Deployment example for Web Application Platform on
Kubernetes

@ This deployment example is not intended for production use. Use it for testing purposes only.

This chapter provides information on how to deploy the product for testing purposes. Keep in mind that the guidelines provided below are not considered
the best practices and do not take into account security settings and password encryption. This deployment has been tested with a specific Kubernetes
version, CNI, container runtime, and OS. If you use other solutions, use them at your own risk.

1. Prerequisites

® Kubernetes cluster (for more information, refer to https://kubernetes.io/):
© 1 virtual machine used as the control plane node and 3 nodes used as worker nodes
© Control plane node: 4 CPU cores, 8GB RAM
© Worker node: 4 CPU cores, 32GB RAM
Kubernetes version: v1.25.5
Container runtime: Containerd (for more information, refer to https://containerd.io/)
CNI: Calico
OS: Red Hat Enterprise Linux release 8.7 (Ootpa)
Load Balancer: MetalLB
IP: 1 IP address with the DNS A record that points to this IP (IP from your network that is not used by your cluster nodes).
Ingress: ingress-nginx (with sticky session support).

® 6 o o o o o

Note that there are two nginx ingresses: ingress-nginx is maintained by the Kubernetes community, while nginx-ingress is
maintained by F5 inc. The free F5 inc. version of nginx-ingress does not support “sticky sessions” which are required.
Therefore, make sure you use ingress-nginx.

® A Host with Docker or Podman to build images and push them to the image registry.
® Animage registry (repository) such as Harbor, Sonatype Nexus, Gitlab, or Docker registry server to push and pull the images you will
build.
® Teamwork Cloud server
® The applications needed to run Web Application Platform services:
© Zookeeper 3.8.0 (for more information, refer to https://zookeeper.apache.org/)
© Apache Artemis MQ 2.28.0 (for more information, refer to https://activemg.apache.org/components/artemis/)
© Keda CRD (deployed with the Simulation web application)

The following figure displays the environment used in this deployment example.

https://kubernetes.io/
https://containerd.io/
https://zookeeper.apache.org/
https://activemq.apache.org/components/artemis/

Kubernetes cluster

K8S Worker node K85 Worker node K85 Worker node

K85 Control-Plane node

K85 cluster admin

In this environment, the K8S cluster admin host (Linux virtual machine) is used to build images, run the image repository, and manage the Kubernetes
cluster.

@ In the workflow below:

® admin.example.com refers to the K8S cluster admin host and should be changed to your K8S cluster admin FQDN.
* webapp.example.com refers to the domain name through which Web Application Platform will be accessible.
® All the steps are performed on the K8S cluster admin host.

To deploy the product for testing purposes

Download the webapp-charts.zip file.

Install kubectl as described at https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/.
Install the helm to the K8S cluster admin host as described at https://helm.sh/docs/intro/install.
Execute the following command to copy cluster config files to the K8S cluster admin host:

ArwhpE

scp -r <user @ontrol _pl ane_address>: . kube ~
Edit ~/.kube/config

1" Replace the localhost IP address with your control plane IP address or hostname, e.g., https://127.0.0.1:6443.

5. Build Docker images:

a. Prepare the required files and directories.

b. Download the installation package for version 2022x Refresh2. For more information, refer to Downloading installation files.

c. Extract the packaged files, and inside your working folder, extract the Web_App_Platform_{version}_linux_no_install.zip file. After
extracting the files, you should have a folder structure similar to <your_working_folder>/CATIANoMagicServices/WebAppPlatform/.

https://docs.nomagic.com/download/attachments/127969656/webapp-charts.zip?version=1&modificationDate=1688737344693&api=v2
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://helm.sh/docs/intro/install
https://docs.nomagic.com/display/NMDOC/Downloading+installation+files

10.

1 You will find all files mentioned before in Web_App_Platform_{version}_linux_no_install.zip or on the software download
website (except for Teamwork Cloud keystore and SSL certificate):

® The <your_working_folder>/CATIANoMagicServices/WebAppPlatform/webapps directory contains application .war
files.

® The <your_working_folder>/CATIANoMagicServices/WebAppPlatform/shared/conf directory contains other
configuration files.

® The <your_working_folder>/CATIANoMagicServices/WebAppPlatform/conf directory contains server.xml.

. Use the same SSL certificate and key that were used for the Teamwork Cloud server. You can copy the key and certificate files from the

Teamwork Cloud server.

