
Model manipulation
On this page

MagicDraw project
MagicDraw primary project
Traversing to a MagicDraw model
Creating elements
Reading stereotypes

TWC operates at the EMF level, while MagicDraw operates at the UML level, which is on top of EMF. REST API, which is the TWC API, also operates at
the EMF level.

Therefore, TWC is not affected by UML-specific implementation, and all derived properties may not be saved in the TWC database. The best-known
derived property is . This is the result when there is no such “ in REST API.owner setOwner”

Even though all non-derived properties are saved in the TWC database, they are saved as raw EMF data. The user is required to have knowledge about
UML models to manipulate data. For example, an applied stereotype is saved as a hierarchy of , , and .InstanceSpecification Slot ValueSpecification

This section describes how to traverse into a UML model and create some elements in it.

MagicDraw project

In TWC terminology, a MagicDraw project is referred to as a . Although REST API can be used to create a TWC resource, it is only a bare project resource
MagicDraw cannot read. A MagicDraw project is composed of many MagicDraw-specific meta-data such as project options, primary project, and used
projects configuration. The best way to create a MagicDraw project is to create it by MagicDraw and submit it to the TWC server.

MagicDraw primary project

To traverse through a UML model, the primary project must be identified. The model data starts at the revision level. Issuing GET to /revisions/{revisionId}
shows the first-level object in the revision. UUIDs of the first-level object are listed in .rootObjectIDs

{
 "commitType": "NORMAL",
 "branchID": "../..",
 "resourceID": "../../..",
 "@base": "http://127.0.0.1:8111/osmc/resources/4615e8fa-81e5-40e0-a51b-8496a48caf18/revisions/5/elements",
 "author": "Administrator",
 "@type":
 [
 "RDFSource",
 "kerml:Revision"
],
 "pickedRevision": -1,
 "description": "Branch \"xx\" created",
 "@context": "http://127.0.0.1:8111/osmc/schemas/revision",
 "directParent": 3,
 "dependencies": [],
 "rootObjectIDs":
 [
 "429f969a-5c81-45f4-94af-8cf983f22950",
 "ec6060a3-f3d9-482b-93a3-32af9e19202c",
 "ca9a0235-f0f7-46b7-a142-e79a67c2d00d",
 "f7c3ae92-af44-4dab-8163-a199ca05c006",
 "ba3d0700-1062-4baf-a1df-a55a4f31ce54",
 "0f14cd2d-2fd0-4523-950c-627d59e1a43d",
 "7cd22dea-aaf8-4e08-bd67-5bd975c3f06a",
 "af1042fa-8b1b-4cf2-bb7d-98dd1b881da3",
 "6d24e5e7-cdff-4e9e-85b8-28b3088f85b6",
 "243020e5-da6c-4896-b32a-fcba0e93ac8d",
 "f7449238-5cd1-41eb-9025-040210b02d93",
 "4d2459a1-49dc-4eb7-aa82-9bbb4a76b038",
 "b242613d-957e-4aec-9333-e5938f50b2ab",
 "9b953064-e422-4391-b7d9-43a2d4f14a32",
 "fc997cfd-23c5-4d0b-9953-06667dcde0dd",
 "29d9416b-ead5-4a9d-b530-b23de836f1b8",
 "7af3f24b-2da9-4b31-94b3-a87f15747296"
],
 "createdDate": "1533051367",
 "ID": "",
 "artifacts": "artifacts"
},

Among these entries, the first element with the type specifies the primary project named . Other esiproject:EsiProject main decomposition project esipr
 objects are the models (used projects) in a MagicDraw project. The main decomposition project is element . You need to load oject:EsiProject 429f969a

element and all their children. An element is represented in the JSON-LD format. The attributes of the elements are in . There will 429f969a kerml:esiData
be an element named . The below code fragment shows the attributes of this element.UML Model

"kerml:esiData":
{
 "name": "UML Model",
 "namespace": "com.nomagic.magicdraw.uml_model",
 "project":
 {
 "@id": "429f969a-5c81-45f4-94af-8cf983f22950"
 },
 "internalVersion": "1",
 "version": "17.0",
 "sections":
 [
 {
 "@id": "b3e68e8e-2253-4726-8d05-d8f74fd0ba5a"
 }
]
},

Take the first from the feature's sections list, which is . The excerpt of the data is shown below.esiproject:EsiDataSection b3e68e8e b3e68e8e

