
Simulation modeling: Do's and Don't's
On this page

Don’t: Create an fUML loop without any Action Activation
Do: Add an Action Activation in the loop
Don't: Send multiple signals and multiple AcceptEventActions at the same time without synchronization at all
Do: Send signals only when all AcceptEventActions are activated
Don't: Create fUML loops with Fork nodes
Do: Use a CallBehaviorAction to encapsulate Fork nodes

Don’t: Create an fUML loop without any Action Activation

When the fUML model has a loop without any Action Activation in the loop as shown in the figure below, the code stack continually increases until StackOv
 occurs, causing the execution to be unexpectedly terminated. You can see in the file.erflowError StackOverflowError magicdraw.log

The model runs an infinite loop until StackOverflowError occurs, and the execution is terminated.

Do: Add an Action Activation in the loop

To avoid , you must a t an Action Activation, e.g., in the loop as shown in the figure below. The code StackOverflowError dd at leas CallBehaviorAction
stack will not increase continually without because Simulation has code to cut the stack loop and recall the Action at StackOverflowError ActivityNodeAc

 and according to fUML v1.3 specification. The execution will be continuously run without unexpected tivation.receiveOffer() ActionActivation.fire()
termination.

The model runs an infinite loop without StackOverflowError, and the execution is not terminated.

Don't: Send multiple signals and multiple AcceptEventActions at the same time without
synchronization at all

When the fUML model has multiple threads of sending signal and multiple threads of PREPARING TO READ the signal at the same time, with no
synchronization at all, it may send a signal before other thread starts AcceptEventAction to listen for it in the event pool.

According to fUML semantics, an event is lost and removed if such is a case: According to fUML semantics, o an event occurrence is selected for nce
dispatch, it is matched against the list of waiting event accepters for the active object. If a match is found, the event occurrence is passed to the event
accepter using its accept operation. If no matching event acceptor is found, the event occurrence is not returned to the event pool and is lost.

AcceptEventAction did not receive the Signal from the SendSignalAction

Do: Send signals only when all AcceptEventActions are activated

To avoid off-synchronization, you must , to make sure that you start sending only when all AcceptEventActions synchronize sending and receiving activities
are activated. For example, you may send "Ready" signals after they are all activated to the sender.

All AcceptEventActions are activated for receiving the Signal from the SendSignalAction

Don't: Create fUML loops with Fork nodes

When the fUML model has loops with Fork nodes as shown in the figure below, execution threads continually increase until the internal error occurs,
causing the execution to be unexpectedly terminated.

The model has loops with Fork nodes

Do: Use a CallBehaviorAction to encapsulate Fork nodes

To avoid the internal error, you must add an activity with CallBehaviorAction to encapsulate Fork nodes in the loops as shown in the figure below. The
thread will not increase continually because Simulation can clear the memory after finishing the activity that contains the CallBehaviorAction.

The model uses an activity to encapsulate a fork node

Related pages

Action
Execution
Behavior
Call Behavior Action

https://docs.nomagic.com/display/MD2022xR1/Action
https://docs.nomagic.com/display/MSI2022xR1/Execution
https://docs.nomagic.com/display/MSI2022xR1/Behavior
https://docs.nomagic.com/display/MD2022xR1/Call+Behavior+Action

	Simulation modeling: Do's and Don't's

