
Built-in operations
Operation
name

Description Example

Date

Timestamp The operation returns current system time in milliseconds as a string type value. It takes no
parameters.

Result = “1392798008000”

FormatDate The operation converts a date and time given in milliseconds to a human readable format.

The operation takes two parameters:

Date – a date and time in milliseconds that should be converted to a human readable format. It
must be a string type value and can be the result of a Timestamp operation.
Format – a date and time format for the conversion. It must be a string type value. For the date
and time formats, refer to the SimpleDateFormat page.

The result of this operation is a string type value.

Date = “1392798008000”

Format = “yyyy.MM.dd G 'at'
HH:mm:ss z”

Result = “2014.02.19 AD at
10:20:08 EET”

ParseDate The operation converts a date and time in a human readable format to milliseconds. In other words,
the operation reverses the result of the FormatDate operation (it returns the value that can be the
Date parameter for a FormatDate operation).

The operation takes two parameters:

Format – a current format of the date and time that should be converted to milliseconds. It must
be a string type value.
Formatted Date – a date and time that should be converted to milliseconds. It must be a string
type value.

The result of this operation is a string type value.

Format = “yyyy.MM.dd G 'at'
HH:mm:ss z”

Formatted Date =
“2014.02.19 AD at 10:20:08
EET”

Result = “1392798008000”

Collection

TypeTest The operation tests, whether the type of an element matches a given type or stereotype. If the types
matches, it returns , and if they not – .true false

You can also use this operation to check, if an element is an instance of a given classifier.

The operation takes three parameters:

Element – a model element, whose type you need to test.
Type – a type, stereotype, or classifier for testing the element.
Include Subtypes – , if the inherited types, stereotypes, or classifiers of the selected Type true
parameter value should be included in the test; , if not.false

The TypeTest operation can be used in the Filter operation as the condition. For this, click the Use as
 button on the Type Test operation specification panel.Condition of a new Filter operation

Element = class Profile
Type = Class
Include Subtypes = false

Result = true

The element type matches the
given type.

Element = class Profile
Type = Classifier
Include Subtypes = true

Result = true

Though the element type does
not match the given type, it is
its subtype, and in this case
subtypes are included in the
test.

Element = class Profile
Type = Classifier
Include Subtypes = false

Result = false

Thought the element type is a
subtype of the given type, in
this case subtypes are not
included in the test.

Filter The operation analyses given collection of elements (one by one) and returns only those elements
that meet the specified filter criteria.

The operation takes two parameters:

Input Collection – an arbitrary collection of elements of arbitrary types.
Condition – an operation determining filter criteria. Keep in mind that this operation must have

 Otherwise, the Filter operation exactly one input parameter and return a result of boolean type!
fails and returns no value. Hence, if you need to use the script operation with many parameters
as the filter criteria, you must wrap it inside the nested operation (the TypeTest operation or any
other built-in operation is wrapped automatically).

The result of this operation is collection of elements as well.

Input Collection =

use case Log in
use case Log out
actor User
use case Change
password

Condition = TypeTest:

Element = Input
Collection
Type = UseCase
Include Subtypes = false

Result Collection =

use case Log in
use case Log out
use case Change
password

InstanceNav
igation

The operation finds the needed slot of the given instance and returns one or more values of that slot.

The operation takes two parameters:

Instance – an instance specification (instance), whose slot value you need to access.
Navigate Property – a property, whose slot you need to find.

The result type of this operation matches the type of the property specified as the Navigate Property
parameter.

Instance = WN345AB
Navigate Property = Year

Result = “1999”

First The operation finds the first element in a sequence from a specified scope.

The operation consist of:

Input - objects list.

Contains The operation verifies specified object in given collection and returns Boolean value if sets true
contains object, otherwise operation returns value false.

The operation consist of:

Input - operation will verify this collections.
Obj - sets will be verified according to this object.

Input =

IsEmpty The operation determine whether collection is empty, if it is empty, operation returns Boolean value true
, otherwise operation returns value false.

The operation consist of:

Input - specified object (for example array, set, list).

Size The operation r .eturns the number of elements in collection

The operation consist of:

Input - an object or collection (for example array, set, list, string).

Intersect The operation returns the data common to both collections, with no repetitions and in sorted order.

The operation consist of:

Collection1 and - collections which will be intersected. Collection2

C1 = [7 0 5], C2 = [7 1 5],

returns C = [5 7];

Concat The operation joins two lists. The and are joined end-to-end. Keeps the order, allows List1 List2
duplicates.

The operation consist of:

List1 and - lists which will be concatenated.List2

Get The operation returns the element at the specified position in collection.

