
Compiler API: Parsing
Parsing is the process of creating an abstract syntax representation of some Alf code. If parsing is
successful, the Alf compiler also performs constraint checking on the resulting abstract syntax tree. Const

 is the process of doing name resolution and validating the Alf code against the static-raint checking
semantic constraints defined in the Alf specification.

A compilation takes place in the context of a specific Named Element in the UML model, called the contex
. During parsing and constraint checking, name resolution is performed in the scope containing t element

the context element (known, in Alf terms, as the). After the successful mapping of Alf code model scope
to UML, the context element is updated with the results of the compilation. The context element should
be an Activity, Opaque Behavior, Opaque Action or Opaque Expression

To compile some Alf code text, first set the context element using the method and setContextElement
then call the method, passing the text. What Alf text can be validly parsed depends on what the parse
context element is.

If the context element is a Value Specification, then the text is assumed to be for an Alf
Expression.
If the context element is an Opaque Action, then the text may be an Alf Expression or Statement
Sequence.
Otherwise the text is assumed to be for an Alf Statement Sequence.

After the parsing process completes, you can check if it was successful by calling the isSuccessful
method. If the parse is successful, then the resulting abstract syntax tree is rooted in an Alf Unit
Definition obtained by calling the method, which in turn always contains an Activity Definition getUnit
(which may be obtained by calling the method). If there were errors, then you UnitDefinition.getDefinition
can retrieve them using the method. A single instance my be used to getCompilerErrors AlfCompiler
compile multiple Alf code texts, for the same or different context elements.

For the purposes of triggering automatic compilation, the Alf compiler also manages a record of the
 of Alf code in a model on other model elements. After successfully parsing some Alf code, dependencies

if you want to update the dependency record based on the parse, you need to call the AlfActionUtil.
 method. If you do multiple parses with the same instance, then you registerDependencies AlfCompiler

need to call after each parse operation.registerDependencies

AlfCompiler compiler = new AlfCompiler();
compiler.setContextElement(element);
compiler.parse(AlfElementUtil.getAlfBody(element));
if (compiler.isSuccessful()) {
 AlfActionUtil.registerDependencies(compiler);
 UnitDefinition unit = compiler.getUnit();
 ...
} else {
 for (CompilerError error: compiler.getCompilerErrors()) {
 ...
 }
}

In UML, a Behavior may have a context Classifier (for example, the Class that owns a State
Machine as its classifier behavior is the context Classifier for the State Machine). This use of
the term "context" is unrelated to the term "context element" for an Alf compilation.

The Alf code associated with an Activity, Opaque Behavior, Opaque Action or Opaque
Expression is known as the of that element. The Alf code is saved in the model Alf body
differently for different kinds of Elements. However, you can use the AlfElementUtil.getAlfBody
operation to get the Alf body of an Element (if it has one).

Alf abstract syntax classes are found in sub-packages of the package org.modeldriven.alf.
 which is from the Alf Reference Implementation, with source available . These syntax, here

abstract syntax classes allow the abstract syntax tree to be navigated based on the structure
of the abstract syntax metamodel defined in the Alf specification. For instance, the value of the

 property of a is obtained by calling the of that definition UnitDefinition getDefinition, name
definition is obtained using etc. (Note that use of the Reference Implementation getName,
outside of MagicDraw tooling is subject to its separate open-source licensing terms.)

https://docs.nomagic.com/display/ALFP2022xR1/Dependency+Management
https://docs.nomagic.com/display/ALFP2022xR1/Dependency+Management
https://github.com/ModelDriven/Alf-Reference-Implementation/tree/master/org.modeldriven.alf/src/org/modeldriven/alf/syntax

	Compiler API: Parsing

