
INumberingAction interface
What if we want to customize the numbering of elements even further? Let's say we need to number uml:
Activities depending on their value. By implementing the getStructuredNode() com.nomagic.magicdraw.

 interface, it is possible to create the numbering that follow arbitrary conditions, autoid.INumberingAction
this comes of course at the cost of increased complexity. The implementation must calculate the values
for the numbers all by itself.

There are two parts to be explained that pertain to this interface. The actual interface that provides
access to customized numbering and an immutable support class which encapsulates the values as
defined in the and the associated objects.AutoNumber NumberingScheme

The InterfaceINumberingAction . The interface has one method, which is invoked whenever a new Ele
 is created or when or buttons are clicked in the dialog. ment Create Renumber Element Numbering

This applies of course only if the Element type equals the type for which the has been AutoNumber
customized. So at the time when a new element is created, this method receives a with a java.util.List
single entry. On the other hand, when the user navigates the dialog, the method Element Numbering
receives all elements that are currently listed in the right partition of the dialog. This implies that all
elements have the same owner. Since this will give access to the complete Model Tree, it is possible to
collect necessary information from other parts of the model and incorporate it. This method must return a
mapping of each element together with the value that was generated for it. There is no need to number
every element that the method receives. The Numbering Framework will register the generated values
internally and set the property value for each element.

The support object. com.nomagic.magicdraw.autoid.NumberingInfo This is an immutable Java
Bean object which provides the implementer of the interface with all the information as INumberingAction
defined in the and objects:AutoNumber NumberingScheme

getName() returns the name of the .AutoNumber
isDefaultNumber() returns the value.AutoNumber.defaultNumber

 getScheme() returns the value, which is the AutoNumber.numberingScheme NumberingScheme
used to number this type of element.
getProperty() returns the value, which is the that will AutoNumber.numberedProperty Property
hold the value of the calculated number.
getTarget() returns the value, which is the type of the elements to be AutoNumber.getTarget()
numbered.
isDisplayedProperty() returns true, if the value of the above is displayed in the getProperty()
GUI. An element type can have more than one numbered , but only one can be Property
displayed on symbols or in the Element Tree.
getPrefix() returns the prefix as modified by the user in the dialog, which Element Numbering
can be different from the value (see the following figure).AutoNumber.getPrefix()
getSeparator() returns the separator as modified by the user in the dialog. Element Numbering
In the implemented Numbering Framework, this value will override all the of a type NumberParts
separator (see the following figure).

For more information on how to create Numbering customizations with «AutoNumber»,
«NumberingScheme», and «NumberPart» elements, see .Working with Generic Numbering Mechanism

Constraints

A that references an expression which implements this interface, can have one and NumberingScheme
only one . Namely a that references an .NumberPart NumberPart INumberingAction

Example #1

http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/INumberingAction.html
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/INumberingAction.html
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/INumberingAction.html
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/NumberingInfo.html
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/INumberingAction.html
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/NumberingInfo.html#getName--
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/NumberingInfo.html#isDefaultNumber--
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/NumberingInfo.html#getScheme--
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/NumberingInfo.html#getProperty--
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/NumberingInfo.html#getTarget--
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/NumberingInfo.html#isDisplayedProperty--
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/NumberingInfo.html#getProperty--
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/NumberingInfo.html#getPrefix--
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/NumberingInfo.html#getSeparator--
https://docs.nomagic.com/display/MD190SP4/Working+with+generic+numbering+mechanism
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/INumberingAction.html

We shall now proceed to show a Java class that generates numbers for UML activities depending on
their value. Since this class implements the interface, it should be getStructuredNode() INumberingAction
set as the expression in the only of this .NumberPart NumberingScheme

We have created a few activities inside a sample . With the creation of each new activity, an ID Package
is generated and assigned to it. We then add some into two of the given StructuredActivityNodes
activities. Now, in order to assign to these that includes the number of Numbers Activities StructuredActivi

 children, we have to open the and renumber the Activities. This will tyNodes dialogElement Numbering
generate new numbers that reflect the ownership relation.

Let's have a look at the source code. This is a very simple example, which differentiates between
receiving one or many elements, and calculates the values accordingly. This class can be found in com.

.nomagic.magicdraw.autoid.sample

http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/INumberingAction.html
https://docs.nomagic.com/display/MD190SP4/Element+Numbering+dialog

 public class ActivityNodeNumbering implements INumberingAction {
 @Override
 public Map<Element, String> generateIds(List<Element> elements,
NumberingInfo nInfo) {
 Map<Element, String> idMap = new HashMap<Element, String>();
 if (! elements.isEmpty()) {

 // the NumberingInfo object contains the values set in the
customization
 String baseId = nInfo.getPrefix() + nInfo.getSeparator();

 // when creating an Activity, this will be called with a
single element
 if (elements.size() == 1) {
 Element e = elements.iterator().next();
 Class<?>[] types = new Class<?>[]{Activity.class};
 Collection<? extends Element> acts = ModelHelper.
getElementsOfType(e.getOwner(), types, false, true);
 String id = baseId + (acts.size());
 idMap.put(e, id);

 // when renumbering in the dialog this will be called
with multiple elements
 } else {
 int counter = 1;

 // we sort so that renumber will get the same order
 // normally this would ask for a custom comparator
class
 // but it is left out for brevity's sake
 Collections.sort(elements);
 for (Element e : elements) {
 if (e instanceof Activity) {
 Activity act = (Activity) e;
 String id = baseId + counter;
 counter ++;
 Collection<StructuredActivityNode> nodes = act.
getStructuredNode();

 // we simply attach the suffix '$node_' and
the node count
 if (nodes != null && !nodes.isEmpty()) {
 id += "$node_" + nodes.size();
 }
 idMap.put(e, id);
 }
 }
 }
 }
 // returning the mapping of elements and ids, so that the
framework can register them
 return idMap;
 }
 }

Example #2

A more complicated example can be found the OpenAPI packages and com.nomagic.magicdraw.autoid c
. It shows an implementation that creates numbers for elements om.nomagic.magicdraw.autoid.custo

connected through UML Relationships. The UML diagram shows the com.nomagic.magicdraw.autoid.
 class, which is customized to number element types that are custom.DirectedAssociationNumbering

connected by «DirectedAssociation» links.

The interested Reader should consult the source code, in order to learn how such an algorithm has been
implemented.

http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/custom/DirectedAssociationNumbering.html
http://jdocs.nomagic.com/190_sp4/com/nomagic/magicdraw/autoid/custom/DirectedAssociationNumbering.html

Example of relationship numbering (fragment)

	INumberingAction interface

