The Alf compiler

The Alf compiler is the part of the Alf plugin that carries out the compilation process. The Alf compiler is
automatically invoked when you save Alf code into your model (unless you turn off automatic building;
see Environment options). The activity model resulting from an Alf compilation is also stored in your
model. Exactly where it is stored depends on which kind of element the Alf code is the body.

Activity compilation

When the Alf compiler processes the Alf body of an Activity, the resulting Activity model is saved as the
Activity Nodes and Edges owned within that Activity. The Alf text itself is stored in a Comment element
owned by the Activity, which has the TextualRepresentation stereotype applied. (See also Using Alf to

define Activities and Using Alf for Operation methods.)

a Af
ElEnty Af ax
=R TestAddressBook] TestAddressBook

-5 Body(TestAddressBook)
[, Relations
5 ExpressionStatement@1c371f55 3
-7 Relations 4WriteLine ("Adding Ed at 1234 ALf Street...");
[Call(WriteLine):WriteLine °T°“'Z“‘”"34 "“{';" =)
6iiritehddressasFor (book,
B8 Tuple@1d68821d]
© Value(" Done. ") b i
& ExpressionStatement@1fe3272f

2book = new

9book. ad
< ExpressionStatement@5f1F7574 10WriteaddressesFor (book, *E
5 ExpressionStatement@6al517e4 11
5 ExpressionStatement@13baldfe 12WriteLine ("\; "
5 ExpressionStatement@39c25d1a 13book. remove (
s i Lawrit

7% ExpressionStatement@701acc64] . .
© ExpressionStatement@769f357 i cotine (Tnbone. \nt) 4
< ExpressionStatement@21297c47 o
& ExpressionStatement@38755350 Sovers) [Revert
© ExpressionStatement@a3fle3L

[WriteLine("Testing Address Book..."); book = new ... «TextualRepresentation>
3 Writeddressedprl book : Addiress Book, name : String)

FEHEFFEHEEEFHS

Activity compilation

The compilation of an activity may also result in certain auxiliary elements, such as Instance
Specifications, that cannot be not stored within the Activity. These are generally inserted into the nearest
Package containing the Activity (which may be the top-level Model). Also, in certain cases, template
instantiations are saved in a special package called $$Template Bindings (described below).

Opaque Behavior and Opaque Action compilation

When the Alf compiler processes the Alf body of an Opaque Behavior or Opaque Action, it creates a
corresponding Activity in which to store the result of the compilation. For an Opaque Behavior, the
generated Activity is saved as a child of the Opaque Behavior. For an Opaque Action, the generated
Activity is saved as a child of the Activity containing the Opaque Action. In either case, the Activity is also
linked to the original Opaque Behavior or Action by applying the CompiledRepresentation stereotype.
When the Opaque Behavior or Action is later executed using Magic Model Analyst, it is the linked Activity
that actually provides the executable behavior.

* or(book : Address Book, name : String) «CompiledRepresentation>|
82 WriteAddressesFor(book : Address Book [1], name : String [1])
-2 Relations
© in book : Address Book [1]
© in name : String [1] a ar
€ Input(book) : Address Book

Alf ax
€ Input(name) : String
e Fork(book) WriteAddressesFor ! : .
v Forkdoamme) LuriteLine ("Addresses for " + name + ":"); 3
2for (address in book.lookup(name)) {
-8 Body(WriteAddressesFor) 3 writeLine(address);

B Relations 1)
-5 ExpressionStatement@5425c8e2 5
[Relations
- O Call(WriteLine):WriteLine Save | Revert
15 Tuple@62¢30421
ForStatement@5064c76e
© in book : Address Book
© in name : String

7 Zoom | 2 Documentatio- [Properties

Properties 2.8 x
Element Tags | Traceability

B8 2 =) of o

[E Opaque Behavior

Name WriteAddressesFor
Owner [5] Model

Writeline("Addresses for " + name + ");

for (address in booklockup(name)) { gid
Writeline(address);

Standard ~

Body and Language

Opaque Behavior compilation

Table of Contents

® Activity compilation

® Opaque Behavior and
Opaque Action compilation

® Opaque Expression
compilation

® The $$Template Bindings
package

https://docs.nomagic.com/display/MAF190SP2/Environment+options
https://docs.nomagic.com/display/MAF190SP2/Using+Alf+to+define+Activities
https://docs.nomagic.com/display/MAF190SP2/Using+Alf+to+define+Activities
https://docs.nomagic.com/display/MAF190SP2/Using+Alf+for+Operation+methods

idePower{ vehCond : VehicleCondition, accelPos : Integer) L |||
eltions.

rovcepoer >
£ 5 18,01 1265039 1447130579324 863083 11813(vehCond : | £ .
5.7 Reltions. Tools
vehCond : VehicleCondition [1] @ -
ut speed : Integer [1] Q 4 83083 118013
© out battCond & .
@) Input{vehCond) : VehicleCondition &
) Output(battCond) = =~
@) Output(speed) : Integer = E
=i Fork(vehCond) 8
5 Body(_18.0.1 12650340 1447130578324 863083 11813) | | [0o,
[=
5 Output(bateCond)li]
I Output(speed)[1] B
B < ExpressonStatement@264iciod Ba.
ExpressionStatement@345iete2
€318 0.1 12€503d9_1447130724157_3249_11922(speed : Intec
£5-63_18.0_1 1265039 1447130859636 715482 12106(gasDrivePc | De Sove | Revert
X" —