{
 "kerml:name": "model",
 "@base": "http://127.0.0.1:8111/osmc/resources/4615e8fa-81e5-40e0-a51b-8496a48caf18/revisions/5
/elements",
 "kerml:nsURI": "http://www.nomagic.com/ns/magicdraw/esiproject/1.0",
 "@type": "esiproject:EsiDataSection",
 "kerml:owner":
 {
 "@id": "429f969a-5c81-45f4-94af-8cf983f22950"
 },
 "kerml:revision": "http://127.0.0.1:8111/osmc/resources/4615e8fa-81e5-40e0-a51b-8496a48caf18/revisions/5",
 "@context":
 {
 "esiproject:EsiDataSection": "http://127.0.0.1:8111/osmc/schema/esiproject/2014345
/EsiDataSection",
 "kerml": "http://127.0.0.1:8111/osmc/schema/kerml/20140325"
 },
 "kerml:ownedElement": [],
 "kerml:modifiedTime": "20180731223607ICT",
 "kerml:esiData":
 {
 "featuredBy":
 {
 "@id": "c9256728-4617-4097-8e9e-dc63e2823bf8"
 },
 "rootElements":
 [
 "ca9a0235-f0f7-46b7-a142-e79a67c2d00d"
],
 "name": "model",
 "project":
 {
 "@id": "429f969a-5c81-45f4-94af-8cf983f22950"
 },
 "properties": []
 },
 "kerml:resource": "http://127.0.0.1:8111/osmc/resources/4615e8fa-81e5-40e0-a51b-8496a48caf18",
 "kerml:esiID": "b3e68e8e-2253-4726-8d05-d8f74fd0ba5a",
 "@id": "#b3e68e8e-2253-4726-8d05-d8f74fd0ba5a"
}

The first ID in the list of the data section will be the ID of the UML model root element in the resource. The root element should always be of rootElements
the type or derived from it.uml:Package

Traversing to a MagicDraw model

Once a root project is retrieved, the whole hierarchy can be retrieved layer by layer. An element can be retrieved from . Child UUIDs /elements/{elementId}
of the resulting element are in .kerml:ownedElement

Multiple elements can be retrieved by POST to . In this case, you need to put UUID in the file to load elements./elements uuid.txt

4eeb2e6d-9cbc-4f59-9d74-69263e52ba54,520bc74d-b5b4-40d5-87cb-9d0b8aba5d2e,7a057ae7-6281-462d-9dcd-de9931633f5c,
a6212656-5ad1-4de6-a47f-db656c2c25fd

The command to load those elements is:

curl -v -H "Content-Type: text/plain" -X POST -s --cookie cookie.txt --insecure -d @uuid.txt --insecure
"https://server:8111/osmc/resources/${projectId}/elements"

In most cases, loading multiple elements at once is substantially faster than loading them one by one.

Creating elements

To use REST API to create elements, you are required to have knowledge about UML models, especially how to set the owner. A combination of parent-
child type yields differences in the owner attribute. For example, if you want to create a class under a class, you need to set the attribute in the UMLClass
child class. For a class under a package, you need to set in the child class. The easiest way to know which attribute is needed is to try owningPackage
creating it in MagicDraw and get it in REST API.

There are two URLs to create element(s), and . Please note that the /resources/{resourceId}/elements /resources/{resourceId}/elements{elementId} element
 in the latter form is not the parent. An Ecore is needed to create an element. It can be specified in the following ways:Id

Specified from the in . This form is used in most cases, except for creating the first elementId /resources/{resourceId}/elements/{elementId}
element in the project. The new element data type will be in the same namespace of this specified element.

{
 "@type": "uml:Class",
 "kerml:nsURI": "http://www.nomagic.com/magicdraw/UML/2.5.1",
 "kerml:esiData":
 {
 "owningPackage":
 {
 "@id": "757be712-f397-404d-a5ff-b97567eb240f"
 },
 "name": "c3"
 }
}

Specified from .kerml:nsURI
Specifying the whole Ecore in . This mode is rarely used.kerml:ecore

{
 "@type": "ikml:Container",
 "kerml:esiData":
 {
 "name": "txdhdhdhd",
 "uri": "http://www.chula.ac.th",
 },
 "kerml:ecore": "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\r\n<ecore:EPackage xmi:version=\"2.0
\" xmlns:xmi=\"http://www.omg.org/XMI\"
 xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\r\n
 xmlns:ecore=\"http://www.eclipse.org/emf/2002/Ecore\"
 name=\"ikml\" nsURI=\"http://www.nomagic.com/ikml/1.0\"
 nsPrefix=\"ikml\">\r\n
 <eClassifiers xsi:type=\"ecore:EClass\" name=\"Element\" abstract=\"true\"><\/eClassifiers>\r\n<\
/ecore:EPackage>\r\n"
}

The following script creates an element:

cat file.txt | curl -v -H "Content-Type: application/ld+json" -X POST -s --cookie cookie.txt --insecure -d @-
https://server:8111/osmc/resources/${projectId}/elements

Multiple elements can be created at once by specifying the query parameter in the URL. The script is shown below:batch=true

cat file.txt | curl -v -H "Content-Type: application/ld+json" -X POST -s --cookie cookie.txt --insecure -d @-
"https://server:8111/osmc/resources/${projectId}/elements/${elementId}?batch=true"

Reading stereotypes

While most non-derived properties are saved in the TWC database, stereotypes and DSL cannot be read from the database directly. Applied stereotypes
are stored as an InstanceSpecification. Each tag value is stored in each slot, which consists of a defining feature and a ValueSpecification. DSL is not
provided in REST API because it is the MagicDraw mechanism. However, DSL is implemented on top of stereotypes. Values can be read from the TWC
database as tag values.