. If you use only the .p12 file on the Teamwork Cloud server, execute the following command to extract the certificate and key from the .p12 file:

openssl pkcs12 -in INFILE pl2 -out twcloud.crt -nokeys
openssl pkcs12 -in INFILE pl2 -out twcloud. key -nodes —nocerts

. Execute the following command to create the Kubernetes secret:

kubect| create secret tls webapp-tls-secret --key twcloud. key --cert tweloud. crt

. Execute the following command to create a directory for each application you are going to use:

nkdir -p i magebuil d/ {adni n-consol e, aut henti cation, artem s, col | abor at or, docunent - exporter, osl c, reports,
resour ces, resour ce- usage- map, si nul at i on, webapp}

Copy all files listed below to their own directories (except the artemis directory). You will find the Docker files for each service in dockerfiles.zip.
After placing the Docker files in their appropriate directories, rename them to Dockerfile as shown below:

admin-console

admin.war

Dockerfile

keystore.p12 (from the Teamwork Cloud server)
logback.xml

server.xml

webappplatform.properties

O O 0O 0O O O

authentication

authentication.properties

authentication.war

Dockerfile

keystore.p12 (from the Teamwork Cloud server)
logback.xml

server.xml

teamworkcloud.crt (from twcloud.crt extracted earlier)
webappplatform.properties

O O O O O 0O 0 O

collaborator

collaborator.war

Dockerfile

keystore.p12 (from the Teamwork Cloud server)
logback.xml

server.xml

webappplatform.properties

O O O O O O

document-exporter

© Dockerfile

o document-exporter.war

© collaborator.war

o keystore.p12 (from the Teamwork Cloud server)
O logback.xml

o server.xml

© webappplatform.properties

oslc

https://docs.nomagic.com/download/attachments/127969656/dockerfiles.zip?version=1&modificationDate=1688737344678&api=v2

collaborator.war

Dockerfile

keystore.p12 (from the Teamwork Cloud server)
logback.xml

server.xml

webappplatform.properties

O O O O O O

reports

Dockerfile

keystore.p12 (from the Teamwork Cloudd server)
logback.xml

reports.war

server.xml

webappplatform.properties

O O O O O O

resource-usage-map

© Dockerfile

O keystore.p12 (from the Teamwork Cloud server)
© logback.xml

O resource-usage-map.war

o server.xml

© webappplatform.properties

resources

Dockerfile

keystore.p12 (from the Teamwork Cloud server)
logback.xml

resources.war

server.xml

webappplatform.properties

O O O O O O

simulation

Dockerfile

keystore.p12 (from the Teamwork Cloud server)
logback.xml

server.xml

simulation.war

webappplatform.properties

O O O O O O

webapp

o Dockerfile

O keystore.p12 (from the Teamwork Cloud server)
© logback.xml

© server.xml

© webapp.war

© webappplatform.properties

11. Execute the following command to start the local Docker registry:

docker run -d -p 5000: 5000 --restart=al ways --nanme registry registry:2

1 Inthis case, a local Docker registry is run on the K8S cluster admin host. It uses port 5000, so make sure this port is open on your host
firewall and accessible to your Kubernetes cluster.

@ This local Docker registry should be used for testing purposes only and is not considered production-ready. In the production
environment, run the image registry with TLS and authentication.

12. Add your repo URL (FQDN of the K8S cluster admin host) to the Docker /etc/docker/daemon.json file.
13. If the daemon.json file does not exist, create it. Assuming there are no other settings in the file, it should have the following content:

{

"insecure-registries": ["adm n.exanpl e. com 5000"]

}

14. Execute the following command to restart the Docker service:

sudo systencttl restart docker

15. If the registry container has started, proceed with building the Artemis image (for more information, refer to https://github.com/apache/activemq-
artemis/tree/main/artemis-docker):

a. Execute the following command:

cd i nagebuild
git clone https://github. con apache/ activeng-artem s.git
cd activeng-artem s/ artem s-docker

b. Execute the following command to download Artemis binaries:

wget https://archive.apache. org/di st/activeng/activeng-artenis/2.28.0/apache-artem s-2.28.0-bin.zip

c. Extract the following file:

unzi p apache-artem s-2.28.0-bin.zip

d. Execute the following commands to build the image:

./ prepare-docker.sh --fromlocal -dist --local-dist-path ./apache-artem s-2.20.0
cd apache-artenis-2.20.0
docker build -f ./docker/Dockerfile-centos7-11 -t artem s-centos .

e. Execute the following command to tag the built image:

docker tag artenis-centos admi n.exanpl e.com 5000/ artenis: 2. 20

f. Execute the following command to push the image to your repository:

docker push adni n. exanpl e. com 5000/ artenis: 2. 20

16. Execute the commands below for each service that you want to build images for inside their own directories, as shown in the examples in steps
17a, 17b, and 17c.

docker build -f Dockerfile -t {APP_NAME}
docker tag {APP_NAME}: { VERSI ON} {| MAGE_REPO_URL}: 5000/ { APP_NANE} : { VERSI ON}
docker push {I MAGE_REPO URL}/ { APP_NANE} : { VERSI ON}

1 * {IMAGE_REPO_URL} - your image repository URL. It can differ depending on the image registry provider.
* {APP_NAME} - application name.
* {VERSION} - version to be used for the tag.

