that
are deleted. This means that for example a profiled UML model can always be interchanged with another tool that does
not support the profile and be interpreted as a pure UML model.

A Profile which is a packagedElement of another Profile can be applied individually. However, the nested Profile must
specify any required metaclass and/or metamodel references if it contains any Stereotypes and may use Packagelmport
to indicate other Profiles to be co-applied. Metaclass and/or metamodel references are not inherited from a containing
Profile.

12.3.3.4 Stereotypes

A Stereotype defines an extension for one or more metaclasses, and enables the use of specific terminology or notation
in place of, or in addition to, the ones used for the extended metaclasses. If a Stereotype extends several metaclasses, it
can only be applied to exactly one instance of one of those metaclasses at any point in time. It is, however, possible to
detach the Stereotype instance from an instance of one metaclass and attach it to an instance of another metaclass.

Unified Modeling Language 2.5 257

A Stereotype is a limited kind of metaclass that cannot be used by itself, but must always be used in conjunction with
one of the metaclasses it extends. Each Stereotype may extend one or more metaclasses through association (Extension)
rather than generalization/specialization. Similarly, a metaclass may be extended by one or more Stereotypes. Relating
an instance “S” of Stereotype to a metaclass “C” from UML using an “Extension” (which is a specific kind of
Association) signifies that model elements of type “C” can be extended by an instance of “S” (see example in Figure
12.24 Defining a Stereotype). At the model level (such as in Figure 12.29) instances of “S” are related to “C” model
elements (instances of “C”) by links (occurrences of the Association/Extension from “S” to “C”).

Any metaclass referenced by a metaclassReference or contained in a Package referenced by metamodelReference of the
closest Profile directly or indirectly containing a Stereotype can be extended by the Stereotype. For example States,
Transitions, Activities, Use Cases, Components, Properties, Dependencies, etc. can all be extended with Stereotypes if
the metamodelReference is UML. A Stereotype may be contained in a Package in which case the metaclasses available for
extension are those referenced by the closest parent Profile containing the Package.

Just like a Class, a Stereotype may have Properties, which have traditionally been referred to as Tag Definitions. When
a Stereotype is applied to a model element, the values of the Properties have traditionally been referred to as tagged
values. Stereotype specializes Class and its Properties have the same meaning in Stereotypes as they do in Class. A
Stereotype Property can have composite aggregation; just like the value of a composite aggregation Property on a Class
is owned by an instance of that Class, the value of a composite aggregation Property on a Stereotype is owned by an
instance of that Stereotype. Since a profile can be unapplied without modifying the model it was originally applied to,
instances of metaclasses in the model cannot refer to instances of stereotypes or to values of their properties. The type
of a composite aggregation Stereotype Property cannot be a Stereotype (since Stereotypes are owned by their
Extensions) or a metaclass (since instances of metaclasses are owned by other instances of metaclasses); however, the
type of such Property can be a Class defined in the Profile or a DataType defined in the Profile or accessible via import
or via the Profile’s metamodel reference.Tool vendors may choose to support extensibility that includes owned
operations and behaviors, but are not required to do so. Tools must however support Stereotype ownedAttributes.

Its Profile or Package defines the namespace for the Stereotype. When Profiles are applied to a Package, the available
Stereotypes for use are defined by the applied Profiles, and these Stereotypes can be displayed using the fully qualified
name if needed in order to distinguish Stereotypes with the same name in different Profiles or Packages. Packagelmport
and ElementImport can be used to allow the use of unqualified names. Stereotypes directly owned by an applied Profile
(ownedStereotype) may be used without qualified names.

12.3.3.5 Images

The Image class provides the necessary information to display an Image in a diagram. Icons are typically handled
through the Image class.

Information such as physical placement or format is provided by the Image class. The Image class provides a generic
way of representing images in different formats. Although some predefined values are specified for format for
convenience and interoperability, the set of possible formats is open ended. However there is no requirement for a tool
to be able to interpret and display any specific format, including those predefined values.

