
Hardening Teamwork Cloud

Introduction

The default shipping configuration of Teamwork Cloud is not a hardened configuration.

When hardening an installation, there are variables that can render the installation inoperative, such as incompatibility of the supported ciphers in a
certificate and the supported ciphers in the hardened configuration.

Furthermore, the default configurations assume that the deployment is behind a secure infrastructure, and therefore required ports are globally allowed.

Since some of Teamwork Cloud's infrastructure relies on available components, newly discovered vulnerabilities need to be mitigated during the life-cycle
of the installation.

Below, we will cover the potentially exploitable vulnerabilities of the different components, as well as various steps to mitigate depending on the policies of
the deploying organization.

Cassandra

Port Access

When installing on Linux using our deployment scripts, all of the ports required by Cassandra for inter-node communication, as well as for the Teamwork
Cloud nodes to communicate with Cassandra nodes are opened globally. This configuration is deployed mostly to facilitate testing of the environment upon
installation, prior to taking any measures to harden the installation. If we check the firewall upon installation, we will see an output similar to the one below:

firewall-cmd --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: eth0
 sources:
 services: cassandra lmadmin ssh twcloud
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

In our deployment, we create a firewall service definition to facilitate the management of the rules. This file is located in /etc/firewalld/services/cassandra.
, and contains the following:xml

cat /etc/firewalld/services/cassandra.xml
<?xml version="1.0" encoding="utf-8"?>
<service version="1.0">
 <short>cassandra</short>
 <description>cassandra</description>
 <port port="7000" protocol="tcp"/>
 <port port="7001" protocol="tcp"/>
 <port port="9042" protocol="tcp"/>
 <port port="9160" protocol="tcp"/>
 <port port="9142" protocol="tcp"/>
</service>

The first step in securing Cassandra is to limit traffic only to Cassandra and Teamwork Cloud Nodes. In the example below, we have a single node
Cassandra/Teamwork Cloud installation, with its IP address set to 10.254.254.56.

As can be seen below, the firewall configuration has been modified to only allow access from itself.

firewall-cmd --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: eth0
 sources:
 services: lmadmin ssh twcloud
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
 rule family="ipv4" source address="10.254.254.56" service name="cassandra" accept

The process to follow is to remove the general firewall allowance to the Cassandra service. After that, we want to ensure that if direct port rule
assignments were made, they are removed. Finally, we want to create a set of rich rules which will allow access only to the required nodes.

If your deployment consists of a single-node or multi-node cluster where both Teamwork Cloud and Cassandra reside on the same nodes, we can
automate this process by using the following script.

harden_cassandra_ports.sh

#!/bin/bash
echo "Hardening Cassandra Ports"
echo "Creating Cassandra firewall service profile"
cat <<EOF | tee /etc/firewalld/services/cassandra.xml &> /dev/null
<?xml version="1.0" encoding="utf-8"?>
<service version="1.0">
 <short>cassandra</short>
 <description>cassandra</description>
 <port port="7000" protocol="tcp"/>
 <port port="7001" protocol="tcp"/>
 <port port="9042" protocol="tcp"/>
 <port port="9160" protocol="tcp"/>
 <port port="9142" protocol="tcp"/>
</service>
EOF
echo "Removing existing firewall rules on the cassandra ports or service profile"
sleep 5
zone=$(firewall-cmd --get-default) &> /dev/null
firewall-cmd --zone=$zone --remove-port=7000/tcp --permanent &> /dev/null
firewall-cmd --zone=$zone --remove-port=7001/tcp --permanent &> /dev/null
firewall-cmd --zone=$zone --remove-port=7199/tcp --permanent &> /dev/null
firewall-cmd --zone=$zone --remove-port=9042/tcp --permanent &> /dev/null
firewall-cmd --zone=$zone --remove-port=9160/tcp --permanent &> /dev/null
firewall-cmd --zone=$zone --remove-port=9142/tcp --permanent &> /dev/null
firewall-cmd --zone=$zone --remove-service=cassandra --permanent &> /dev/null
echo "Creating ruch rules for Cassandra nodes discovered via nodetool gossipinfo"
set -f
local_list=($(nodetool gossipinfo | grep '/' | cut -f 2 -d /))
set +f
for i in "${local_list[@]}" ; do
 cmd=" firewall-cmd --zone=$zone --add-rich-rule='rule family=\"ipv4\" source address=\"$i\" service
name=\"cassandra\" accept' --permanent &> /dev/null"
 echo $cmd
 eval $cmd
done
firewall-cmd --reload &> /dev/null

The above script is structured in such a way that it will output the rich rule commands to the screen to facilitate copying and modifying to add nodes, which
is needed if you have Teamwork Cloud nodes that are not part of the Cassandra cluster.

