
Easier refactoring of composite used projects
One of the problems caused by the old approach described in , Automated project usages was in refactoring composite used projects (used projects
composed of sub-used projects). Whenever a composite used project was re-arranged by removing or re-importing sub-used projects, all of the projects or
used projects using this used project more often than not became affected.

The following examples illustrate this problem.

Related pages

Resolving unconfirmed usages of packages

Example 1
Consider a used project with 3 sub-used projects: , , and . Consider another project , ElectricComponents Capacitors Inductances Resistances RadioSet

which uses the used project .ElectricComponents

Now, use several model elements from each sub-used project in the project .RadioSet

Old problematic behavior

Previous versions of our modeling tool would create these three direct user-defined usages:

 RadioSet Capacitors,

 RadioSet andInductances,

 RadioSet Resistances.

Effectively, those versions were “freezing” the contents of the used project ElectricComponents.

If you tried to refactor the used project by removing its sub-used projects and re-importing their contents, the project ElectricComponents RadioSet

would be affected and start complaining about the missing used projects.

No earlier version of our modeling tool could rearrange the user-defined usages for fear of losing the user-specified used project composition data.

New behavior

As of version 17.0.3, a program creates automated used project usages instead of creating user-defined ones. So when the used project ElectricCompo

 is refactored, it keeps the same model elements but changes its structure. Furthermore, the automated usages in the project are nents RadioSet

automatically rearranged.

Another types of problemsNow problems could occur only if the rearranged used project does not contain all the same elements it had before the rearrangement. Thus some

automated usages may turn into unconfirmed ones. For more information about unconfirmed usages, see Controlling dependency creation between

. used projects

Example 2
Another problem was “freezing” the used project's version. For instance, the project uses the 100 version of the used project RadioSet th ElectricCompon

 which in turn uses the 150 version of the sub-used project ents, th Resistances.

Old problematic behavior

Whenever the project referenced the sub-used project the direct usage would be created to the 150 version of it. If you wanted RadioSet Resistances, th

to migrate the project to use the 200 version of the used project which used the 300 version of the sub-used project RadioSet th ElectricComponents, th R

 a version conflict would occur, since the direct usage would be still pinned to the 150 version.esistances, th

New behavior

As of version 17.0.3, automated usages do not carry information about the version and do not preclude the version update through the user-defined

usage paths.

Complex CompositionIf you already have projects with complex composition (having used projects or sub-used projects) that are prepared in any earlier version, you may

want to refactor your used project structure to reap the benefits of this feature.

https://docs.nomagic.com/display/MD190SP1/Automated+project+usages
https://docs.nomagic.com/display/MD190SP1/Resolving+unconfirmed+usages+of+packages
https://docs.nomagic.com/display/MD190SP1/Controlling+dependency+creation+between+used+projects
https://docs.nomagic.com/display/MD190SP1/Controlling+dependency+creation+between+used+projects

	Easier refactoring of composite used projects