The format property indicates the format of the content, which is how the string content should be interpreted. The
following values are reserved: SVG, GIF, PNG, JPG, WMF, EMF, BMP. In addition the prefix ‘MIME:’ is also
reserved: this must be followed by a valid MIME type as defined by RFC3023. This option can be used as an alternative
to express the reserved values above, for example “SVG” could instead be expressed “MIME: image/svg+xml.”

12.3.3.6 Extensions

An Extension is used to indicate that the properties of a metaclass are extended through a Stereotype, and gives the
ability to flexibly add (and later remove) stereotypes to classes.

Extension is a kind of Association. One end of the Extension is an ordinary Property and the other end is an
ExtensionEnd. The former ties the Extension to a (meta)Class, while the latter ties the Extension to a Stereotype that
extends the Class.

A required Extension (isRequired = true) means that an instance of this Stereotype must be linked to each instance of the
extended metaclass in the model to which the containing Profile has been applied (otherwise the model is not well-

258 Unified Modeling Language 2.5

formed). If the extending Stereotype has subclasses, then at most one instance of the Stereotype or one of its subclasses

is required.

A non-required Extension (isRequired = false) means that an instance of this Stereotype may be linked to an instance of

an extended metaclass at will, and also later deleted at will; however, there is no requirement that each instance of a
metaclass be stereotyped. However the same stereotype (or its subtypes) can never be applied twice to the same

element. An instance of a Stereotype is deleted when either the instance of the extended metaclass is deleted, or when

the Profile defining the stereotype is removed from the appliedProfiles of the Package.

The equivalence to a MOF construction for single metaclass extension is shown in Figure 12.15. This figure illustrates

the case shown in Figure 12.19, where the Stereotype named Home extends the Interface metaclass. In this figure,
Interface is an instance of the UML metaclass (a CMOF Class) and Home is an instance of a Stereotype (also

considered a CMOF Class for this purpose). The MOF construct equivalent to an Extension is a composition from the
extended metaclass to the extension Stereotype, owned by the extended metaclass. When the Extension is required, then

the multiplicity of the property typed by the extension Stereotype is 1.
The name of the Property typed by the extended metaclass is:
‘base_’ extendedMetaclassName

The name of the Property typed by the extension Stereotype (the ExtensionEnd) is:

‘extension_’ stereotypeName

Constraints are frequently added to Stereotypes. The above Properties may be used for expressing OCL navigations. For

example, the following OCL expression states that a Home Interface shall not have attributes:

sel f. base_l nterface. ownedAttri butes->i senpty()

Interface

base Interface

extension_Home

*

Figure 12.15 MOF Model Equivalent to Extending "Interface" by the "Home" Stereotype

An example for multiple metaclass extension is depicted in Figure 12.16. The Stereotype TestCase extends both

metaclass Operation and Behavior.

<<Metaclass>>
Operation

<<Metaclass>>
Behavior

NS

<<stereotypes>>
TestCase

0..

Figure 12.16 Example of Multiple Metaclass Extension

The corresponding equivalence to a MOF construction for multiple metaclass extension is shown in Figure 12.17.

Unified Modeling Language 2.5

1

Home

259

base_Operation [0..1]
Operation o<

| extension_TestCase [0..1]

I xor TestCase

Behavior o<1 extension_TestCase [0..1]
base_Behavior [0..1]

Figure 12.17 MOF Model Equivalent to Multiple Metaclass Extension

12.3.3.7 ExtensionEnd

An ExtensionEnd is used to tie an Extension to a Stereotype when extending a metaclass: it is a navigableOwnedEnd of
the Extension, avoiding an extra ownedAttribute on the extended Class. It is always typed by a Stereotype and must
always have isComposite = true.

The default multiplicity of an ExtensionEnd is 0..1. It may be 1..1 if the Stereotype is required but the upperBound may
never be more than 1.

12.3.4 Notation

The notation for an Extension is an arrow pointing from a Stereotype to the extended Class, where the arrowhead is
shown as a filled triangle. An Extension may have the same adornments as an ordinary Association, but they are
typically elided and navigability arrows are never shown. If isRequired = true, the adornment {required} is shown near
the ExtensionEnd.