-
=
3
ol
2% 200m| [2) Documentatior [Propertes D.
Properses eax | 5]
Element Symbol|Tags| Troceabity =
B2 jof o) = Standard
10paque Action ©
.
Ouner 3 ProvidePower (1. The A Lo .
Appled Sereotype CompiledRepresentaton [Element] [Acti
speed = vehCond. <+

Body and Language battCond = vehCond battCond;

Opaque Action compilation

Opaque Expression compilation

When the Alf compiler processes the Alf body of an Opaque Expression, it creates a corresponding
Activity in which to store the results of the compilation. This Activity is generally saved in the nearest
Classifier containing the Opaque Expression. If the Opaque Expression specifies the guard on a
Transition, then the generated Activity will be saved as a child of the State Machine containing the
Transition. And, if the Opaque Expression specifies the guard on an Activity Edge, then the generated
Activity will be saved as a child of the Activity containing the Activity Edge.

In all cases, the Activity is referenced in the Behavior property of the original Opaque Expression. When
the Opaque Expression is later evaluated using Magic Model Analyst, it is the Behavior Activity that is
actually executed in order to provide the value of the Expression.

€8 Control fan ~ ks
B Relations

", Control Flow(Fan::Fan: Control fan: this.Teontrol = this.getCu N
54, Control Flow{Fan::Fan:Control fan:: -> Fan::Fan::Control fan: 18
-, Control Flow[Fan::Fan::Control fan:: -> Fan::Fan::Control fan: | Jogls -
3%, Control Flow{Fan::Fan:Control fan:: -> Fan:Fan:Control fan: | ||
@
4, Control Flow{Fan:Fan::Control fan:: -> Fan::Fan::Control fan: | &5 ® i Teontrol < ths. T s Teontrol»
Z)Control fan @ - —<
3 €3_18 5 3 24400562 1523130929392 672940_5429() : Boolean [1] -
7 Relations - Qa Af
© return : Boolean (1] 8 Alf ax
® Final £ty [1this.Toontrol < this.Tmin I
€ Return : Boolean
E)-15! Body(1853 24400562 1
15 RetumnStatement@4fe’
B Relations 2w
e Fork(ReadSelf.result)
e Fork(ReadSelf.result)
J5 ReturnStatement @4fe7f29c.output : Boolean(1] Save | [Ravert
- © ReadSelf
- © ReadSelf
- © Read(Teontrol)
c

B © Read(Tmin)
-5 Node(Call(<))
% % Zoom| [7) Documentatior [Properties.
Properties 28 x
Element Tags | Traceability
8 = r?i (=24
[ElOpaque Expression
Owner %, Control Flow[Fan:Fa

Applied Stereotype CompiledRepresentati

this.Teontrol < this.Tmin

Body and Language

Behavior €3 _18.5_3_24400562_1523130929392_872940_5429, Aot

Opaque Expression compilation (example shown is for an Activity Edge guard)

The $$Template Bindings package

The $$Template Bindings package is a special package used by the Alf compiler to save instantiations of
template Classifiers that result of explicit template bindings in Alf code (e.g., Set<Integer>). These
instantiations are stored in a common place, so that similar bindings in Alf code across your model can
be compiled to references to the same instantiation. For example, a binding of a standard Alf collection
class, such as Set<Integer>, results in the generation of an instantiated class in the $$Template Bindings
package with a long encoded name similar to $$Model$$Alf$$Library$$CollectionClasses$$Set $$Mod
el$$'UML Standard Profile'$$'UML2 Metamodel'Primitive Types$$integer__. If you use Set<Integer> in
more than once in Alf code in your model, it will still result in only the one instantiated class, and the
Activity models compiled from your Alf code will all refer to this class.

The $$Template Bindings package should only appear if you use template bindings in your Alf code. It is
automatically created the first time such a binding is compiled in your model.

{:D You should never manually alter any of the contents of the $$Template Bindings package.

When you delete the code for a template binding with an Alf body, the instantiated class
generated from that Alf code is not automatically deleted from the $$Template Bindings
package, since that class might also be referenced elsewhere in your model. Thus, if you use
templates in your Alf code, it is possible, over time, for the $$Template Bindings package to
accumulate contents that are no longer useful. If necessary, this can be cleaned up by doing a
clean build of your project.

&[] Model
- [$$TemplateBindings
[l Relations

ses$Ct 1 Modiels'UML Standlard Metamodel sFrimit
ibrary$CollectionCl t_Model$UML Standard SUML2

Model$AlfSLibrarysCollectionClassessSet _Model$ UML Standard Profile's UML2 Metamodel $PrimitiveTypessinteger
[} -] Collection<Integer>

[Set<Integer>

[set<Integer>

The $$Template Bindings package, showing the instantiation of Set<Integer>

https://docs.nomagic.com/display/MAF190SP2/Building+and+cleaning

	The Alf compiler