Replication Strategy

Teamwork Cloud presently does not support Multi-DC replication strategies. As such, the environment must be configured with SimpleStrategy.

Cassandra Authentication

By default, Cassandra is deployed with the AllowAllAuthenticator. This authenticator, as the name implies, is an anonymous authenticator which performs
no checks.

If you require authenticated connections, you will need to make changes to your and change the authenticator to PasswordAuthenticator. cassandra.yaml
If you are running a multi-node Cassandra cluster, you need to change the replication factor of the system_auth keyspace.

Detailed instructions can be found at https://docs.datastax.com/en/ddacsecurity/doc/ddacsecurity/secureConfigNativeAuth.html

After making the changes to Cassandra, you will need to update the Teamwork Cloud configurations to utilize authentication.

The required changes are as follows:

application.conf

auth-provider {
 # Enable this section to enable the cassandra authentication.
 class = PlainTextAuthProvider
 username = newcassandrauser
 password = newcassandrapassword
}

authserver.properties

cassandra.username=newcassandrauser
cassandra.password=newcassandrapassword

Where and correspond to the user and credentials which you configured in Cassandra.newcassandrauser newcassandrapassword

Cassandra Encrypted Connections

Starting from Teamwork Cloud Version 2021x and onwards, encrypted communication with Cassandra is supported. To achieve this, the configuration of
 is needed.secure SSL communication

Data Encryption at Rest

Open source Cassandra does not support encryption at rest. If you require encryption at rest, you need to use a disk encryption layer.

Teamwork Cloud

Protocols and Ciphers

Teamwork Cloud consists of 2 Java-based services - Teamwork Cloud (twcloud) and WebApp (webapp).

Teamwork Cloud requires Java 11 (its location varies depending on how it was deployed), whereas WebApp uses a bundled Java 17, located in <install_ro
. ot>/WebAppPlatform/jre/

Therefore, in order to harden these services, we must begin by hardening the JVM. The default settings for the JVM are located in . java.security

We can check the ciphers/protocols being used by the applications using nmap (version 7.x) or TestSSLServer.jar, available from https://community.rsa.
.com/docs/DOC-45511

The above script should be executed on all nodes of a multi-node Cassandra cluster, with all nodes being in an operational state.

Windows Users: Create firewall rules restricting access on the aforementioned ports only to authorized nodes - Cassandra nodes and
Teamwork Cloud Nodes.

https://docs.datastax.com/en/ddacsecurity/doc/ddacsecurity/secureConfigNativeAuth.html
https://docs.nomagic.com/display/TWCloud2022x/Teamwork+Cloud+advanced+configuration#TeamworkCloudadvancedconfiguration-ConfiguringsecureSSLcommunicationbetweenTeamworkCloudandCassandra
https://docs.nomagic.com/display/TWCloud2022x/Teamwork+Cloud+advanced+configuration#TeamworkCloudadvancedconfiguration-ConfiguringsecureSSLcommunicationbetweenTeamworkCloudandCassandra
https://community.rsa.com/docs/DOC-45511
https://community.rsa.com/docs/DOC-45511

As an example, below is a scan using both tools against a default installation. In this example, we will be testing port 8111, the Teamwork Cloud port.

nmap --script ssl-enum-ciphers -p 8111 127.0.0.1
Starting Nmap 7.80 (https://nmap.org) at 2020-04-21 17:32 MDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00014s latency).