4—

Figure 12.18 The Notation for an Extension

It is possible to use the multiplicities 0..1 or 1 on the ExtensionEnd as an alternative to the adornment {required}. Due
to how isRequired is derived, the multiplicity 0..1 corresponds to isRequired = false.

A Profile uses the same notation as a Package, with the addition that the keyword «profile» is shown before or above
the name of the Package. Profile::metaclassReference and Profile::metamodelReference use the same notation as
Package::elementimport and Package::packagelmport, respectively but with the keyword «reference».

ProfileApplications are shown using a dashed arrow with an open arrowhead from the Package to each applied Profile.
Either the keyword «apply» is shown near the arrow, or the keyword «strict» - the latter if isStrict = true.

If multiple appliedProfiles have Stereotypes with the same name, it may be necessary to qualify the name of the
Stereotype (with the profile name).

A Stereotype uses the same notation as a Class, with the addition that the keyword «stereotype» is shown before or
above the name of the Class.

When a Stereotype is applied to a model element (an instance of a Stereotype is linked to an instance of a metaclass),
the name of the Stereotype is shown within a pair of guillemets above or before the name of the model element, or
where the name would appear if the name is omitted or not displayed. For model elements that are not NamedElements
but do have a graphical representation, unless specifically stated elsewhere, the stereotypes can be displayed within a
pair of guillemets near the upper right corner of the graphical representation. If multiple stereotypes are applied, the
names of the applied stereotypes are shown as a comma-separated list within a pair of guillemets. When the extended
model element has a keyword, then the stereotype name(s) will be displayed close to the keyword, within the same or
separate guillemets (example: «interface» «Clock» or «Clock, interface»).

Normally a Stereotype’s name starts with an upper-case letter, to follow the convention for naming Classes. However
Profiles may use different conventions. Matching between the names of Stereotype definitions and applications is case-
insensitive, so naming stereotype applications with lower-case letters where the stereotypes are defined using upper-

260 Unified Modeling Language 2.5

case letters is valid, although stylistically obsolete. For legacy reasons a tool may display stereotype names with the
initial letter in lower case even when defined in upper case.

A tool can choose whether it will display Stereotypes or not. In particular, tools can choose not to display required
stereotypes, but to display only the values of their ownedAttributes if any.

The values of the ownedAttributes of a Stereotype (or its generalizations) applied to a model element can be shown in one
of the following three ways:

1 As part of a comment symbol connected to the graphic node representing the model element.
2 In separate compartments of the graphic node representing that model element.
3 Above the name string within the graphic node or, else, before the name string.

In the case where a compartment or comment symbol is used, the stereotype name may be shown in guillemets before
the name string in addition to being included in the compartment or comment.
The values are displayed as name-value pairs:
<namestring> ‘=" <valuestring>
If a Stereotype Property is multi-valued, then the <valuestring> is displayed as a comma-separated list:
<valuestring> ::= <value> [*,” <value>]*
Certain values have special display rules:

¢ As an alternative to a name-value pair, when displaying the values of Boolean Properties, tools may
use the convention that if the <namestring> is displayed, then the value is true; otherwise, the value is
false.

e Ifthe value is the name of a NamedElement, then, optionally, the qualifiedName of that element can be
displayed.

If compartments are used to display Stereotype Property values, then an additional compartment is required for each
applied Stereotype whose Property values are to be displayed. Each such compartment is headed by the name of the
applied stereotype in guillemets. Such compartments are only applicable to elements for which compartments generally
may be used: specifically Classifiers and States.

Within a comment symbol, or, if displayed before or above the model element’s name, the Property values from a
specific Stereotype are optionally preceded with the name of the applied Stereotype within a pair of guillemets. This is
useful if values of more than one applied stereotype should be shown.

When displayed in compartments or in a comment symbol, at most one namestring-valuestring pair can appear on a
single line. When displayed above or before a model element’s name, the name-value pairs are separated by semicolons
and all pairs for a given stereotype are enclosed in braces.

