
The Alf compiler
The is the part of the Alf plugin that carries out the compilation process. The Alf compiler is Alf compiler
automatically invoked when you save Alf code into your model (unless you turn off automatic building;
see). The activity model resulting from an Alf compilation is also stored in your Environment options
model. Exactly where it is stored depends on which kind of element the Alf code is the body.

Activity compilation

When the Alf compiler processes the Alf body of an Activity, the resulting Activity model is saved as the
Activity Nodes and Edges owned within that Activity. The Alf text itself is stored in a Comment element
owned by the Activity, which has the stereotype applied. (See also TextualRepresentation Using Alf to

 and .)define Activities Using Alf for Operation methods

Activity compilation

The compilation of an activity may also result in certain auxiliary elements, such as Instance
Specifications, that cannot be not stored within the Activity. These are generally inserted into the nearest
Package containing the Activity (which may be the top-level Model). Also, in certain cases, template
instantiations are saved in a (described below).special package called $$Template Bindings

Opaque Behavior and Opaque Action compilation

When the Alf compiler processes the Alf body of an Opaque Behavior or Opaque Action, it creates a
corresponding Activity in which to store the result of the compilation. For an Opaque Behavior, the
generated Activity is saved as a child of the Opaque Behavior. For an Opaque Action, the generated
Activity is saved as a child of the Activity containing the Opaque Action. In either case, the Activity is also
linked to the original Opaque Behavior or Action by applying the stereotype. CompiledRepresentation
When the Opaque Behavior or Action is later executed using Cameo Simulation Toolkit, it is the linked
Activity that actually provides the executable behavior.

Opaque Behavior compilation

Table of Contents

Activity compilation
Opaque Behavior and
Opaque Action compilation
Opaque Expression
compilation
The $$Template Bindings
package

https://docs.nomagic.com/display/ALFP190SP1/Environment+options
https://docs.nomagic.com/display/ALFP190SP1/Using+Alf+to+define+Activities
https://docs.nomagic.com/display/ALFP190SP1/Using+Alf+to+define+Activities
https://docs.nomagic.com/display/ALFP190SP1/Using+Alf+for+Operation+methods

Opaque Action compilation

Opaque Expression compilation

When the Alf compiler processes the Alf body of an Opaque Expression, it creates a corresponding
Activity in which to store the results of the compilation. This Activity is generally saved in the nearest
Classifier containing the Opaque Expression. If the Opaque Expression specifies the guard on a
Transition, then the generated Activity will be saved as a child of the State Machine containing the
Transition. And, if the Opaque Expression specifies the guard on an Activity Edge, then the generated
Activity will be saved as a child of the Activity containing the Activity Edge.

In all cases, the Activity is referenced in the property of the original Opaque Expression. When Behavior
the Opaque Expression is later evaluated using Cameo Simulation Toolkit, it is the Activity that Behavior
is actually executed in order to provide the value of the Expression.

Opaque Expression compilation (example shown is for an Activity Edge guard)

The $$Template Bindings package

The package is a special package used by the Alf compiler to save instantiations of $$Template Bindings
template Classifiers that result of explicit template bindings in Alf code (e.g.,). These Set<Integer>
instantiations are stored in a common place, so that similar bindings in Alf code across your model can
be compiled to references to the same instantiation. For example, a binding of a standard Alf collection
class, such as results in the generation of an instantiated class in the Set<Integer>, $$Template Bindings
package with a long encoded name similar to $$Model$$Alf$$Library$$CollectionClasses$$Set__$$Mod

 If you use in el$$'UML Standard Profile'$$'UML2 Metamodel'PrimitiveTypes$$Integer__. Set<Integer>
more than once in Alf code in your model, it will still result in only the one instantiated class, and the
Activity models compiled from your Alf code will all refer to this class.

The package should only appear if you use template bindings in your Alf code. It is $$Template Bindings
automatically created the first time such a binding is compiled in your model.

The package, showing the instantiation of $$Template Bindings Set<Integer>

You should never manually alter any of the contents of the package.$$Template Bindings

When you delete the code for a template binding with an Alf body, the instantiated class
generated from that Alf code is automatically deleted from the not $$Template Bindings
package, since that class might also be referenced elsewhere in your model. Thus, if you use
templates in your Alf code, it is possible, over time, for the package to $$Template Bindings
accumulate contents that are no longer useful. If necessary, this can be cleaned up by doing a

 of your project.clean build

https://docs.nomagic.com/display/ALFP190SP1/Building+and+cleaning

	The Alf compiler

