
1.
2.

3.

Understanding change concept
Change is a difference, found between the ancestor and a contributor. Every change can be accepted or
rejected, as well as have dependent changes. Changes can conflict with each other or be equivalent.

Merging begins with building a composite change tree, which consists of model, diagramming, and non-
model changes.

Change types

Read the following definitions to get familiar with different change types.

Addition change
If an element has been added to a contributor, an addition change occurs.

Deletion change
If an element has been removed from a contributor, a deletion change occurs.

Modification change
If an element property in a contributor has been modified, a modification change occurs.

There are three types of modification changes:

Addition modification change that occurs when a value is added to a property.
Deletion modification change that occurs when a value is removed from a property.
Replacement modification change that occurs when one value is replaced with another. This
type of modification change occurs only for properties that have multiplicity less or equal to 1.

Movement change

If an element owner has been changed in a contributor, a movement change occurs.

Order change
If the order of elements has been changed in a contributor, an order change occurs. Order changes can
occur on elements such as attributes, operations, and other ordered elements. Even if a single element
in a collection has changed its place, the order change is applied to the entire collection.

Since an element can have several ordered collections, several order changes can occur on a single
element.

Order changes can be skipped while merging. For this you need to specify names of properties wherein
order changes should not be detected.

To turn off the order changes detection in specific properties

From the menu select . The dialog opens.Options Environment Environment Options
Find the option under the category in the Do Not Detect Order Changes for Merge General
options group.

Related pages

Model Merge
Understanding
merge types
Preparing for
merge
Starting Model
Merge
Analyzing and
managing merge
results
Finishing merge

If the property value of a class in the ancestor had the default value and the IsAbstract false
same property value in a contributor has been changed to , a modification change occurs.true

Let's say package A contains some class in the ancestor and package B contains the same
class in a contributor. This means that the class has been moved from package A to package
B in the contributor. This case is recognized as a movement change.

Another case of the movement change is when an attribute or an operation that has been
owned by class A in the ancestor, becomes the attribute or an operation of class B in a
contributor.

Let's say class A has attributes a, b, and c in the ancestor. The attribute c has been moved up
and placed above attribute a in a contributor. This means that the order of attribute collection
in class A has changed in the contributor. This is a case of the order change.

This is the optional phase of the merge procedure. You may not need to perform it.

https://docs.nomagic.com/display/MD190/Model+Merge
https://docs.nomagic.com/display/MD190/Understanding+merge+types
https://docs.nomagic.com/display/MD190/Understanding+merge+types
https://docs.nomagic.com/display/MD190/Preparing+for+merge
https://docs.nomagic.com/display/MD190/Preparing+for+merge
https://docs.nomagic.com/display/MD190/Starting+Model+Merge
https://docs.nomagic.com/display/MD190/Starting+Model+Merge
https://docs.nomagic.com/display/MD190/Analyzing+and+managing+merge+results
https://docs.nomagic.com/display/MD190/Analyzing+and+managing+merge+results
https://docs.nomagic.com/display/MD190/Analyzing+and+managing+merge+results
https://docs.nomagic.com/display/MD190/Finishing+merge

3. In the option value cell, specify names of properties wherein order changes should not be
detected while merging.

Change states

Every change, whether it is addition, modification, deletion, movement, or order change, can be either
accepted or rejected. It is a change state.

All accepted changes will be incorporated into the target. Alternatively, they can be rejected and
excluded from the target.

Dependent changes

In some cases, other changes have to be accepted or rejected before accepting or rejecting a selected
change. In other words, a selected change sometimes depends on other changes and is called a
dependent change.

For better understanding of the concept of dependent changes, study the following examples.

Conflicting changes

Conflict occurs when two changes are incompatible, i.e., the changes cannot be accepted together.
Conflicts can only occur when using 3-way merge.

Equivalent changes

Equivalent change is a pair of identical changes that are detected in both source and target, when
performing a 3-way merge.

Property names must be written in camel case, for example, ownedAttribute,
ownedElement, and so on.

Let's say a class attribute type has been changed to a type that had been created by another
change. In consequence, the attribute type change depends on the change that has created
the type. This means that type creation change must be accepted before accepting type
modification change.

Let's suppose there is an attribute type change in a contributor. An old type has been deleted
and a new type has been added to the contributor. In this case, three changes occur:

deletion change (for the old type)
addition change (for the new type)
modification change (for the property type)

These are also ownership changes, but they are accepted together with deletion and addition
changes.
The modification change depends on the addition change, and the deletion change depends
on the modification change.Thus accepting the deletion change means also accepting the
addition change, the modification change and the deletion change itself.

The following situations will result in a conflict:

Each contributor has changed a class name or any other element property value.
One contributor has added an operation to a class and the other contributor deleted
the class.
One contributor has moved a class into one package while the other contributor
moved it to another package.

Let's say package A contains some class in the ancestor and both contributors contain the
same class in package B. This means that the class has been moved from package A to
package B in both source and target. This is a case of the equivalent change.

Another case of equivalent changes is when the same element A becomes renamed to B in
both contributors.

	Understanding change concept