12.3.4.1 Icon presentation

It is possible to attach Images to a Stereotype that can be used in lieu of, or in addition to, the normal notation of a
model element to which the Stereotype is applied.

When a Stereotype has a value for icon, the referenced Image can be graphically attached to the model elements to
which the Stereotype has been applied. Every model element that has a graphical presentation can have an attached
icon. When model elements are graphically expressed as:

* Boxes (see Figure 12.25): the box may be replaced by the Image, and the name of the model element
appears below the Image. This presentation option can be used only when a model element has one

Unified Modeling Language 2.5 261

single Stereotype applied and when Properties of the model element (e.g., ownedAttributes,
ownedOperations of a Class) are not presented. As another option, the Image may be presented in a
reduced size, inside and to the top of the box representing the model element. When several
Stereotypes are applied, several Images may be presented within the box.

¢ Lines: the Image may be placed close to the line.
e Textual notation: the Image may be presented to the left of the textual notation.

Several Images may be referenced by a Stereotype’s icon Property. The interpretation of the different attached Images in
that case is a semantic variation point. Some tools may use the different Images for different purposes: the icon
replacing the box, for the reduced-size icon inside the box, for icons within tree browsers, etc. Alternatively, depending
on the Image format, tools may choose to scale one single Image into different sizes for these different purposes.

Some model elements already use an icon for their default presentation. A typical example of this is the Actor model
element, which uses the “stickman” icon. When a Stereotype with an icon is applied to such a model element, the
Stereotype’s icon replaces the default presentation icon within diagrams.

12.3.5 Examples

In Figure 12.19, a simple example of using an Extension is shown, where the stereotype Home extends the metaclass
Interface.

«stereotyper
Interface o typ
Home

Figure 12.19 Example of Using an Extension

An instance of the stereotype Home can be added to and removed from an instance of the class Interface at will, which
provides for a flexible approach of dynamically adding (and removing) information specific to a Profile to a Package.

In Figure 12.20, each instance of metaclass Component in a model to which the Profile has been applied must have
applied an instance of the stereotype Bean, as the Extension has isRequired = true. (As the stereotype Bean is abstract,
this means that each instance of metaclass Component must be stereotyped by an instance of one of its concrete
subclasses.) The model is not well-formed unless such a Stereotype is applied. This provides a way to express
Extensions that should always be present for all instances of the base metaclass depending on which Profiles are
applied.

{required} usterectype»

Component
P Bean

Figure 12.20 Example of a Required Extension

In Figure 12.21, a simple example of an EJB profile is shown.

262 Unified Modeling Language 2.5

aprofies EJB
. aMetaclasss | asterectypes
uMetaclassy {requirad) asierectypes Artifact JAR
Component - Bean
A asterectypes
’—_r—‘ o Remote
k™
st types aMetaclazss
asiereotypes Sessi pe: Interface
Entity Ssion [__| astersotypes
state: Statekind Home
{A companent [, -
eannot be «enurr'er.?um» {A bean must
generalized or StateKind realize exacly
specialized)} N one Home
stateless interface}
stateful -

Figure 12.21 Defining a Simple EJB Profile

The Profile defines that the abstract stereotype Bean is required to be applied to metaclass Component, which means
that an instance of either of the concrete subclasses Entity and Session of Bean must be linked to each instance of
Component. The Constraints that are part of the Profile are evaluated when the Profile is applied to a Package, and these
Constraints need to be satisfied in order for the model to be well-formed.

Types
aEnUmErations

Caolor Javalnteger
red
graen
Dlue:

aimports aimy

aprofies Manufactunsr /
Factory
o —

‘ 8 > apy b | eD=vicEs
Class Finar, Smg I - volume=11
coior Coior channel: Javalnteger

VOiLME; Javainteger

Figure 12.22 Importing a Package from a Profile

In Figure 12.22, the Package named Types is imported by the Profile named Manufacturer. The Enumeration named
Color and the Class named Javalnteger are then used as the type of Properties of the Stereotype named Device as well
as the standard PrimitiveType String.