PORT STATE SERVICE
8111/tcp open unknown
| ssl-enum-ciphers:
| TLSv1.0:
| ciphers:
| TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 1024) - A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (secp256r1) - A
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A
| compressors:
| NULL
| cipher preference: client
| warnings:
| Key exchange (dh 1024) of lower strength than certificate key
| TLSv1.1:
| ciphers:
| TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 1024) - A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (secp256r1) - A
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A
| compressors:
| NULL
| cipher preference: client
| warnings:
| Key exchange (dh 1024) of lower strength than certificate key
| TLSv1.2:
| ciphers:
| TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 1024) - A
| TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 (dh 1024) - A
| TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 (dh 1024) - A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (secp256r1) - A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (secp256r1) - A
| TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (secp256r1) - A
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A
| TLS_RSA_WITH_AES_128_CBC_SHA256 (rsa 2048) - A
| TLS_RSA_WITH_AES_128_GCM_SHA256 (rsa 2048) - A
| compressors:
| NULL
| cipher preference: client
| warnings:
| Key exchange (dh 1024) of lower strength than certificate key
|_ least strength: A

Nmap done: 1 IP address (1 host up) scanned in 0.76 seconds

java -jar TestSSLServer.jar 127.0.0.1 8111
Supported versions: TLSv1.0 TLSv1.1 TLSv1.2
Deflate compression: no
Supported cipher suites (ORDER IS NOT SIGNIFICANT):
 TLSv1.0
 RSA_WITH_AES_128_CBC_SHA
 DHE_RSA_WITH_AES_128_CBC_SHA
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
 (TLSv1.1: idem)
 TLSv1.2
 RSA_WITH_AES_128_CBC_SHA
 DHE_RSA_WITH_AES_128_CBC_SHA
 RSA_WITH_AES_128_CBC_SHA256
 DHE_RSA_WITH_AES_128_CBC_SHA256
 TLS_RSA_WITH_AES_128_GCM_SHA256
 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Server certificate(s):
 a241e1c3b957bd14e6e0242fd012f75853eef243: CN=X.X.X.X

Minimal encryption strength: strong encryption (96-bit or more)
Achievable encryption strength: strong encryption (96-bit or more)
BEAST status: vulnerable
CRIME status: protected

As can be observed above, the default configuration using OpenJDK 1.8.0_242 is allowing TLS v1.0 and v1.1, which are deprecated. Additionally, we can
see that several key exchanges are taking place using dh1024.

We then proceed to harden the configuration.

After hardening the VM, we end up with a different set of allowed ciphers and protocols, as shown below.

nmap --script ssl-enum-ciphers -p 8111 127.0.0.1
Starting Nmap 7.70 (https://nmap.org) at 2020-04-21 17:44 MDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00015s latency).

PORT STATE SERVICE
8111/tcp open unknown
| ssl-enum-ciphers:
| TLSv1.2:
| ciphers:
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (secp256r1) - A
| TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (secp256r1) - A
| TLS_RSA_WITH_AES_128_CBC_SHA256 (rsa 2048) - A
| TLS_RSA_WITH_AES_128_GCM_SHA256 (rsa 2048) - A
| compressors:
| NULL
| cipher preference: client
|_ least strength: A

Nmap done: 1 IP address (1 host up) scanned in 0.95 seconds

java -jar TestSSLServer.jar 127.0.0.1 8111
Supported versions: TLSv1.2
Deflate compression: no
Supported cipher suites (ORDER IS NOT SIGNIFICANT):
 TLSv1.2
 RSA_WITH_AES_128_CBC_SHA256
 TLS_RSA_WITH_AES_128_GCM_SHA256

Server certificate(s):
 71ed3969e41a94877c51aacb87d995af4a12b6d9: CN=x.x.x.x

Minimal encryption strength: strong encryption (96-bit or more)
Achievable encryption strength: strong encryption (96-bit or more)
BEAST status: protected
CRIME status: protected

The process of hardening the JVM requires making some changes to the java.security file. While these can be made directly, the downside is that if you
upgrade your JVM, you will have to reapply your changes.

However, we can place our modifications in our own file, and simply pass a parameter to the JVM upon invocation so that it will apply our changes.

For example, we can create a file , and pass a parameter to the JVM in the form of /home/twcloud/twc.java.security -Djava.security.properties=/home
/twcloud/twc.java.security.

Our hardened security settings are as shown below:

Since we are dealing with ciphers, you need to make sure that you do not disable a cipher required by your certificates.

twc.java.security

jdk.tls.disabledAlgorithms=SSLv3, TLSv1, TLSv1.1, RC4, DES, MD5withRSA, DH keySize < 2048, \
 EC keySize < 224, 3DES_EDE_CBC, anon, RSA keySize < 2048, SHA1, DHE, NULL
jdk.tls.ephemeralDHKeySize=2048
jdk.tls.rejectClientInitiatedRenegotiation=true

To apply these settings we need to make changes in 2 locations.

