
Compiler API: Mapping
Mapping is the process of generating a UML activity model from the abstract syntax representation of
some Alf code. If this mapping is successful, then the Alf compiler updates the context element using the
generated elements. How this update is done depends on what the context element is:

If the context element is an Activity, the nodes and edges of the Activity are replaced with those
generated by the compilation.
If the context element is an Opaque Behavior or Opaque Action, a CompiledRepresentation
stereotype is applied with its tag pointing to the compiled Behavior.behavior
If the context element is an Opaque Expression, its property is set to the compiled behavior
Behavior.

In addition, there may be some generated elements that cannot be stored in conjunction with the context
element. In particular, generated Instance Specifications are stored in the nearest Package containing
the context element, and generated template instantations are stored in the $$Template Bindings
package.

If you have successfully parsed some Alf code text, then you can map that code by calling the map
method. (If the parse was not successful, then calling has no effect.) Normally, unless there is a map
system error, mapping should always complete successfully. Since mapping results in an update to the
UML model, the method should be called within a MagicDraw session. This can be done map
conveniently using the method, which also ensures that any automatic Alf AlfActionUtil.executeSession
compilation is turned off during the session, so new compilations are not accidentally triggered by
updates from the mapping process.

AlfCompiler compiler = new AlfCompiler();
compiler.setContextElement(element);
compiler.parse(text);
if (compiler.isSuccessful()) {
 AlfActionUtil.executeSession("Map Alf", new Runnable() {
 public void run() {
 compiler.map();
 AlfActionUtil.registerDependencies(compiler);
 }
 });
}

Rather than separately and some Alf text, you can attempt to do both with one call to parsing mapping
the method. This method first parses some text for a given context element and, if that is compile
successful, maps it and updates the UML model appropriately with the results of the mapping. If the
parse is not successful, then compilation errors are available using the method, as getCompilerErrors
after a call to the method. As for the method, the method should be called within a parse map compile
MagicDraw session, since it may potentially update the UML model if a mapping is carried out.

Compiler compiler = new AlfCompiler();
AlfActionUtil.executeSession("Compile Alf", new Runnable() {
 public void run() {
 compiler.compile(element, text);
 AlfActionUtil.registerDependencies(compiler);
 }
});

Related Pages

Compiler API: Parsing

https://docs.nomagic.com/display/ALFP190SP3/The+Alf+compiler#TheAlfcompiler-template-bindings-package
#

	Compiler API: Mapping