a. The following command example builds images for Admin Console:

cd i nagebui | d/ adm n-consol e
docker build -f Dockerfile -t admin .

b. The following command example tags the built image:

docker tag adm n: |atest adnin.exanpl e.com 5000/ admi n: | at est

c. The following command example pushes the image to the registry:

https://github.com/apache/activemq-artemis/tree/main/artemis-docker
https://github.com/apache/activemq-artemis/tree/main/artemis-docker

docker push adni n. exanpl e. com 5000/ admi n: | at est

17. To be able to pull images to your Kubernetes cluster nodes, add your image repository to the Containerd configuration on all cluster nodes.
18. Edit the /etc/containerd/config.toml file by adding the following lines to the "mirrors" part:

[plugins."io.containerd.grpc.vl.cri".registry.mrrors."adm n. exnpl e. com 5000"]
endpoint = ["http://adm n. exanpl e. com 5000"]

[plugins."io.containerd.grpc.vl.cri".registry.configs." adm n.exanple.coni]
[plugins."io.containerd.grpc.vl.cri".registry.configs." adm n.exanple.conf.tls]
i nsecure_skip_verify = true

1 Keep in mind that alignment is very important, as shown in the example below.

istry]
g . ry.mirrors]
(."io.contair .cri gistry.mirrors."docker.io"]
endpoint = ["https://

[plugins."1io.containe g i".re L s."admin.example.com:
endpoint = ["http://]

[plugins."io.containerd.grpc.vl.c . 5 . igs." admin ample.com”]

Ln lo.c rpc.vl.cri admin.example.

19. Execute the following command to restart Containerd services on all cluster nodes:

sudo systenctl restart containerd

20. Execute the following commands to add dependency repos:

hel m repo add kedacore https://kedacore. github.io/charts

hel m repo add ingress-ngi nx https://kubernetes.github.io/ingress-nginx
hel mrepo add bitnam https://charts. bitnan .conl bitnan

hel m repo update

cd ${webapp-charts_directory}

21. Execute the following command to update chart dependencies:

hel m dependency updat e

22. Execute the command below to install Custom Resource Definitions (CRD). This will create all services and deployments.

hel minstall keda kedacore/ keda --nanespace keda --create-nanespace --wait --version 2.6.0

Keda and MetalLB should be added as separate resources.

Since CRDs (being a globally shared resource) are fragile, you have to assume that it is shared across multiple namespaces and
groups of users once a CRD is installed. For that reason, installing, modifying, and deleting CRDs is a process that has ramifications
for all users and systems of that cluster.

@ You can check the status of the services and pods with this command:

kubect!| get all

23. Execute the following command to deploy MetalLB:

helminstall netallb bitnanmi/nmetallb --namespace netall b-system --create-nanespace --wait

24. To check the MetalLB deployment status, execute the following command on the control plane node or the K8S cluster admin host:

kubect| get -n netallb-systemall

You should see an output similar to this:

AGE
460m
40m
Running @ 48m
Running B 40m
Running i 40m

TYPE CLUSTER-IP EXTERNAL -IP i AGE
service/webhook-service ClusterIP < > 4 46m

DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELI
4 4 4 4 kubernet

READY UP-TO-DATE AVAILABLE AGE
1

ontroller 1/1 48m

DESIRED CURRENT READY AGE
ontroller-84d6d4db45 1 1 1 40m

1 Ifyou see that the MetalLB status is 'Running,’ but READY is 0/1, give it some time to start and repeat the command.

25. Create configuration files for MetalLB:

1 Make sure to complete all the substeps of this step to create and apply both configurations. Otherwise, the product will not work
properly.

a. Edit the metalLB/metallb_ipadresspool.yaml file as shown below:

api Version: netallb.io/vlbetal
ki nd: | PAddr essPool
net adat a:

nane: first-pool

namespace: netal |l b-system
spec:

addr esses:

- 192.168.1.1/32

#- 192.168.10.0/ 24

#- 192.168.9.1-192.168.9.5

#- fc00: f853:0ccd: e799: : /124

1 ® Your IT department should give you a reserved IP address or a range of IP addresses (depending on your needs)
with a DNS A record that points to this IP address.
® Configuration files should be formatted in .yaml.

b. Edit the metalLB/I2advertisement.yaml file as shown below. You can change the metadata name as needed. Keep in mind that the
ipAddressPool name should match the specifications.

api Version: netallb.io/vlbetal
ki nd: L2Adverti senment
net adat a:

name: exanpl e

nanespace: mnetallb-system
spec:

i pAddr essPool s:

- first-pool

c. Execute the following command to apply the MetalLB configuration:

kubect!| apply -f netal LB/ netal | b_i paddr esspool . yam

d. Execute the following command to check the applied configuration:

kubect| describe ipaddresspools.netallb.io first-pool -n netallb-system

e. Execute the following command to create the MetalLB advertisement:

kubect!| apply -f netal LB/ | 2adverti senment. yanl

f. Execute the following command to check the advertisement configuration:

kubect| describe |2advertisenments.netallb.io exanple -n netallb-system

26. Find the Values.yaml file in the parent helm chart and provide the values of the parameters in the file to enable or disable specific applications or
parts of the configuration.
27. Do one of the following:

® Execute this command in the helm parent chart directory to deploy services to the default namespace:

hel minstall webapp .

