Values

The valid values that you can use in an expression are as follows

- Real Number
- Complex Number
- Boolean
- Matrix

Real Number

$$
\begin{aligned}
& x=3.14159 \\
& y=2
\end{aligned}
$$

Complex Number

$$
\begin{aligned}
& c=3+4 i \\
& d=1.25+0.25 i
\end{aligned}
$$

Note

An 'i' character in an expression can be parsed as either an imaginary unit or a character of a variable name. If the character 'i' is placed after a number, and the next character is neither an alphabet nor number, it will be parsed as an imaginary unit. Otherwise, it will be parsed as a variable. The examples are as follows

- ca = 1 i ' i ' is parsed as an imaginary unit.
- $\mathrm{cb}=\mathrm{i}$ ' i ' is parsed as a variable.
- $c x=3.25 i^{\prime}{ }^{\prime} i$ ' is parsed as an imaginary unit.
- cy = $4 i 4$ ' i ' is parsed as the first character of a variable name 'i4'

Boolean

a = true
b = false

Matrix

$U=[1.0,2.0,3.0 ; 4.0,5.0,6.0 ; 7.0,8.0,9.0]$
A = [true; false; false; true]
You can add a matrix to the built-in Math Solver by using the following syntax (a semicolon is used as a row separator and comma or space is used as a comma separator). The examples are as follows

$$
\begin{aligned}
& U=[1.0,2.0,3.0 ; 4.0,5.0,6.0 ; 7.0,8.0,9.0] \\
& U=\left[\begin{array}{cccc}
1.0 & 2.0 & 3.0 \\
4.0 & 5.0 & 6.0 \\
7.0 & 8.0 & 9.0
\end{array}\right]
\end{aligned}
$$

A = [true; false; false; true]

$$
A=\left[\begin{array}{c}
\text { true } \\
\text { false } \\
\text { false } \\
\text { true }
\end{array}\right]
$$

You can refer to a matrix element with the row and column index specified in round brackets after a matrix name. The examples are as follows (see U above)
$\mathrm{U}(1,1)$ is 1.0
$U(2,3)$ is 6.0

You can also refer to a matrix element with only one index specified in round brackets after a matrix name. In this case, the matrix will be considered as a column-major order matrix. The elements on the given column-major order index will be returned. The examples are as follows (see U above)
$\mathrm{U}(2)$ is 4.0
$\mathrm{U}(6)$ is 8.0

