
Deployment example for Web Application Platform on
Kubernetes

This chapter provides information on how to deploy the product for testing purposes. Keep in mind that the guidelines provided below are not considered
the best practices and do not take into account security settings and password encryption. This deployment has been tested with a specific Kubernetes
version, CNI, container runtime, and OS. If you use other solutions, use them at your own risk.

The following figure displays the environment used in this deployment example.

This deployment example is not intended for production use. Use it for testing purposes only.

Prerequisites

Kubernetes cluster (for more information, refer to):https://kubernetes.io/
1 virtual machine used as the node and 3 nodes used as worker nodescontrol plane
Control plane node: 4 CPU cores, 8GB RAM
Worker node: 4 CPU cores, 32GB RAM

Kubernetes version: v1.25.5
Container runtime: Containerd (for more information, refer to)https://containerd.io/
CNI: Calico
OS: Red Hat Enterprise Linux release 8.7 (Ootpa)
Load Balancer: MetalLB
IP: 1 IP address with the DNS A record that points to this IP (IP from your network that is not used by your cluster nodes).
Ingress: ingress-nginx (with sticky session support).

A Host with Docker or Podman to build images and push them to the image registry.
An image registry (repository) such as Harbor, Sonatype Nexus, Gitlab, or Docker registry server to push and pull the images you will
build.
Teamwork Cloud server
The applications needed to run Web Application Platform services:

Zookeeper 3.8.0 (for more information, refer to)https://zookeeper.apache.org/
Apache Artemis MQ 2.28.0 (for more information, refer to)https://activemq.apache.org/components/artemis/
Keda CRD (deployed with the Simulation web application)

Note that there are two nginx ingresses: ingress-nginx is maintained by the Kubernetes community, while nginx-ingress is
maintained by F5 inc. The free F5 inc. version of nginx-ingress does not support “sticky sessions” which are required.
Therefore, make sure you use ingress-nginx.

https://kubernetes.io/
https://containerd.io/
https://zookeeper.apache.org/
https://activemq.apache.org/components/artemis/

1.
2.
3.
4.

5.

a.
b.
c.

 In this environment, the K8S cluster admin host (Linux virtual machine) is used to build images, run , and manage the Kubernetes the image repository
cluster.

To deploy the product for testing purposes

Download the file.webapp-charts.zip
Install kubectl as described at https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/.
Install the helm to the K8S cluster admin host as described at .https://helm.sh/docs/intro/install
Execute the following command to copy cluster config files to the K8S cluster admin host:

scp -r <user@control_plane_address>:.kube ~
Edit ~/.kube/config

Build Docker images:

Prepare the required files and directories.
Download the installation package for version 2022x Refresh2. For more information, refer to .Downloading installation files
Extract the packaged files, and inside your working folder, extract the file. After Web_App_Platform_{version}_linux_no_install.zip
extracting the files, you should have a folder structure similar to .<your_working_folder>/CATIANoMagicServices/WebAppPlatform/

In the workflow below:

admin.example.com refers to the K8S cluster admin host and should be changed to your K8S cluster admin FQDN.
webapp.example.com refers to the domain name through which Web Application Platform will be accessible.
All the steps are performed on the K8S cluster admin host.

, e.g., Replace the localhost IP address with your control plane IP address or hostname https://127.0.0.1:6443.

https://docs.nomagic.com/download/attachments/127969656/webapp-charts.zip?version=1&modificationDate=1688737344693&api=v2
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://helm.sh/docs/intro/install
https://docs.nomagic.com/display/NMDOC/Downloading+installation+files

5.

c.

6.

7.

8.

9.

10.