® Execute this command in the helm parent chart directory to create a namespace and deploy services in this namespace:

hel minstall webapp . --nanmespace=wap --create-nanespace --wait

1" This helm chart includes Zookeeper and Ingress-nginx as dependencies. They will be deployed automatically.

28. After all web applications are deployed, execute the following command to check their status:

kubect!| get all

1 ® All pods should be READY:1/1, STATUS:Running.
® The ingress-nginx service should be Type:LoadBalancer.
® EXTERNAL-IP should match the address that you provided in the MetalLB configuration.

If pods do not run, check for problems by executing this command:

kubect| describe pod pod_nane

29. Execute the following command to check Ingress rules:

kubect| describe ingress

You should get an output similar to this:

Nane: i ngress. resource

Nanespace: def aul t
Address **.**.***.***
Default backend: default-http-backend: 80 (<error: endpoints "default-http-backend" not found>)
TLS:
webapp-tls-secret termnminates nmwapl0639. dsone. 3ds. com
Rul es:
Host Pat h Backends

nm wapl0639. dsone. 3ds. com

/adm n webapp- adm nconsol e: 8443 (10. 233. 105. 39: 8443)
/aut henti cation webapp- aut henti cati on: 8443 (10. 233. 88. 69: 8443)
/ col | abor at or webapp- col | abor at or: 8443 (10. 233. 88. 75: 8443)
/ document - export er webapp- docexporter: 8443 (10.233. 105. 22: 8443)
/oslc webapp- osl c: 8443 (10.233. 105. 23: 8443)
/reports webapp-reports: 8443 (10. 233. 73. 246: 8443)
/ resources webapp- resour ces: 8443 (10. 233. 88. 67: 8443)
/ resour ce- usage- nap webapp-rum 8443 (10.233. 105. 40: 8443)
/simul ation webapp- si mul ati on: 8443 (10. 233. 88. 123: 8443)
/ webapp webapp- webapp: 8443 (10. 233. 105. 29: 8443)

Annot ati ons: net a. hel m sh/ r el ease- nane: webapp

nmet a. hel m sh/ rel ease- nanespace: default

ngi nx. i ngress. kubernetes.io/affinity: cookie

ngi nx. i ngress. kubernetes.i o/ af fi nity-canary-behavi or: sticky

ngi nx. i ngress. kubernetes.i o/ af finity-node: persistent

ngi nx. i ngress. kuber net es. i o/ backend- protocol : https

ngi nx. i ngress. kuber net es. i o/ proxy- body-si ze: 100m

ngi nx. i ngress. kuber net es. i o/ proxy-connect-ti meout: 600

ngi nx. i ngress. kubernet es. i o/ proxy-read-tinmeout: 600

ngi nx. i ngress. kuber net es. i o/ proxy-send-ti neout: 600

ngi nx. i ngress. kubernet es. i o/ send-ti neout: 600

ngi nx. i ngress. kuber net es. i o/ sessi on- cooki e- nane: COXKI E
Events: <none>

30. Test the product deployment:
a. In an internet browser, go to domain_name/webapp (the DNS A record that points to the Ingress external IP).

1 Ifyou added a DNS record to bind the domain name to the IP address, you can use the domain name instead of the IP. The
browser should show a warning because of the self-signed certificate. Accept it to proceed, and you will be redirected to the
Teamwork Cloud Authentication web page.

Hello John Smith,
Welcome to the Web Application Platform

]l

Resources

Manage and access Teamwork Cloud projects,
Cameo Collaborator for Teamwork Cloud
documents, and OSLC resources.

Reports

Generate and export reports with Teamwork
Cloud data.

My account
Manage your user details or change the
password.

*
[=]

Users

Add/import users or groups to Teamwork
Cloud, remove/manage their details, change
roles, or release locked elements.

Settings

Manage license and Teamwork Cloud server
configuration settings

| D

<

Roles

Creatz and customize Teamwork Cloud roles,
2da/remove permissions, or assign roles.

Resource Usage Map

The Resource Usage Map is a live visual graph
that represents Teamwerk Cloud resource
usages as well 35 iGentifies potential problem

b. Log in with your credentials, and you will be redirected back to Web Application Platform.

	Deployment example for Web Application Platform on Kubernetes

