
1.

2.

Implementing command line launchers
Implementation of command line launchers depends on the type of the batch mode program (Core related or Plugin related).

Both modes provide two ways of implementation:

CommandLine and (for Core and Plugin respectively) are general launchers meant for developers that will not be opening CommandLineAction
projects or needs full control of argument parsing and opening of projects.
ProjectCommandLine and (for Core and Plugin respectively) are convenience launchers simplifying work with ProjectCommandLineAction
projects as they provide list of arguments that will be parsed and used to open one or more projects removing great deal of boilerplate code
needed.

To create command line launcher:

Core related batch program:
For general command line extend .com.nomagic.magicdraw.commandline.CommandLine

Override to parse your argumentscom.nomagic.magicdraw.commandline.CommandLine#parseArgs
Override to execute your actioncom.nomagic.magicdraw.commandline.CommandLine#execute

For project command line action extend com.nomagic.magicdraw.commandline.ProjectCommandLine
Override to parse custom com.nomagic.magicdraw.commandline.ProjectCommandLine#parseArguments
arguments you might be using
Override com.nomagic.magicdraw.commandline.ProjectCommandLine#execute(java.util.Properties, com.

 to execute your action. This method will be called for every project opened using nomagic.magicdraw.core.Project)
available project command line arguments.

Plugin related batch program:
For general command line implement com.nomagic.magicdraw.commandline.CommandLineAction

Override to parse your arguments and do your com.nomagic.magicdraw.commandline.CommandLineAction#execute
action

For project command line action extend com.nomagic.magicdraw.commandline.ProjectCommandLineAction

Override com.nomagic.magicdraw.commandline.ProjectCommandLineAction#execute(java.lang.String[],
 to execute your action. This method will be called java.util.Properties, com.nomagic.magicdraw.core.Project)

for every project opened using available project command line arguments. Full array of originally passed arguments and parsed
project command line arguments specific for project (default arguments that were parsed from command line or project specific
properties file) are also passed along with opened project.

Available parameters for project command line launcher:

project - Project name or path
projectDescriptor - Project descriptor
server - Server url
username - Username on server
password - Password for provided username

By default provided password should be encrypted.
To generate encrypted password run any command line launcher with single argument generateServerPassword=yourPas

 or without password for interactive prompt.sword generateServerPassword
In order to use password in plain text form argument needs to be provided and set to .encryptPassword true

enableSSL - To use ssl
encryptPassword - Set true if provided password is in plain text
properties - Path to properties file containing properties. Multiple properties files can be provided "properties=prop1.properties;prop2.
properties"
projectPassword - Project password
version - Project version
branch - Project branch

All parameters for project command line launchers, both in command line and properties files, should be provided in format "property1=value1
".property2=value2

To open multiple projects properties for each project (in case of local project path or name is enough) must be defined in separate properties files that are
passed as " " argument e.g. " ".properties properties=prop1.properties;prop2.properties

	Implementing command line launchers