Use the same SSL certificate and key that were used for the Teamwork Cloud server. You can copy the key certificate and files from the
Teamwork Cloud server.
If you use only the .p12 file on the Teamwork Cloud server, execute the following command to extract the and key certificate from the .p12 file:

openssl pkcs12 -in INFILE.p12 -out twcloud.crt -nokeys
openssl pkcs12 -in INFILE.p12 -out twcloud.key -nodes –nocerts

Execute the following command to create the Kubernetes secret:

kubectl create secret tls webapp-tls-secret --key twcloud.key --cert twcloud.crt

Execute the following command to create a directory for each application you are going to use:

mkdir -p imagebuild/{admin-console,authentication,artemis,collaborator,document-exporter,oslc,reports,
resources,resource-usage-map,simulation,webapp}

Copy all files listed below to their own directories (except the directory). You will find the Docker files for each service in artemis .dockerfiles.zip
After placing the Docker files in their appropriate directories, rename them to Dockerfile as shown below:

admin-console

admin.war
Dockerfile
keystore.p12 (from the Teamwork Cloud server)
logback.xml
server.xml
webappplatform.properties

authentication

authentication.properties
authentication.war
Dockerfile
keystore.p12 (from the Teamwork Cloud server)
logback.xml
server.xml
teamworkcloud.crt (from extracted earlier)twcloud.crt
webappplatform.properties

collaborator

collaborator.war
Dockerfile
keystore.p12 (from the Teamwork Cloud server)
logback.xml
server.xml
webappplatform.properties

document-exporter

Dockerfile
document-exporter.war
collaborator.war
keystore.p12 (from the Teamwork Cloud server)
logback.xml
server.xml
webappplatform.properties

oslc

You will find all files mentioned before in or on the software download Web_App_Platform_{version}_linux_no_install.zip
website (except for Teamwork Cloud keystore and SSL certificate):

The directory contains application .war <your_working_folder>/CATIANoMagicServices/WebAppPlatform/webapps
files.
The directory contains other <your_working_folder>/CATIANoMagicServices/WebAppPlatform/shared/conf
configuration files.
The directory contains .<your_working_folder>/CATIANoMagicServices/WebAppPlatform/conf server.xml

https://docs.nomagic.com/download/attachments/127969656/dockerfiles.zip?version=1&modificationDate=1688737344678&api=v2

10.

11.

12.
13.

14.

collaborator.war
Dockerfile
keystore.p12 (from the Teamwork Cloud server)
logback.xml
server.xml
webappplatform.properties

reports

Dockerfile
keystore.p12 (from the Teamwork Cloudd server)
logback.xml
reports.war
server.xml
webappplatform.properties

resource-usage-map

Dockerfile
keystore.p12 (from the Teamwork Cloud server)
logback.xml
resource-usage-map.war
server.xml
webappplatform.properties

resources

Dockerfile
keystore.p12 (from the Teamwork Cloud server)
logback.xml
resources.war
server.xml
webappplatform.properties

simulation

Dockerfile
keystore.p12 (from the Teamwork Cloud server)
logback.xml
server.xml
simulation.war
webappplatform.properties

webapp

Dockerfile
keystore.p12 (from the Teamwork Cloud server)
logback.xml
server.xml
webapp.war
webappplatform.properties

Execute the following command to start the local Docker registry:

docker run -d -p 5000:5000 --restart=always --name registry registry:2

Add your repo URL (FQDN of the K8S cluster admin host) to the Docker /etc/docker/daemon.json file.
If the daemon.json file does not exist, create it. Assuming there are no other settings in the file, it should have the following content:

{
"insecure-registries": ["admin.example.com:5000"]
}

Execute the following command to restart the Docker service:

In this case, a local Docker registry is run on the K8S cluster admin host. It uses port 5000, so make sure this port is open on your host
firewall and accessible to your Kubernetes cluster.

This local Docker registry should be used for testing purposes only and is not considered production-ready. In the production
environment, run the image registry with TLS and authentication.

14.

15.

a.

b.

c.

d.

e.

f.

16.

a.

b.

c.

sudo systemctl restart docker

If the registry container has started, proceed with building the Artemis image (for more information, refer to https://github.com/apache/activemq-
):artemis/tree/main/artemis-docker

Execute the following command:

cd imagebuild
git clone https://github.com/apache/activemq-artemis.git
cd activemq-artemis/artemis-docker

Execute the following command to download es:Artemis binari

wget https://archive.apache.org/dist/activemq/activemq-artemis/2.28.0/apache-artemis-2.28.0-bin.zip

Extract the file:following

unzip apache-artemis-2.28.0-bin.zip

Execute the following commands to build the image:

./prepare-docker.sh --from-local-dist --local-dist-path ./apache-artemis-2.20.0
cd apache-artemis-2.20.0
docker build -f ./docker/Dockerfile-centos7-11 -t artemis-centos .