The operation consist of:

Input - specified collection.
Index - (integer type).index of the element to return

Map The operation maps objects from collection to collection of other objects and returns a collection of
results in the same order.

The operation consist of:

Input - collections with objects to map.
MapOperation - given function, this function will be applied to each input element.

Input = [1 2 3 4 5],

applies o map with peration
function (Input + 1)

returns = [2 3 4 5 6]

MapFlat The operation maps objects from collection to collection of other objects. Flattens mapping result if it
is a collection.

The operation consist of:

Input - collections with objects to map.
MapOperation - given function, this function will be applied to each input element.

Input = { {1,2}, {3,4}, {5,6} }

applies operation MapFlat

returns = {1,2,3,4,5,6}

Reduce The operation reduce collection using given operation.

The operation consist of:

Input - collection that will be reduced.
ReduceOperation - given function, this function determines how collection will be reduced.

Zip The operation zips two collections using given zip operation.

The operation consist of:

Collection1 and - to these collections, zip operation will be applied.Collection2
ZipOperation - given function, according to this function, collections will be zipped.

Min The operation returns minimum value from given collection.

The operation consist of:

Input - collection which will be tested and minimum value determined.

Max The operation returns maximum value from given collection.

The operation consist of:

Input - collection which will be tested and maximum value determined.

AllMatch The operation checks if all collection elements match given predicate and returns boolean value.

The operation consist of:

Input - specified collection.
Predicate - a predicate is applied to each element of collection.

AnyMatch The operation checks if all collection elements match given predicate and returns boolean value.

The operation consist of:

Input - specified collection.
Predicate - a predicate is applied to each element of collection.

Logical

And The logical conjunction operation returns Boolean value if all true
parameters are , in all other cases - operation returns value.true false

The operation by default takes three parameters:

A and - two logical values. B
Result - a Boolean value which shows results of logical conjunction

Or The logical disjunction operation returns Boolean value if either or both parameters is , true true
otherwise operation returns value.false

The operation takes these parameters:

A and - two logical values. B

Xor The logical exclusive disjunction operation returns Boolean value if both parameters differ, true
otherwise operation returns value.false

The operation parameters:takes these

A and - two logical values. B

Not if parameter have value , and wheThe logical negation operation returns Boolean value true false false
n parameter have value true.

The operation takes one parameter:

A - logical value.

Comparison

IfThenElse The operation returns one or other object depending on condition.

The operation consist of:

Condition - defines the that determines which value to assign.operation
Then defines the value to assign if is- expression condition true.
Else - defines the value to assign if is .expression condition false

LessThan The operation returns if the left parameter is less than the right parameter ().true A < B

The operation consist of:

A and - parameters which will be compared. B

LessThanOr
Equals

The operation returns if the left side parameter is less than or equal to the right parameter (true A <=
).B

The operation consist of:

A and B - parameters which will be compared.

GreaterThan The operation returns true if the left parameter is greater than the right parameter (A > B).

The operation consist of:

A and - parameters which will be compared B

GreaterThan
OrEquals

The operation returns true if the left parameter is greater than or equal to the right parameter (A >= B).

The operation consist of:

A and - parameters which will be compared B

Equals The operation converts parameters if they are not the same type, then compares them. If parameters
are equal, operation returns Boolean value otherwise true, operation returns false.

The operation consist of:

A and - parameters which will be compared B

NotEquals The operation converts parameters if they are not the same type, then compares them. If parameters
are not equal, operation returns Boolean value true, otherwise operation returns false.

The operation consist of:

A and - parameters which will be compared B

String

StringConcat The operation joins two parameters with string values. A and B string values are joined end-to-end.

The operation consist of:

A and - two string values. B

A = Hello

B = world!

Return = Hello world!

StringConta
ins

The operation returns Boolean value true, if specified string value is find in specified scope, otherwise.

The operation consist of:

A - according to this string, operation will verify B
B - string value.

A = o

B = world!

Return = True

Other

DiagramTyp
eTest

The operation returns Boolean value true if project uses specified diagram, otherwise returns value
false.

The operation consist of:

Diagram - all diagrams in the specified scope.
Type - write diagram name exactly how it is named in modeling tool.

Diagram =

Use Case Diagram
Class Diagram
Free Form Diagram

Type = Class Diagram

Return = True

UsageInDia
grams

This operation is very expensive. It not only checks symbol diagrams for elements but also loads and
builds generic tables, dependency matrices, relationship maps, etc. It should be best avoided and
used only if you understand the possible consequence of building all diagrams in the project.

Searches for usages only in diagrams.all

The operation consists of:

element - the element to search for

	Built-in operations

