
Problems and solutions of data maping
To ensure that your migration process is as fluent as possible, we recommend reading the following 
suggestions to modify your projects based on UML 1.4 before conversion to UML 2 to avoid mapping 
problems.

Class Diagram

Issue  Solution

Dependencies Dependency can be connected only 
between NamedElements in UML 2.

Dependencies between other elements 
will be deleted after load.

Try to avoid dependencies between 
generalizations, merge, import and 
other relationships that are not 
NamedElements in UML 2. If a 
dependency contains important 
information, try to connect it to another 
semantically close element supported in 
UML 2.

Subsystem  Subsystem is no longer subtype of 
package.

Subsystem will be automatically 
converted to a component with 
stereotype «subsystem» during 
conversion. If the subsystem had inner 
elements, they will be moved to a 
package that now owns the component.

Stereotypes
and tags

Stereotypes in UML 2 metamodel must 
be contained by Profile model element, 
and all tags must be defined as 
properties of stereotype. The UML 1.4 
metamodel allowed you to store 
stereotypes and tags anywhere in the 
model with no restrictions.

As described in Converting Stereotypes
, MagicDraw will create new /Profiles

profile and owner stereotypes for all 
tags. However, you may want to do 
some changes manually.

We recommend creating stereotypes for 
“loose” tags. Grouping multiple tags into 
the same stereotype may be a good 
option as well.

If you have a UML 1.4 based project 
with all stereotypes placed in a 
package, assign a «profile» stereotype 
to this package. In this case the 
package will be converted to a Profile 
model element.

If you had many packages with 
stereotypes, you can move them into a 
new package with the stereotype 
«profile» assigned.

Sequence Diagram

Issue  Solution

Concurrent 
lifelines 
and 
message 
branching

Concurrent lifelines and message branching 
are no longer supported in a sequence 
diagram. They will be loaded into 
MagicDraw, but the user will not be allowed 
to draw these elements.

UML 2 provides new notation for 
concurrency and branching using 
combined fragments. We recommend 
redrawing sequence diagrams before 
or after migration.

State Diagram

Issue  Solution

On this page

Class Diagram
Sequence Diagram
State Diagram
Activity Diagram
Implementation Diagram

All modifications based on these recommendations should be applied using MagicDraw 9.5 or 
older.



StubState 
and 
SynchState

StubState and SynchState 
elements are no longer supported 
in UML 2.

StubStates and SynchStates will 
be removed together with 
connected transitions.

Please try to remove StubStates and 
SynchStates from state diagrams before
migration. We suggest redesigning your model 
in alternative ways, trying to connect important 
transitions to other states.

Parameters 
of
event

Event can't have parameters in 
UML 2. All parameters will be lost 
during the migration.

Use the parameters of Operation when using 
CallOperationEvent.

Add additional parameters to an operation if 
you are using more CallOperationEvent 
parameters than the Operation has.

Assign stereotypes and tags to Operation 
parameters instead of CallEvent parameters.

The same rules should be applied to the parameters of the SendSignalEvent and the attributes of the 
Signal.

Activity Diagram

Issue  Solution

States  UML 2 Activity diagram is 
no longer based on 
StateMachine, so State 
model elements 
(SimpleState, 
CompositeState, and 
ConcurrentState) can no 
longer be used in the 
activity diagram.

Redraw your activity diagrams without using 
ConcurrentStates, move internal elements from 
ConcurrentState to the diagram and show concurrent flows 
by using synchronization bars or other notation. 
CompositeState in activity diagrams should be modified in a 
similar manner by moving internal elements into the diagram. 
SimpleState will be mapped to ObjectNode with this state 
assigned to the InState property.

Implementation Diagram

Issue  Solution

Deployment  Components 
cannot be 
deployed in Nodes 
in UML 2. Artifacts 
related to these
components 
should be 
deployed instead.

During migration, MagicDraw will automatically create 
artifacts (named as components) deployed in Nodes and will 
manifest Components (Manifestation relationship between 
artifacts and components will be created).

The diagram view will not change - Components will still be 
located over Nodes; however, these components are not 
added into Nodes.

You should redraw your diagrams, showing artifacts and 
relations between components, artifacts and nodes. Drag 
artifacts created automatically from the browser tree directly 
to diagrams, use “Display paths” to display relationships.


	Problems and solutions of data maping