If the Profile Manufacturer is later applied to a Package, then the types from Types are not available for use in the
Package to which the Profile is applied unless package Types is explicitly imported. This means that the class
Javalnteger can be used as the type of a Stereotype Property (e.g., in Device) but not as an ordinary Property (as part
of the Class TV) unless Package Factory also imports Package Types (which it does).

NOTE. The value of the volume Property is displayed once the Stereotype Device has been applied to the Class TV.

Given the profiles Java and EJB, Figure 12.23shows how these may be applied to the Package WebShopping.

Unified Modeling Language 2.5 263

1
wprfiles
Java aprofiles
™ EJB
aappiys', Fid
o wapplys
WebShopping

Figure 12.23 Profiles Applied to a Package

In Figure 12.24, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass

Class.

aMetaclazss
Class

wstensotypes

Clock

Q5Version: String
startOperation: Operation
POSIXCompliant: Boolean

Figure 12.24 Defining a Stereotype

wlClocks @
StopWatch StopWatch

«Creator, Clocks % '®
StopWatch StopWatch

o)

StopWatch

Figure 12.25 Presentation Options for an Extended Class

In Figure 12.26, an instance diagram of the example in Figure 12.24 is shown.

NOTE. The ExtensionEnd must be composite, and that the derived isRequired Property in this case is false.

Figure 12.26 shows the instances representing the definition of the Stereotype named Clock defined in Figure 12.24. In
this definition, the extended metaclass (:Class; “name = Class”) is defined in the UML2 metamodel (reference
metamodel). In a UML modeling tool this representation of the UML2 standard metamodel would typically be in a
“read only” form, or presented as proxies to the metaclass being extended.

(It is therefore still at the same meta-level as UML, and does not show the instance model of a model extended by the
stereotype. An example of this is provided in Figure 12.28 and Figure 12.29.) The Semantics sub clause of the
Extension concept explains the MOF equivalent, and how constraints can be attached to stereotypes.

Class

name = “Class"

type

anedAtiribute

Proparty

:Extension

IsComposhe=Takse

membereEnd

sRequired=faise

ownadEnd,

memberend

Figure 12.26 An Instance Diagram when Defining a Stereotype

264

Stereotype :Property type | PrmbveType
Name="Clock” name="0SVersion name="string"
type
Progedy type Caes
:ExtensionEnd
name="stariCperaiion” name="Cperation”
IsComposiie=rue
Bropery type | EUMENEType

ownedAtribute

name="PoSiXComplant”

name="Eodlean”

Unified Modeling Language 2.5

Figure 12.27 shows how the same Stereotype named Clock extends both the metaclass Component and the metaclass
Class (though each instance of the Stereotype can extend only one model element). It also shows how different
Stereotypes can extend the same metaclass.

cStErEtyp
Clook
shbetaciasss
Component Cr2Wersion: Etring
ssartOperation: Cperaton
PCaDCompliant: Boclean
shbetaciazss esimreciypes
Craator
clace L
{requires} | author: String
date: arng

Figure 12.27 Defining Multiple Stereotypes on Multiple Stereotypes

Figure 12.28 shows how the Stereotype Clock, as defined in Figure 12.27, is applied to a Class named StopWatch.

wClocks
StopWatch

Figure 12.28 Using a Stereotype

Figure 12.29 shows the underlying semantics for when the Stereotype named Clock is applied to a class called
StopWatch. The right-hand side uses instance diagram notation to show the MOF-equivalent instances that should be
used to understand the behavior and XMI serialization of the UML diagram on the left. The Extension between the
Stereotype and the metaclass Class results in a link between the instance of Stereotype Clock and the (user-defined)
Class named StopWatch.

SCIOCE

=Clocks
stopwaton

Liags extension_Clock

base_Class

ogversion="332"
FOEIXCompllant=False

namz="StopWatch®

aClocks
OgVersion="3.32"
startOperation=Clck

ownedOperstion

MDperation

stantperation

name="Clck"

Figure 12.29 Showing Values of Stereotypes and a Simple Instance Specification

Next, two stereotypes, Clock and Creator, are applied to the same model element, as shown in Figure 12.30.