Execute the following command to tag the built image:

docker tag artemis-centos admin.example.com:5000/artemis:2.20

Execute the following command to push the image to your repository:

docker push admin.example.com:5000/artemis:2.20

Execute the commands below for each service that you want to build images for inside their own directories, as shown in the examples in steps
17a, 17b, and 17c.

docker build -f Dockerfile -t {APP_NAME} .
docker tag {APP_NAME}:{VERSION} {IMAGE_REPO_URL}:5000/{APP_NAME}:{VERSION}
docker push {IMAGE_REPO_URL}/{APP_NAME}:{VERSION}

The following command example builds images for Admin Console:

cd imagebuild/admin-console
docker build -f Dockerfile -t admin .

The following command example tags the built image:

docker tag admin: latest admin.example.com:5000/admin:latest

The following command example pushes the image to the registry:

{IMAGE_REPO_URL} - your image repository URL. It can differ depending on the image registry provider.
{APP_NAME} - application name.
{VERSION} - version to be used for the tag.

https://github.com/apache/activemq-artemis/tree/main/artemis-docker
https://github.com/apache/activemq-artemis/tree/main/artemis-docker

16.

c.

17.
18.

19.

20.

21.

22.

23.

docker push admin.example.com:5000/admin:latest

To be able to pull images to your Kubernetes cluster nodes, add your image repository to the Containerd configuration on all cluster nodes.
Edit the file by adding the following lines to the "mirrors" part:/etc/containerd/config.toml

[plugins."io.containerd.grpc.v1.cri".registry.mirrors."admin.exmple.com:5000"]
 endpoint = ["http://admin.example.com:5000"]

 [plugins."io.containerd.grpc.v1.cri".registry.configs." admin.example.com"]
 [plugins."io.containerd.grpc.v1.cri".registry.configs." admin.example.com".tls]
 insecure_skip_verify = true

Execute the following command to restart Containerd services on all cluster nodes:

sudo systemctl restart containerd

Execute the following commands to add dependency repos:

helm repo add kedacore https://kedacore.github.io/charts
helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm repo add bitnami https://charts.bitnami.com/bitnami
helm repo update

cd ${webapp-charts_directory}

Execute the following command to update chart dependencies:

helm dependency update

Execute the command below to install Custom Resource Definitions (CRD). This will create all services and deployments.

helm install keda kedacore/keda --namespace keda --create-namespace --wait --version 2.6.0

Execute the following command to deploy MetalLB:

Keep in mind that alignment is very important, as shown in the example below.

Keda and MetalLB should be added as separate resources.

Since CRDs (being a globally shared resource) are fragile, you have to assume that it is shared across multiple namespaces and
groups of users once a CRD is installed. For that reason, installing, modifying, and deleting CRDs is a process that has ramifications
for all users and systems of that cluster.

You can check the status of the services and pods with this command:

kubectl get all

23.

24.

25.

a.

b.

c.

helm install metallb bitnami/metallb --namespace metallb-system --create-namespace --wait

To check the MetalLB deployment status, execute the following command on the control plane node or the K8S cluster admin host:

kubectl get -n metallb-system all

You should see an output similar to this:

Create configuration files for MetalLB:

Edit the metalLB/metallb_ipadresspool.yaml file as shown below:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: first-pool
 namespace: metallb-system
spec:
 addresses:
 - 192.168.1.1/32
 #- 192.168.10.0/24
 #- 192.168.9.1-192.168.9.5
 #- fc00:f853:0ccd:e799::/124

Edit the file as shown below. You can change the metadata name as needed. Keep in mind that the metalLB/l2advertisement.yaml
ipAddressPool name should match the specifications.

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: example
 namespace: metallb-system
spec:
 ipAddressPools:
 - first-pool

Execute the following command to apply the MetalLB configuration:

If you see that the MetalLB status is 'Running,' but READY is 0/1, give it some time to start and repeat the command.