For the Teamwork Cloud service, under Linux, you need to edit and add a line as shown below:<install_root>/jvm.options

.

.
-Dorg.jboss.netty.epollBugWorkaround=true
-Dio.netty.epollBugWorkaround=true
-Djava.security.properties=/home/twcloud/twc.java.security

On Windows, you need to edit the registry key Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Apache Software Foundation\Procrun
 and append the setting pointing to your security overrides to the bottom of the settings.2.0\TeamworkCloud\Parameters\Java\Options

For the Webapp service, under Linux you need to edit and add the directive to the variable as <install_root>/WebAppPlatform/bin/setenv.sh JVM_OPTS
shown below:

JVM_OPTS="-server -XX:+UseParallelGC -Xms4096M -Xmx8192M -Djava.security.properties=/home/twcloud/twc.java.
security"

On Windows, you need to edit the registry key Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Apache Software Foundation\Procrun
 and append the setting pointing to your security overrides to the bottom of the settings.2.0\WebApp\Parameters\Java\Options

JMX

By default, the Teamwork Cloud service activates a JMX remote port to facilitate application monitoring. The default configuration does not contain any
form of authentication.

On Linux, the configuration is located in .<install_root>/jvm.options

On Windows, it is located in registry key Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Apache Software Foundation\Procrun 2.0
.\TeamworkCloud\Parameters\Java\Options

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=2468
-Dcom.sun.management.jmxremote.rmi.port=2468
-Dcom.sun.management.jmxremote.local.only=false
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

These settings can be removed, thereby removing JMX remote access.

If you would like to allow remote JMX access but require authentication, you can do so by adding settings. For complete documentation, please refer to the
Java documentation.

As an example, the below configuration adds password authentication:

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=2468
-Dcom.sun.management.jmxremote.rmi.port=2468
-Dcom.sun.management.jmxremote.local.only=false
-Dcom.sun.management.jmxremote.authenticate=true
-Dcom.sun.management.jmxremote.password.file=/home/twcloud/jmx.password
-Dcom.sun.management.jmxremote.access.file=/home/twcloud/jmx.access
-Dcom.sun.management.jmxremote.ssl=false

As can be seen, we are pointing to a set of files (and) that control who can access these files./home/twcloud/jmx.password /home/twcloud/jmx.access

The vulnerability vector is one whereby JMX could be exploited to execute code. To prevent this, we allow only an authenticated user (jmx.password) who
has read-only rights (jmx.access).

jmx.password

monitoring DqzbksT4ET

jmx.access

monitoring readonly

In this example, we created a user (monitoring) with a password (DqzbksT4ET), who can only read values via Remote JMX, but cannot write or execute
anything via JMX.

Apache Tomcat

The Webapp Platform (webapp), as deployed by our installer, runs on a bundled Apache Tomcat. As such, best practices for hardening Apache Tomcat
should be followed.

Although we have already constrained ciphers and protocols at the JVM level, it is best practice to do so at the Tomcat configuration level. We also need
to address issues such as secure cookies, disable XSS on foreign sites, and also remove default directories published as part of the default installation.
The official Tomcat documentation covers a large portion of this (recommended reading) - . https://tomcat.apache.org/tomcat-9.0-doc/security-howto.html
Additionally, there are a plethora of documents online covering all aspects of securing Tomcat to OWASP standards.

server.xml

There are various changes that can be made to in order to harden the system.<install_root>/WebAppPlatform/conf/server.xml

The first step (do not do this if running on Windows) is to disable the shutdown port.

For this, you need to change:

<Server port="8005" shutdown="SHUTDOWN">

to

<Server port="-1" shutdown="SHUTDOWN">

The next step is to disable the AJP connector unless you specifically intend to use it.

For this, you need to change:

<!-- Define an AJP 1.3 Connector on port 8009 -->
 <Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />

to

The password and access files have a very stringent ownership requirement. They need to be owned by the user running the process and be
accessible exclusively to that user.

For example, in our default installation, the Teamwork Cloud user is running the Teamwork Cloud service. Therefore, the files need to be owned
by Teamwork Cloud and have full rights (rwx) by Teamwork Cloud, and only Teamwork Cloud.

ll jmx.*
-rwx------. 1 twcloud twcloud 20 Mar 16 15:11 jmx.access
-rwx------. 1 twcloud twcloud 26 Apr 21 10:41 jmx.password

https://tomcat.apache.org/tomcat-9.0-doc/security-howto.html

 <!-- Define an AJP 1.3 Connector on port 8009 -->
 <!--
 <Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />
 -->

The next step is to disable the redirection on port 8080.