NOTE. The Property values of each of the applied Stereotypes are shown in a comment symbol attached to the model
element.

aClocks
«Clock, Creators OSVersion="3.32"
StopWatch stariCperation=Click
aCreators
Click() name="Jones"
date="04-04-04"

Figure 12.30 Using Stereotypes and Showing Values

Finally, two more alternative notational forms are shown in Figure 12.31.

Unified Modeling Language 2.5 265

«Clocks

stantOperation=5tart

AlarmClock
«Clocks
Start() {POSIX Compliant}
AlarmiClock
aClocks
OSVersion="1.1" Start(}

POS| X Compliant=True

Figure 12.31 Other Notational Forms for Depicting Stereotype Values

Figure 12.32 shows an example of a profile with profile-defined classes and binary composite and noncomposite

associations.

«metaclass» + relatedElement
Element § .

A

«stereotype»
IssueTag

+ reviewed : Boolean = false

—1 «import» «metamodel»
IssuesProfile eeereeereaenneteaeaeenane D uml
+ issueTag
IssueDetail + issueDetail + issueComment IssueComment
. + number : Integer {isID=true} |a@» e + number : Integer {isID=true}
+ issueTag * aﬁec‘*’dw_ + url : String 1 * + text : String
" " + text : String
+ issueDetail
+ issueTag + issueDetail
- " "

1
+ duplicateslssue

Figure 12.32 Example of a Profile defining Classes and binary composite and non-composite Associations

The following shows the XMI serialization of the profile shown in Figure 12.32:

<?xm version=
<xm : XM xm ns
xm ns

xm ns

<um : Profile

"1.0" encodi ng="UTF- 8" ?>
:xm ="http://ww. ong. or g/ spec/ XM / YYYYMvhn"
cunml ="http://ww. ong. or g/ spec/ UM/ YYYYMVhn"
:nof ext="http://ww. ong. or g/ spec/ MOF/ YYYYMVhn" >
xm :type="um : Profile"
URI =" htt p: / / ww. exanpl e. or g/ | ssuesProfile"
xm :id="1d0"
nane="1|ssuesProfile"
nmet anodel Ref erence="i d309" >

<packagel nport xmi :id="id309">

<inporte

</ packagel

dPackage xni:type="umnl : Model "
href="http://ww. ong. or g/ spec/ UM/ YYYYMVhn/ UML. xmi #_0"/ >
nport >

<packagedEl ement xmi:type="unl:C ass"

xm :id="id312"
nane="1ssueDetai |l ">

<ownedAttribute xm:id="id315" name="nunber">
<type xm:type="um :PrinmtiveType"

href ="http://wwm. ong. or g/ spec/ UM/ YYYYMVhn/ Pri m ti veTypes. xm #l nt eger"/>

</ ownedAttri but e>

<ownedAttribute xm:id="id318"

name="url ">

<type xm:type="um :PrinmtiveType"

href="http://ww. ong. org/ spec/ UM/ YYYYMVhn/ Pri nitiveTypes. xm #String"/>

</ ownedAt tri but e>

<ownedAttribute xm:id="id321"

name="t ext" >

<type xm:type="um:PrinmtiveType"

href="http://ww. ong. org/ spec/ UM/ YYYYMVhn/ Pri nmitiveTypes. xm #String"/>

</ ownedAttri but e>
<ownedAttribute xm:id="id324"

nane="i ssueConment "
type="id343"
aggregation="conposite"
associ ati on="i d352" >

<upper Val ue xmi:type="um :Literal UnlintedNatural"

