
Modeling types
On this page

Predefined type libraries
Type usage
User defined types

Distinct type
Domain
Structured user defined type
Array type
Multiset type
Reference types
Row type

Cameo Data Modeler provides the standard type libraries as well as ability to model user defined types (structured user defined types and composites -
multiset, array data types). The types can then be used to specify columns of the tables and / or parameters of procedures and functions. There is also a
special mechanism for using types with modifiers. This mechanism is common in the MagicDraw, however some explanation is necessary on how to use it
in database modeling.

Predefined type libraries

Cameo Data Modeler provides predefined type libraries for database flavors it supports. Besides the standard SQL type library, there are type libraries for
Oracle, DB2, MS SQL, MySQL, PostgreSQL, Sybase, Cloudscape (Derby), Pervasive, MS Access and Pointbase. The standard SQL type library is the
main type library, and type libraries for each flavor import (a subset of) types from it and define additional types, specific for that flavor.

The necessary type library is imported when you create the Database or Schema element in your model and choose a flavor for it (See the Database
flavor selection dialog in).Top level elements

Type usage

https://docs.nomagic.com/display/CDMP190SP3/Top+level+elements

1.
2.

1.

2.

3.

Type specifying. Library type and modifier vs. separately modeled type.

Usage of a simple SQL type, such as , is very simple. If you want to set it as a type of a column or operation parameter, you just need to specify it boolean
in the field. However, there are types (such as or) in SQL, which require additional data. There are two mechanisms to specify type varchar numeric
these kinds of types: either use the library type+ type modifier mechanism or create your own type element.

Let's take the standard type as an example. It must have the maximum length data provided at each usage. Semantically there are many different varchar
types, one for each length limit - , , etc. Now the standard type library cannot provide myriad of different typevarchar(20) varchar(53) varchar(255) varchar
s. Library only provides the type definition.varchar

To specify that column is of varchar(20)

Set the field of the column to type from the library.type varchar
Set the field of the column to “ ” (no quotes). Note that type modifier is a simple string - whatever is entered in this field, will be type modifier (20)
used in script generation verbatim, without additional checks. An example of more complex type modifier would be “ ” type modifier for (10, 2) nume

data type.ric

Alternative way to specify that column is of is to explicitly create a separate type in the model.varchar(20)

To specify that column is of varchar(20) in the alternative way

Create the necessary type (use one of the buttons in the SQL diagram, Primitive Types toolbar) - character string, fixed precision, integer,
approximate, boolean, binary, date or XML types. In our case this would be character string type.
Set the length data in the dedicated tag (look up the tag in the section of the Specification window). Note that this is numeric field - length Tags
you need to input number 20, and not the “(20)” string as was the case with type modifiers.

3.
4.

5.

The name of your type can be whatever you like. For example, . The name is not important.varchar_of_20
Inherit (draw generalization relationship) your type from the appropriate type from the type library. In this case, inherit from varchar_of_20 varcha

form the library. This information will be used for determining the proper type name during script generation (Therefore, in the generated script, r
you will see the proper type reference -).varchar(20)
This created type can now be specified in the field of the column(s).type

There would be one type in the model for each length that you use in your database.varchar

The second way is more tedious - you need to create quite a few types. Therefore, by default, the first way is used. But the second way has several
advantages, that may outweigh it’s deficiencies. First - there is one spot where parameters of the type can be changed. You can easily widen the varchar
(20) fields to varchar(40) by editing just one place in the model. Secondly, you can define some additional parameters of the type - such as character set.

User defined types

Examples of user defined types.

Besides the primitive / built-in types of the database, user can define additional types for his own schema.

Distinct type

Distinct type definition allows to redefine some primitive type in order to enforce the non-assignability rules. For example, two distinct types and Meters Yar
can be defined on the base primitive type . With this definition, system would enforce checks that yard fields / columns are not assigned to meter ds float

fields / columns without a conversion (explicit cast).

Besides the standard SQL element properties, distinct type has the following properties available in the Specification window.

Property name Description

Predefined Representation Points to some base primitive type.

Note
SQL Distinct type is modeled as UML DataType with «DistinctUserDe- finedType» stereotype applied. For the sake of compactness, refer- ences are

displayed with the «distinct» keyword (instead of the long form - «DistinctUserDefinedType») on the diagram.

Domain

Domain allows to define a more narrow set of values than the base primitive type allows. This narrowing is done by assigning additional constraints on the
domain. Columns, whose types are set to the domain, can only assume values from this more narrow subset.

