
Extension methods

Extension methods are static methods that can be invoked using instance method syntax. In effect, extension methods make it possible to extend existing
types and constructed types with additional methods.

Extension methods are declared by specifying the keyword this as a modifier on the first parameter of the methods. Extension methods can only be
declared in . non-generic, non-nested static classes

It becomes possible to invoke the extension methods in the static class Extensions using instance method syntax:

The value is created to Tag in «C#Params»: extend

The following is an example of a static class that declares two extension methods:

public static class Extensions
{
 public static int ToInt32(this string s) {
 return Int32.Parse(s);
 }
 public static T[] Slice<T>(this T[] source, int index, int count) {
 if (index < 0 || count < 0 || source.Length – index < count)
 throw new ArgumentException();
 T[] result =newT[count];
 Array.Copy(source, index, result, 0, count);
 return result;
 }
}

Instance method syntax

string s = "1234";

int i = s.ToInt32();// Same as Extensions.ToInt32(s)

int[] digits={0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int[] a = digits.Slice(4, 3);// Same as Extensions.Slice(digits, 4, 3)

Example

Code:

class K
{
 Test (this int a)
 {}
}

Reversed UML model:

	Extension methods