For this, you need to change:

 <Connector executor="tomcatThreadPool"
 port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443" />

to

 <!--
 <Connector executor="tomcatThreadPool"
 port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 Server=" "
 redirectPort="8443" />
-->

Finally, we want to prevent our instance from advertising what server is being used in the event that an error is encountered.

For this, you need to go to the very bottom of the file and add the following, right above the closing </Host> tag.

 <!-- Suppress server name on internal error pages -->
 <Valve className="org.apache.catalina.valves.ErrorReportValve" showReport="false" showServerInfo="
false" />
 </Host>

web.xml

Having completed the configuration of server.xml, we will now proceed to configure <install_root>/WebAppPlatform/conf/web.xml.

We need to ensure that cookies are constrained to HTTPS.

 <!-- ==================== Default Session Configuration ================= -->
 <!-- You can set the default session timeout (in minutes) for all newly -->
 <!-- created sessions by modifying the value below. -->

 <session-config>
 <session-timeout>30</session-timeout>
 <cookie-config>
 <http-only>true</http-only>
 <secure>true</secure>
 </cookie-config>
 </session-config>

Tomcat Installation

Having made the necessary changes to the configuration files, we will now proceed to remove all of the default applications in the tomcat distribution,
which could expose our installation to external vulnerabilities.

You only need to insert the following lines:

<cookie-config>
 <http-only>true</http-only>
 <secure>true</secure>
</cookie-config>

If we look at a directory of , we will see the following:<install_root>/WebAppPlatform/webapps

drwxrwxr-x. 14 twcloud twcloud 4096 Apr 15 14:39 docs
drwxrwxr-x. 6 twcloud twcloud 83 Apr 15 14:39 examples
drwxrwxr-x. 5 twcloud twcloud 87 Apr 15 14:39 host-manager
drwxrwxr-x. 5 twcloud twcloud 103 Apr 15 14:39 manager
drwxrwxr-x. 3 twcloud twcloud 283 Apr 15 14:39 ROOT
drwxr-x---. 8 twcloud twcloud 117 Apr 15 14:47 webapp
-rwxrwxr-x. 1 twcloud twcloud 67742880 Oct 31 17:56 webapp.war

As you can see, in addition to and the directory, there are additional directories, containing applications, which could potentially be webapp.war webapp
exploited.

You want to remove , , , , and .docs examples host-manager manager ROOT

Upgrading Tomcat

Our installers deploy with a given version of Apache Tomcat. As vulnerabilities are exposed in Tomcat, you may be required by your organization to
upgrade to a specific version.

The "code" of tomcat is the compilation of the jar files residing in and .<instal_dir>/WebAppPlatform/bin <instal_dir>/WebAppPlatform/lib

In order to "slip-stream" an upgrade without having to fully replace the Tomcat installation, you can replace the existing *.jar files in these directories with
the ones from the new one.

Before doing this, you will want to make copies of these directories so you can easily revert back in case of an incompatibility with the new version.

Under Linux, assuming that you have access to the internet from the server, you can use the script below to automatically upgrade your instance to the
target version.

When you remove the ROOT application directory, accessing will no longer display the Apache Tomcat default landing https://ip_address:8443
page.

https://ip_address:8443

upgrade_tomcat_webapp.sh

#!/bin/bash
##
Upgrade Tomcat Version used by WebApp Platform
CATIA No Magic DevOps Team
################################

This script utilizes rsync, so we will install it via yum
If you are offline you need to put required installer file in the same location with this script

Edit default version if you can't input it during upgrade
DEFAULT_VERSION=9.0.63

###
#
DO NOT MODIFY ANYTHING BEYOND THIS POINT
#
###

echo ""
echo "--"
echo "This script utilizes rsync, so we will install it via yum."
echo "Please ensure rsync is on the system if thes are no posibility to use yum package manager"
echo ""
echo "--"
read -e -p "Please enter the tomcat version you would like to use. [default is: $DEFAULT_VERSION] : "
TOMCAT_VERSION
echo "--"
echo ""
TOMCAT_VERSION="${TOMCAT_VERSION:-$DEFAULT_VERSION}"

echo "Tomcat will be upgraded to: "$TOMCAT_VERSION "version."