<l ower Val ue

xm ;i d="id328"

val ue="*"/>

val ue="0"

xm :type="um : Literal I nteger"
xm :id="id331"/>

</ ownedAttri but e>

266

Unified Modeling Language 2.5

<ownedAttribute xm:id="id334"
name="dupl i cat esl ssue"
type="id312"
associ ati on="i d364" >
<upper Val ue xmi:type="um :Literal UnlimntedNatural"
xm :id="id337"
val ue="*"/>
<l ower Val ue val ue="0"
xm :type="unl: Literal | nteger"
xm :id="id340"/>
</ ownedAttri but e>
</ packagedEl enent >
<packagedEl enment xm:type="umnl: Cl ass"
xm :id="id343"
nanme="1ssueComment " >
<ownedAttribute xm:id="id346" name="nunber">
<type xm:type="um:PrinmtiveType"
href="http://ww. ong. org/ spec/ UM/ YYYYMVhn/ Pri i tiveTypes. xm #| nt eger"/>
</ ownedAttri but e>
<ownedAttribute xm:id="id349" name="text">
<type xm:type="um:PrinmtiveType"
href="http://ww. ong. org/ spec/ UM/ YYYYMVhn/ Pri mitiveTypes. xm #String"/>
</ ownedAttri but e>
</ packagedEl enent >
<packagedEl ement xm :type="unl : Associ ation"
xm :id="id352"
nane="A i ssueDet ai | _i ssueComment "
nmenber End="i d324 i d355">
<ownedEnd xmi:id="id355"
nane="i ssueDetai | "
type="id312"
associ ati on="i d352"/ >
</ packagedEl enent >
<packagedEl enment xm:type="unl: Associ ation"
xm ;i d="id364"
name="A i ssueDet ai |l _duplicatesl ssue"
nmenber End="i d334 i d367">
<ownedEnd xmi:id="id367"
nane="i ssueDetai | "
type="id312"
associ ati on="i d364" >
<upper Val ue xm :type="um :Literal UnlintedNatural"
xm i d="id371"
val ue="*"/>
<l ower Val ue val ue="0"
xm :type="umnl : Literal | nteger"
xm :id="id374"/>
</ ownedEnd>
</ packagedEl enment >
<packagedEl ement xmi :type="unl: Stereotype"
xm i d="id377"
nanme="1ssueTag" >
<ownedAttribute xm:id="id380"
nanme="base_El enent"
associ ati on="i d418" >
<type xm:type="um:C ass"
href="http://ww. ong. or g/ spec/ UM/ YYYYMVhn/ UM.. xni #El ement "/ >
</ ownedAttri but e>
<ownedAttribute xm:id="id383" name="revi ewed">
<type xm:type="um:PrinmtiveType"
href="http://ww. ong. or g/ spec/ UM/ YYYYMVhn/ Pri i ti veTypes. xmi #Bool ean"/ >
<def aul t Val ue xmi :type="um :Literal Bool ean" xm :id="id386"/>
</ ownedAttri bute>
<ownedAttribute xm:id="id389"
name="i ssueDetai | "
type="id312"
aggregati on="conposite"
associ ati on="i d424" >
<upper Val ue xm:type="um :Literal UnlintedNatural"
xm :id="id393"
val ue="*"/>
<l ower Val ue val ue="0"
xm :type="umnl : Literal | nteger"
xm :id="id396"/>
</ ownedAttri but e>
<ownedAttribute xm:id="id399"
nanme="af f ect edBy"
type="id312"
associ ati on="i d436" >
<upper Val ue xmi:type="um :Literal UnlimntedNatural"
xm :id="id403"

Unified Modeling Language 2.5 267

val ue="*"/>
<l ower Val ue val ue="0"
xm :type="unl: Literal | nteger"
xm i d="id406"/>
</ ownedAttri but e>
<ownedAttribute xm:id="id409"
nane="r el at edEl emrent "
associ ati on="i d448" >
<type xm:type="unm: d ass"

href="http://ww. ong. or g/ spec/ UM/ YYYYMVhn/ UML. xmi #El enent "

