
1.

Development in IntelliJ IDEA
The preconfigured IntelliJ IDEA project with modules for two sample plugins and a batch mode
(command-line) tool is provided with a program installation directory. The project can be found in <modeli
ng tool installation directory>\openapi\ide\intellij.zip.

Let's use MagicDraw as an example to describe the following procedures.

To setup the IntelliJ IDEA environment for the MagicDraw (or other program according to a modeling tool
) developmentyou are using

In IntelliJ IDEA, add a path variable named
MAGIC_DRAW_INSTALL_DIRECTORY and pointing to your version of MagicDraw (CSM, CEA
that you have the licence for, as it starts like a normal version and will require an active licence)
installation directory.

 2. Extract to a chosen folder.<MagicDraw installation directory>\openapi\ide\intellij.zip

 3. Open the extracted IntelliJ IDEA project from that folder.MagicDraw development.ipr

After projects are imported and the launch configurations are prepared, the IDEA project are ready for
the source code development and running/debugging.

Launching tests

A custom test launching mechanism is used to launch MagicDraw tests, because of an Eclipse OSGi
environment (which is not officially supported by the recent version of IntelliJ IDEA).

The test launcher classes are defined at the end of (without prefix) and the classpath to VM options -D
those classes is additionally defined as CLASSPATH variable in section of the run Environment variables
configuration. These settings should be used for any test configuration for MagicDraw on IntelliJ IDEA by
default (see the picture below and the provided sample configuration).

An IntelliJ IDEA module that is used for classpath in the test configuration should include all contents of
the directory recursively as it's dependencies.<modeling tool installation directory>\lib

The launch configuration is designed to load plugins from the program installation directory
(see step #1) and two plugins from the IDEA project. Thus, if the java system md.plugins.dir
property is not defined (see), developing plugins are not loaded.Plugins directories

The libraries (jar files) of the plugin must be added to the development class path throughout
the plugin dependency hierarchy if the developing code depends on that plugin.
For example, if the code depends on plugin A; plugin A depends on plugins B and C; plugin B
depends on plugin D, the libraries of all plugins (A, B, C, and D) must be added to the class
path.

When you launch your own plugin, you need to add all jar files that are required by your plugin
from appropriate plugins. The MagicDraw jar files can be found in
MAGIC_DRAW_INSTALL_DIRECTORY/lib and its sub directories, whereas plugins' jar files
can be found in MAGIC_DRAW_INSTALL_DIRECTORY/plugins and its sub directories.

Even if the plugin descriptor file contains information about a runtime plugin file, it is not .jar
necessary to build and deploy this file to a plugin directory while a plugin is developed .jar
under IntelliJ IDEA.

https://docs.nomagic.com/display/MD190SP2/Running+programs+in+batch+mode
https://docs.nomagic.com/display/MD190SP2/Plugins+directories

The test launching mechanism is designed to use IntelliJ IDEA classpath file (autmatically
generated) to support long classpaths. It is mandatory to setup Intellij IDEA to create that
classpath file for provided test launchers. That can be done by adding or modifying a property

 to be in IntelliJ IDEA workspace properties file (it dynamic.classpath true <project_name>.iws
usually resides beside project file or (if the directory <project_name>.ipr) .idea/workspace.xml
based project structure is used).

<project_name>.iws or .idea/workspace.xml

...
<component name="PropertiesComponent">
 <property name="recentsLimit" value="5" />
 ...
 <property name="dynamic.classpath" value="true" />

	Development in IntelliJ IDEA