WEBAPP_ROOT=$(cat /etc/systemd/system/webapp.service | grep CATALINA_HOME_WEBAPP | cut -f 3 -d '=')
WEBAPP_OWNER=$(stat -c "%U:%G" $WEBAPP_ROOT)

#####################################
Install rsync
yum install rsync -y -q
####################################
Setting up script variables
MAJOR_VERSION=$(echo $TOMCAT_VERSION | cut -d . -f 1)
TOMCAT_DOWNLOAD=https://archive.apache.org/dist/tomcat/tomcat-$MAJOR_VERSION/v$TOMCAT_VERSION/bin/apache-
tomcat-$TOMCAT_VERSION.tar.gz
TOMCAT_TAR=$(basename $TOMCAT_DOWNLOAD)
TOMCAT_DIR=$(basename $TOMCAT_TAR .tar.gz)

#####################################
Begin deployment
wget $TOMCAT_DOWNLOAD
[! -e "${TOMCAT_TAR}"] && echo "File does not exist ! Check the file name or internet connection and try
again." && exit|| echo "File $TOMCAT_TAR exists"
tar -xf $TOMCAT_TAR
rsync -av $TOMCAT_DIR/bin/*.jar $WEBAPP_ROOT/bin/
rsync -av $TOMCAT_DIR/lib/*.jar $WEBAPP_ROOT/lib/
####################################
Ensure proper ownership of files
chown -R $WEBAPP_OWNER $WEBAPP_ROOT/bin $WEBAPP_ROOT/lib
####################################
Remove foder with extracted files
rm -fr $TOMCAT_DIR
echo ""
echo "Upgrade completed successfully."

The script provided above may stop working if the Apache Tomcat distribution changes the methodology used in storing the tarfiles.

Upgrading Webapp bundled JDK

The default installation comes bundled with AdoptOpenJDK (build 15.0.2+7).

Webapp can run with Java 16.0.1.

If you wish to use it instead of the bundled version, it is located in <installation_dir>/WebAppPlatform/jre.

upgrade_jdk_webapp.sh

#!/bin/bash
##
Upgrade JDK in CATIA NoMagic Webapp Platform to a newer OpenJDK
CATIA No Magic DevOps Team
##

JRE_DOWNLOAD contains the download URL to the target OpenJDK tar archive
The example below upgrades the JDK to OpenJDK 17.0.5+8

Edit default version if you can't input it during upgrade
DEFAULT_VERSION=17.0.5+8

###
#
DO NOT MODIFY ANYTHING BELOW THIS POINT
#
###

echo ""
echo
"---
----------------------"
read -e -p "Please enter OpenJDK version of JRE you would like to use in the same style as it is in example
[default is: $DEFAULT_VERSION] : " JRE_VERSION
echo
"---
-----------------------"
echo ""
JRE_VERSION="${JRE_VERSION:-$DEFAULT_VERSION}"

echo "OpenJDK will be upgraded to: "$JRE_VERSION "version."

MAJOR_VERSION=$(echo $JRE_VERSION | cut -d . -f 1)
DOWNLOAD_VERSION=${JRE_VERSION/+/_}
echo $DOWNLOAD_VERSION

JRE_DOWNLOAD contains the download URL to the target OpenJDK tar archive
JRE_DOWNLOAD=https://github.com/adoptium/temurin$MAJOR_VERSION-binaries/releases/download/jdk-$JRE_VERSION
/OpenJDK17U-jre_x64_linux_hotspot_$DOWNLOAD_VERSION.tar.gz

#####################################
Install wget
yum install wget -y -q

JRE_HOME=$(cat /etc/systemd/system/webapp.service | grep JRE_HOME | cut -f 3 -d '=')
JRE_OWNER=$(stat -c "%U:%G" $JRE_HOME)
JRE_TAR=$(basename $JRE_DOWNLOAD)
mkdir _tmp
cd _tmp

Download OpenJDK
wget $JRE_DOWNLOAD

Remove current JRE_HOME
rm -fr $JRE_HOME

Extract OpenJDK
mkdir -p $JRE_HOME
tar -xf $JRE_TAR -C $JRE_HOME --strip-components=1
chown -R $JRE_OWNER $JRE_HOME

####################################
Remove foder with extracted files
cd ..
rm -fr _tmp
echo "Upgrade completed successfully."

	Hardening Teamwork Cloud