<upper Val ue xmi:type="um :Literal UnlimntedNatural"
xm :id="id412"
val ue="*"/>
val ue="0"
xm :type="umnl: Literal | nteger"
xm :id="id415"/>
</ ownedAttri but e>
</ packagedEl enent >
<packagedEl enment xmi :type="unl : Ext ensi on"
xm ;i d="id418"
nanme="El emrent _| ssueTag"
nenber End="i d421 i d380" >
<ownedEnd xmi :type="unl : Ext ensi onEnd"
xm :id="id421"
nane="ext ensi on_| ssueTag"
type="id377"
aggregati on="conposite"
associ ati on="id418"/ >
</ packagedEl enment >
<packagedEl ement xmi :type="unl: Associ ati on"
xm i d="id424"
name="A i ssueTag_i ssueDetail"
menber End="1i d389 i d427">
<ownedEnd xmi:id="id427"
name="i ssueTag"
type="id377"
associ ati on="id424"/ >
</ packagedEl enment >
<packagedEl ement xmi :type="unl: Associ ati on"
xm :id="id436"
name="A i ssueTag_af f ect edBy"
nmenber End="i d399 i d439">
<ownedEnd xmi:id="id439"
name="i ssueTag"
type="id377"
associ ati on="i d436" >
<upper Val ue xmi:type="um :Literal UnlimntedNatural"
xm i d="id442"
val ue="*"/>
val ue="0"
xm :type="umnl: Literal | nteger"
xm :id="id445"/ >

<l ower Val ue

<l ower Val ue

</ ownedEnd>
</ packagedEl enent >
<packagedEl ement xm :type="umnl : Associ ation"
xm @i d="id448"
name="A i ssueTag_rel at edEl enent "
nmenber End="i d409 i d451">
<ownedEnd xmi:id="id451"
nanme="i ssueTag"
type="id377"
associ ati on="i d448" >
<upper Val ue xm :type="um :Literal UnlintedNatural"
xm :id="id454"
val ue="*"/>
val ue="0"
xm :type="uml : Literal | nteger"
xm @i d="id457"/>

<l ower Val ue

</ ownedEnd>
</ packagedEl enment >
</um :Profile>
<mof ext: Tag xm : type="nof ext: Tag"
org. ong. xm . nsURI ="htt p: // ww. exanpl e. org/ | ssuesProfile"/>
xm : type="nof ext : Tag"
org.ong. xm . nsPrefix="1ssuesProfile"/>

<mof ext : Tag

</ xm : XM >

Figure 12.33 shows an example of applying the profile shown in Figure 12.32.

268

/>

Unified Modeling Language 2.5

| «apply» |
IssueExample| """ 7| IssuesProfile
«IssueTag» «[ssueTag» «IssueTag»

A <] B
+ width + X . String
+ length +y

Figure 12.33 Diagram example of applying a profile defining Classes and Associations and of creating instances
of such Classes. Tools can provide a notation similar to that of object diagrams for instances of Profile-defined
Classes, DataTypes and Associations

The following shows the XMI serialization of the example shown in Figure 12.33 without link instances of profile-
defined associations:

<?xm version="1.0" encodi ng="UTF-8"?>
<xm XM xm ns: xm ="http://ww. ong. or g/ spec/ XM / YYYYMVhn"
xm ns:um ="http://ww. ong. or g/ spec/ UM/ YYYYMVhn"
xm ns: | ssuesProfile="http://ww. exanpl e.org/|ssuesProfile">
<uni : Package xmi :id="ex0"
name="1ssueExanpl e" >
<packagedEl enment xm :type="unl:d ass" xm :id="ex57" nane="B">
<generalization xm:id="ex60" general ="ex65"/>
<ownedAttribute xm:id="ex63" name="x">
<type xm:type="um:PrinmtiveType"
href ="http://ww. ong. or g/ spec/ UM/ YYYYMVhn/ PrinmitiveTypes. xm #String"/>
</ ownedAttri but e>
<ownedAttribute xm:id="ex64" name="y"/>
</ packagedEl enent >
<packagedEl ement xm:type="unl:C ass" xm :id="ex65" nane="A">
<ownedAttribute xmi:i1d="ex69" name="wi dth"/>
<ownedAttribute xm :id="ex70" name="Ilength"/>
</ packagedEl ement >
<profileApplication xm:id="ex77">
<appliedProfile href="http://ww. exanpl e. org/ | ssuesProfil e#i d0"/>
</ profil eApplication>
</ um : Package>
<l ssuesProfile:l