The figure below shows typical stereotype usage in MagicDraw.

Stereotype usage in MagicDraw.

The stereotype is an element. It can be read by issuing GET to v0 /osmc/…/elements/

03cd6cc8-78f4-425f-ab76-5a991f913f27 as usual. Its type is . The code fragment below is an excerpt of the stereotype.uml:Stereotype v1

"kerml:esiID": "03cd6cc8-78f4-425f-ab76-5a991f913f27",
"@id": "#03cd6cc8-78f4-425f-ab76-5a991f913f27"
"kerml:name": "v1",
"@type": "uml:Stereotype",
"kerml:esiData":
{
 "feature":
 [
 {
 "@id": "1c87c736-941a-47de-9ca8-49abd0aa080b"
 },
 {
 "@id": "52463309-9dd1-4d72-abd2-c607b2ecbfc5"
 }
],
}

V1 has two features, and . Among these properties, has a UUID of , while as base_Element is defined 1c87c736 52463309 v1i 1c87c736 52463309
automatically by MagicDraw.

The information about applied stereotypes is stored in the attribute as an InstanceSpecification. There is only one appliedStereotypeInstance
InstanceSpecification object regardless of the number of the applied stereotypes. Stereotypes are listed in the attribute. The below code is an classifier
excerpt content of the InstanceSpecification of the class.tagvalue

"kerml:esiID": "f1b48077-7ef6-44e5-8f8d-de977dff8290",
"kerml:owner":
{
 "@id": "41b57cd4-be1c-4f7d-b2de-2d946f5a7e06"
},
"kerml:esiData":
{
 "_classifierOfInheritedMember": [],
 "_directedRelationshipOfSource": [],
 "_considerIgnoreFragmentOfMessage": [],
 "_elementOfSyncElement": [],
 "_deploymentOfDeployedArtifact": [],
 "classifier":
 [
 {
 "@id": "4b86029b-e194-425c-bc40-beb3b8509a2b"
 },
 {
 "@id": "03cd6cc8-78f4-425f-ab76-5a991f913f27"
 }
],
 "_namespaceOfMember": [],
 "_relationshipOfRelatedElement": [],
 "stereotypedElement":
 {
 "@id": "41b57cd4-be1c-4f7d-b2de-2d946f5a7e06"
 },
 "slot":
 [
 {
 "@id": "9710abbf-924a-4c03-a109-9ee3388f57a4"
 },
 {
 "@id": "8e5c644b-e54d-4bf1-a61c-7abf24a30666"
 },
 {
 "@id": "8fcafea3-d6dd-491f-8232-960cc0d0fe09"
 }
],
}

The class is applied with two stereotypes, namely and , which has UUID of and respectively. There are three slots tagvalue v0 v1 4b86029b 03cd6cc8
representing the three tag values. First, you take one slot to read each tag value, for example, .8fcafea3

"kerml:esiData":
{
 "owningInstance":
 {
 "@id": "f1b48077-7ef6-44e5-8f8d-de977dff8290"
 },
 "definingFeature":
 {
 "@id": "1c87c736-941a-47de-9ca8-49abd0aa080b"
 },
 "value":
 [
 {
 "@id": "87b1cadd-35b6-488c-af87-71995943aae6"
 }
]
}

This slot has of , which is referred to . The owner, , is an . The value of is a definingFeature 1c87c736 v1i f1b48077 InstanceSpecification 87b1cadd Valu
. Because is Integer, this object is .eSpecification v1i uml:LiteralInteger

"kerml:esiData":
{
 "value": "50",
 "owningSlot":
 {
 "@id": "8fcafea3-d6dd-491f-8232-960cc0d0fe09"
 },
}

Related pages

REST APIs
General convention
Authentication
MagicDraw-specific extensions
Developer Guide

https://docs.nomagic.com/display/TWCloud190SP3/REST+APIs
https://docs.nomagic.com/display/TWCloud190SP3/General+convention
https://docs.nomagic.com/display/TWCloud190SP3/Authentication
https://docs.nomagic.com/display/TWCloud190SP3/MagicDraw-specific+extensions
https://docs.nomagic.com/display/TWCloud190SP3/Developer+Guide

	Model manipulation

