
UML to Equivalent OWL in OWL Functional Syntax
There are various syntaxes available for encoding OWL ontologies. The Concept Modeler can export UML to an OWL ontology using the following
syntaxes:

RDF/XML. It is the original standard syntax for writing RDF (Resource Description Framework), which is a general-purpose language for
representing information on the Web. Although it is wordy and difficult to read, it is the only syntax written in various concrete formats called RDF
serialization formats, and it is mandatory to be supported by OWL 2 tools. It provides an XML representation of an RDF graph. This syntax is the
default syntax used in the Concept Modeler.
JSON-LD or JavaScript Object Notation for Linked Data is a method of encoding linked data using JSON, which is a concrete RDF syntax. JSON-
LD is used to map JSON terms (keys and values) to IRIs, giving them a global context. A JSON-LD document is both an RDF document and a
JSON document and correspondingly represents an instance of an RDF data model.
OWL Functional. It is a simple text-based syntax designed to be easier for specification purposes, and to provide a foundation for the
implementation of OWL 2 tools such as APIs and reasoners. It is used in most of the OWL 2 specification documents as the primary presentation
syntax that translates the structural specification into other concrete syntaxes. A functional-style syntax ontology document consists of sequences
of Unicode characters and is encoded in UTF-8.
Turtle. A concrete syntax for RDF, Turtle (Terse RDF Triple Language) is a plain-text RDF representation. It is more concise, and easier to read
and edit manually than RDF/XML. A Turtle document is a collection of RDF-triples, which groups three URIs to make a triple and provides ways to
abbreviate information, e.g., by factoring out common portions of URIs. Each triple has the format: <subject> <predicate> <object>. Each
statement ends with a period, and each element in the triple is an URI, except the <object>, which can be a bit of text or a number.
Manchester. It provides a compact textual-based representation of OWL ontologies that is easy to read and write. It uses IRIs as term identifiers.
The syntax for entering and displaying annotations and descriptions in the Manchester OWL syntax closely corresponds to the syntax in the OWL
Functional syntax. A Manchester OWL document consists of sequences of Unicode characters, and is encoded in UTF-8.

This section gives examples that show the transformation of UML modeled in the Concept Modeler to an exported OWL ontology. The OWL ontologies are
presented in OWL Functional Syntax.

Class

For a simple UML class, the diagram below shows that the ontology is transformed as the package containing the UML class. For the sake of brevity,
subsequent diagrams do not show the package in the diagram.

A class diagram in Concept Modeler.

 Ontology(<http://nomagic.com/ontology/example-case/case-01>
 Declaration(
 Class(:Person)
)
 AnnotationAssertion(rdfs:label :Person "Person"@en)
)

Related pages

Setting the concept model export syntax
Exporting your concept model to an OWL ontology
Usage

Class
Class generalization
Class with Datatype property
Class with object property
Class with Self-Referential Object Property
Class with object property without range
Class with subproperty
Class with universal quantification constraint on property I

Note

A model may contain elements, (e.g. classes, properties, or datatypes) that belong to other models. When exporting the model, the Concept

Modeler will include the OWL declaration of the elements that exist in the current model only, not those of the other models.

However, if the entity that belongs to another model is an object property with an inverse property defined, you will see the OWL declaration of

the inverse property in the current OWL ontology upon export.

https://docs.nomagic.com/display/CCMP2021xR1/Setting+the+concept+model+export+syntax
https://docs.nomagic.com/display/CCMP2021xR1/Exporting+your+concept+model+to+an+OWL+ontology
https://docs.nomagic.com/display/CCMP2021xR1/Usage
https://docs.nomagic.com/display/CCMP2021xR1/Class
https://docs.nomagic.com/display/CCMP2021xR1/Class+generalization
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+Datatype+property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+object+property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+Self-Referential+Object+Property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+object+property+without+range
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+subproperty
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+universal+quantification+constraint+on+property+I

Class with universal quantification constraint on property II
Class with existential quantification constraint on property
Class with subproperty without a range
Class with necessary and sufficient property
Class with property having unspecified multiplicity
Class with inverse property
Class with Asymmetric Object Property
Class with Functional Object Property
Class with Inverse Functional Object Property
Class with Irreflexive Object Property
Class with Reflexive Object Property
Class with symmetric object property
Class with Transitive Object Property
Generalization with disjoint subclasses
Generalization with subclass completeness
Anonymous union class
Association classes
Property holder with datatype property
Property holder with self-referential object property
Property holder with object property
Property holder with self-referential subproperty
Property holder with subproperty
Property with a maximum but no minimum cardinality
Property with multiple domains and ranges
Annotation and annotation property
Asymmetrical inverse property
Disjoint classes
Property chains
Equivalent property
Equivalent class
Property restriction from a different namespace
Necessary and sufficient conditions of anonymous subclasses

https://docs.nomagic.com/display/CCMP2021xR1/Class+with+universal+quantification+constraint+on+property+II
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+existential+quantification+constraint+on+property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+subproperty+without+a+range
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+necessary+and+sufficient+property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+property+having+unspecified+multiplicity
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+inverse+property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+Asymmetric+Object+Property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+Functional+Object+Property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+Inverse+Functional+Object+Property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+Irreflexive+Object+Property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+Reflexive+Object+Property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+symmetric+object+property
https://docs.nomagic.com/display/CCMP2021xR1/Class+with+Transitive+Object+Property
https://docs.nomagic.com/display/CCMP2021xR1/Generalization+with+disjoint+subclasses
https://docs.nomagic.com/display/CCMP2021xR1/Generalization+with+subclass+completeness
https://docs.nomagic.com/display/CCMP2021xR1/Anonymous+union+class
https://docs.nomagic.com/display/CCMP2021xR1/Association+classes
https://docs.nomagic.com/display/CCMP2021xR1/Property+holder+with+datatype+property
https://docs.nomagic.com/display/CCMP2021xR1/Property+holder+with+self-referential+object+property
https://docs.nomagic.com/display/CCMP2021xR1/Property+holder+with+object+property
https://docs.nomagic.com/display/CCMP2021xR1/Property+holder+with+self-referential+subproperty
https://docs.nomagic.com/display/CCMP2021xR1/Property+holder+with+subproperty
https://docs.nomagic.com/display/CCMP2021xR1/Property+with+a+maximum+but+no+minimum+cardinality
https://docs.nomagic.com/display/CCMP2021xR1/Property+with+multiple+domains+and+ranges
https://docs.nomagic.com/display/CCMP2021xR1/Annotation+and+annotation+property
https://docs.nomagic.com/display/CCMP2021xR1/Asymmetrical+inverse+property
https://docs.nomagic.com/display/CCMP2021xR1/Disjoint+classes
https://docs.nomagic.com/display/CCMP2021xR1/Property+chains
https://docs.nomagic.com/display/CCMP2021xR1/Equivalent+property
https://docs.nomagic.com/display/CCMP2021xR1/Equivalent+class
https://docs.nomagic.com/display/CCMP2021xR1/Property+restriction+from+a+different+namespace
https://docs.nomagic.com/display/CCMP2021xR1/Necessary+and+sufficient+conditions+of+anonymous+subclasses

	UML to Equivalent OWL in OWL Functional Syntax