Besides the standard SQL element properties, domain has the following properties available in the Specification window.

Property name Description

Predefined Representation Points to some base primitive type.

Default Value Default value for the column if no value is specified.

Structured user defined type

Structured UDT defines a composite datatype. Each value of this type is a tuple of several values; each position in a tuple has a name. Structured UDT
value is analogous to one row of the table. Structured UDTs allow single inheritance (multiple inheritance is not supported). Inheritance (subtype-supertype
relationship) can be modeled using UML Generalization relationships.

Besides the standard SQL element properties, structured UDT has the following properties available in the Specification window.

Property name Description

Instantiable Defines

Final Default value for the column if no value is specified.

Super Shows base data types. This is a derived field, it is not editable. To make changes, use UML Generalization relationships.

Parts of the structured UDT (properties) are called attributes (compare - parts of the table definition are called columns). Attributes of structured UDT are
created like columns of the table, that is, via the tab in the structured UDT Specification window or using an appropriate smart Attribute Definitions
manipulation button on its shape.

Besides the standard SQL element properties, attribute has the following properties available in the Specification window.

Property
name

Description

Type Collectively these two fields describe the type of the attribute. The same considerations as for column type modeling apply.

Type Modifier

Default Value Carries the default value of the attribute.

Scope Check Marks this attribute as scope checked to a particular table and allows choosing particular referential integrity ensuring action
(RESTRICT CASCADE, etc).

Scope
Checked

Besides attributes, Structured UDTs have a collection of methods - operations, performing actions on values of this type. Methods are covered in a
separate section with stored procedures and functions (see section).Routines

Array type

Array type defines an array (that is, list of values, with the indexed, O(1) access to the n-th element) of the values of elementary type. Besides the standard
SQL element properties, array type has the following properties available in the Specification window.

Property name Description

Element The elementary type of the set elements.

Note
SQL Domain is modeled as UML DataType with «Domain» stereotype applied. For the sake of compactness, domains are displayed with the «domain»

keyword on the diagram.

Note
SQL Structured User Defined Type is modeled as UML DataType with «StructuredUserDefinedType» stereotype applied. For the sake of com-

pactness, domains are displayed with the «structured» keyword (instead of the long form - «StructuredUserDefinedType») on the diagram.

Note
SQL Array type is modeled as UML DataType with «ArrayDataType» stereotype applied. For the sake of compactness, arrays are displayed with the

«array» keyword (instead of the long form - «ArrayDataType») on the diagram.

https://docs.nomagic.com/display/CDMP190SP3/Routines

Max Cardinality The size limit of the array.

Multiset type

Multiset type defines a set of elements of the elementary type. Besides the standard SQL element properties, multiset has the following properties
available in the Specification window.

Property name Description

Element The elementary type of the set elements.

Reference types

Reference type defines a pointer to the data of the referred type. Besides the standard SQL element properties, reference type has the following properties
available in the Specification window.

Property name Description

Referenced Type The type of the data that is being referenced.

Scope Table Limit the references to the data of the particular table.

Row type

Represents one row of the table. The difference from structured UDT is that row type represents a value stored in the table, while structured UDT
represents “free-floating” value during computation. For example, it is meaningful to take address for the row, but not of the structured UDT value.

Parts of the row data type (properties) are called fields (compare - parts of the table definition are called columns). Fields for row data type are created like
columns of the table, that is, via the tab in the row data type Specification window or using an appropriate smart manipulation button on its shape.Fields

Besides the standard SQL element properties, field has the following properties available in the Specification window.

 Property
name

 Description

Type Collectively these two fields describe the type of the field. The same considerations as for column type modeling apply.

Type Modifier

Scope Check Marks this field as scope checked to a particular table and allows choosing particular referential integrity ensuring action (RESTRICT
CASCADE, etc).

Scope
Checked

Note
SQL Multiset type is modeled as UML DataType with «MultisetDataType» stereotype applied. For the sake of compactness, multisets are displayed with

the «multiset» keyword (instead of the long form - «MultisetDataType») on the diagram.

Note
SQL Reference type is modeled as UML DataType with «ReferenceDataType» stereotype applied. For the sake of compactness, references are

displayed with the «ref» keyword (instead of the long form - «ReferenceDataType») on the diagram.

Note
SQL Row Data Type is modeled as UML DataType with «RowDataType» stereotype applied. For the sake of compactness, row data types are

displayed with the «row» keyword (instead of the long form - «RowDataType») on the diagram.

	Modeling types

