
IJavaNumberPart interface
The provided NumberParts for Numeric and Character implement the numbering based on the natural
ordering of integers or the alphabetic ordering of strings. Examples for this would be P1.1, P1.2, P1.3 or
P1.A, P1.B, P1.C, etc. What if we wanted to create numbers of the following kind: P1.1, P1.4, P1.9, P1.
16, etc. with all intermediate numbers omitted?

The interface provides a way to create a slice for a com.nomagic.magicdraw.autoid.IJavaNumberPart
generated number that does not follow these natural sequences.

The parameter that the method com.nomagic.magicdraw.autoid.IJavaNumberPart.generateNextId
receives, namely , is the value that this method is generated as a result in the previous lastNumberPart
call. If the method has not been called before this value equals an empty string.lastNumberPart

The return value of this method will be incorporated by the Numbering Framework to create a complete
number together with all other that are part of the same .NumberParts NumberingScheme

Example

Let's assume the is used as target for UML activities. According to this SquareScheme NumberingScheme
, the first part of a number will be taken from a numbered parent (in this case, the package as sample
shown in the following figure), then a dot is inserted and the final slice is generated by the SquareNumber

 expression.Part

We have created a few activities inside the package named . The owning package is also sample
customized and has a generated number P1. If we number the activities with this , the NumberingScheme

 class, being set as of the type expression, will create the following sequence: SquareNumberPart part3
1, 4, 9, 16, 25... These pieces are then added to the results from the other , resulting in the NumberParts
activities being numbered as shown in the following figure.

The source code for this simple implementation should be self-explaining. It will simply try to transform
the string value of into an integer value called . Subsequently, the following lastNumberPart square

mathematical operation is performed and returned .

This method should adhere to the contract that equal inputs must produce equal outputs. If,
for example, the input is ABC and the method computes a value of XYZ then the return value
for ABC must always be XYZ.

http://jdocs.nomagic.com/2021x_Refresh1/com/nomagic/magicdraw/autoid/IJavaNumberPart.html
http://jdocs.nomagic.com/2021x_Refresh1/com/nomagic/magicdraw/autoid/IJavaNumberPart.html#generateNextId-java.lang.String-

 public class SquareNumberPart implements IJavaNumberPart
 {
 private final int initialValue = 1;
 @Override
 public String generateNextId(String lastNumberPart)
 {
 int nextSquare = initialValue;
 try
 {
 if ("".equals(lastNumberPart))
 {
 lastNumberPart = "0";
 }
 int square = Integer.valueOf(lastNumberPart);
 int number = (int) Math.sqrt(square) + 1;
 nextSquare = (int) Math.pow(number, 2);
 }
 catch (NumberFormatException ex)
 {
 // already set nextSquare as initialValue
 }
 return Integer.toString(nextSquare);
 }
 }

	IJavaNumberPart interface