Make sure to complete all the substeps of this step to create and apply both configurations. Otherwise, the product will not work
properly.

Your IT department should give you a reserved IP address or a range of IP addresses (depending on your needs)
with a DNS A record that points to this IP address.
Configuration files should be formatted in ..yaml

25.

c.

d.

e.

f.

26.

27.

28.

29.

kubectl apply -f metalLB/metallb_ipaddresspool.yaml

Execute the following command to check the applied configuration:

kubectl describe ipaddresspools.metallb.io first-pool -n metallb-system

Execute the following command to create the MetalLB advertisement:

kubectl apply -f metalLB/l2advertisement.yaml

Execute the following command to check the advertisement configuration:

kubectl describe l2advertisements.metallb.io example -n metallb-system

Find the Values.yaml file in the parent helm chart and provide the values of the parameters in the file to enable or disable specific applications or
parts of the configuration.
Do one of the following:

Execute this command in the helm parent chart directory to deploy services to the default namespace:

helm install webapp .

Execute this command in the helm parent chart directory to create a namespace and deploy services in this namespace:

helm install webapp . --namespace=wap --create-namespace --wait

After all web applications are deployed, execute the following command to check their status:

kubectl get all

Execute the following command to check Ingress rules:

kubectl describe ingress

You should get an output similar to this:

This helm chart includes Zookeeper and Ingress-nginx as dependencies. They will be deployed automatically.

All pods should be READY:1/1, STATUS:Running.
The ingress-nginx service should be Type:LoadBalancer.
EXTERNAL-IP should match the address that you provided in the MetalLB configuration.

If pods do not run, check for problems by executing this command:

kubectl describe pod pod_name

29.

30.
a.

Name: ingress.resource
Namespace: default
Address: **.**.***.***
Default backend: default-http-backend:80 (<error: endpoints "default-http-backend" not found>)
TLS:
 webapp-tls-secret terminates nm-wap10639.dsone.3ds.com
Rules:
 Host Path Backends
 ---- ---- --------
 nm-wap10639.dsone.3ds.com
 /admin webapp-adminconsole:8443 (10.233.105.39:8443)
 /authentication webapp-authentication:8443 (10.233.88.69:8443)
 /collaborator webapp-collaborator:8443 (10.233.88.75:8443)
 /document-exporter webapp-docexporter:8443 (10.233.105.22:8443)
 /oslc webapp-oslc:8443 (10.233.105.23:8443)
 /reports webapp-reports:8443 (10.233.73.246:8443)
 /resources webapp-resources:8443 (10.233.88.67:8443)
 /resource-usage-map webapp-rum:8443 (10.233.105.40:8443)
 /simulation webapp-simulation:8443 (10.233.88.123:8443)
 /webapp webapp-webapp:8443 (10.233.105.29:8443)
Annotations: meta.helm.sh/release-name: webapp
 meta.helm.sh/release-namespace: default
 nginx.ingress.kubernetes.io/affinity: cookie
 nginx.ingress.kubernetes.io/affinity-canary-behavior: sticky
 nginx.ingress.kubernetes.io/affinity-mode: persistent
 nginx.ingress.kubernetes.io/backend-protocol: https
 nginx.ingress.kubernetes.io/proxy-body-size: 100m
 nginx.ingress.kubernetes.io/proxy-connect-timeout: 600
 nginx.ingress.kubernetes.io/proxy-read-timeout: 600
 nginx.ingress.kubernetes.io/proxy-send-timeout: 600
 nginx.ingress.kubernetes.io/send-timeout: 600
 nginx.ingress.kubernetes.io/session-cookie-name: COOKIE
Events: <none>

Test the product deployment:
In an internet browser, go to (the DNS A record that points to the Ingress external IP).domain_name/webapp

If you added a DNS record to bind the domain name to the IP address, you can use the domain name instead of the IP. The
browser should show a warning because of the self-signed certificate. Accept it to proceed, and you will be redirected to the
Teamwork Cloud Authentication web page.

30.
a.

b. Log in with your credentials, and you will be redirected back to mWeb Application Platfor .

	Deployment example for Web Application Platform on Kubernetes

