
1.

2.
3.

4.

5.

6.

Creating executable opaque behaviors
Language of an executable opaque behavior can be OCL 2.0, binary, BeanShell, Groovy, JRuby,
JavaScript, Jython, or StructuredExpression. Also, it must have the proper number of parameters with
proper types.

How many parameters can an opaque behavior have?

The number of parameters an opaque behavior can have depends on the selected language of the
opaque behavior body:

An OCL 2.0 expression must have a single parameter.
A binary expression must declare the exact number of parameters has the Java class, to which
the expression body of the opaque behavior references.
Other script expressions, such as JavaScript or Groovy, can have as many parameters as you
need.
Structured expression can have as many parameters as you need.

How to create a parameter for the opaque behavior?

To create a parameter for the opaque behavior

In the of the opaque behavior, property group, click the Specification window Parameters Create
button. The of the new parameters opens.Specification window
Enter a name of the new parameter.
Specify the multiplicity of the parameter: either select a value from the drop-down list or type a
new one.

Specify the type of the parameter: either select a value from the drop-down list or create a new
one by typing directly in the cell.

If the multiplicity upper bound is 1, you may skip this step. Otherwise, specify the following:
Whether the arguments are unique.
Whether the arguments are ordered.

Close the .Specification window

How to access the arguments and other values from script body of
the opaque behavior?

To access an argument from a script body, you should refer to the corresponding parameter name.

The script body can access the following values:

Arguments passed to an opaque behavior as parameters.
Globally defined values:

project (current project)
application

How many statements can a script have?

On this page:

How many parameters can
an opaque behavior have?
How to create a parameter
for the opaque behavior?
How to access the
arguments and other
values from script body of
the opaque behavior?
How many statements can
a script have?
What MagicDraw
functionality can a script
use?

Related Pages

Model Elements
Specification Window

In this case, only the upper bound of the multiplicity is important. For example, the
multiplicity [0..1] has the same meaning as the multiplicity [1].

Available types:

Built-in UML primitives (Integer, Real, String, and so forth)
UML element types
Java classes (java.io.File, java.util.Properties, and so forth)

If you do not see the Is Unique and Is Ordered properties, select All from the
Properties drop-down list in the upper right of the .Specification window

The following instructions applies to BeanShell, Groovy, JRuby, JavaScript, and Jython scripts
only.

https://docs.nomagic.com/display/MD190SP1/Specification+window
https://docs.nomagic.com/display/MD190SP1/Specification+window
https://docs.nomagic.com/display/MD190SP1/Specification+window
https://docs.nomagic.com/display/MD190SP1/Model+elements
https://docs.nomagic.com/display/MD190SP1/Specification+window
https://docs.nomagic.com/display/MD190SP1/Specification+window

The script can have multiple statements. In this case the result of the entire script is the result of the last
statement.

Limitations in Jython make it so returning a value from the multi-statement Jython script is not
straightforward. Instead of:

<statement1>
...
<statement n>
<expression returning result>

you have to use result.set(...):

<statement1>
...
<statement n>
result.set(<expression returning result>)

What MagicDraw functionality can a script use?

The script can call .MagicDraw Open API

More complex model access operations are available in and .ModelHelper StereotypesHelper

The following instructions applies to BeanShell, Groovy, JRuby, JavaScript, and Jython scripts
only.

The following instructions applies to BeanShell, Groovy, JRuby, JavaScript, and Jython scripts
only.

Use import statements to shorten java class names as shown in the following figure.

https://docs.nomagic.com/display/MD190SP1/Developer+Guide

	Creating executable opaque behaviors

