Hardening Teamwork Cloud

On this page: Scripts

The following are the script files used in this hardening guide:
® Introduction
® Cassandra harden_cassandra_ports.sh
© Port Access
© Replication Strategy twc.java.security
© Cassandra Authentication
© Cassandra Encrypted Connections upgrade_tomcat_webapp.sh
© Data Encryption at Rest
® Teamwork Cloud upgrade_jdk_webapp.sh
© Protocols and Ciphers
o JMX
® Apache Tomcat
© server.xml
web.xml
Tomcat Installation
Upgrading Tomcat
Upgrading Webapp bundled JDK

O O O O

Introduction

The default shipping configuration of Teamwork Cloud is not a hardened configuration.

When hardening an installation, there are variables that can render the installation inoperative, such as incompatibility of the supported ciphers in a
certificate and the supported ciphers in the hardened configuration.

Furthermore, the default configurations assume that the deployment is behind a secure infrastructure, and therefore required ports are globally allowed.

Since some of Teamwork Cloud's infrastructure relies on available components, newly discovered vulnerabilities need to be mitigated during the life-cycle
of the installation.

Below, we will cover the potentially exploitable vulnerabilities of the different components, as well as various steps to mitigate depending on the policies of
the deploying organization.

Cassandra

Port Access

When installing on Linux using our deployment scripts, all of the ports required by Cassandra for inter-node communication, as well as for the Teamwork
Cloud nodes to communicate with Cassandra nodes are opened globally. This configuration is deployed mostly to facilitate testing of the environment upon
installation, prior to taking any measures to harden the installation. If we check the firewall upon installation, we will see an output similar to the one below:

firewall-cnd --list-all
public (active)
target: default
i cp- bl ock-i nversion: no
interfaces: ethO
sour ces:
services: cassandra | nmadm n ssh twcl oud
ports:
protocol s:
masquer ade: no
f orward-ports:
source-ports:
i cnp- bl ocks:
rich rules:

In our deployment, we create a firewall service definition to facilitate the management of the rules. This file is located in /etc/firewalld/services/cassandra.
xml, and contains the following:

https://docs.nomagic.com/download/attachments/60585376/harden_cassandra_ports.sh?version=1&modificationDate=1592378194483&api=v2
https://docs.nomagic.com/download/attachments/60585376/twc.java.security?version=1&modificationDate=1592378194376&api=v2
https://docs.nomagic.com/download/attachments/60585376/upgrade_tomcat_webapp.sh?version=2&modificationDate=1664270192408&api=v2
https://docs.nomagic.com/download/attachments/60585376/upgrade_jdk_webapp.sh?version=1&modificationDate=1592378194138&api=v2

cat /etc/firewalld/services/cassandra. xmn
<?xm version="1.0" encodi ng="utf-8"?>
<service version="1,0">
<short >cassandr a</ short >
<descri pti on>cassandr a</ descri pti on>
<port port="7000" protocol ="tcp"/>
<port port="7001" protocol ="tcp"/>
<port port="9042" protocol ="tcp"/>
<port port="9160" protocol ="tcp"/>
<port port="9142" protocol ="tcp"/>
</ service>

The first step in securing Cassandra is to limit traffic only to Cassandra and Teamwork Cloud Nodes. In the example below, we have a single node
Cassandra/Teamwork Cloud installation, with its IP address set to 10.254.254.56

As can be seen below, the firewall configuration has been modified to only allow access from itself.

firewall-cnd --list-all
public (active)

target: default

i cnp- bl ock-i nversion: no

interfaces: ethO

sour ces:

services: | madm n ssh twel oud

ports:

protocol s:

masquer ade: no

f orward- ports:

source-ports:

i cnp- bl ocks:

rich rules:

rule fam |l y="ipv4" source address="10.254.254. 56" servi ce nane="cassandra" accept

The process to follow is to remove the general firewall allowance to the Cassandra service. After that, we want to ensure that if direct port rule
assignments were made, they are removed. Finally, we want to create a set of rich rules which will allow access only to the required nodes.

If your deployment consists of a single-node or multi-node cluster where both Teamwork Cloud and Cassandra reside on the same nodes, we can
automate this process by using the following script.

harden_cassandra_ports.sh

#1 / bi n/ bash
echo "Hardeni ng Cassandra Ports"
echo "Creating Cassandra firewall service profile”
cat <<ECOF | tee /etc/firewalld/services/cassandra.xm &> /dev/nul
<?xm version="1.0" encodi ng="utf-8"?>
<service version="1,0">
<short >cassandra</ short >
<descri pti on>cassandr a</ descri pti on>
<port port="7000" protocol ="tcp"/>
<port port="7001" protocol ="tcp"/>
<port port="9042" protocol ="tcp"/>
<port port="9160" protocol ="tcp"/>
<port port="9142" protocol ="tcp"/>
</ service>

ECF
echo "Renpving existing firewall rules on the cassandra ports or service profile"
sleep 5

zone=$(firewal | -cnd --get-default) & /dev/null

firewal | -cnmd --zone=$zone --renove-port=7000/tcp --permanent &> /dev/null

firewal |l -cnd --zone=$zone --renove-port=7001/tcp --permanent &> /dev/null

firewal | -cnd --zone=$zone --renove-port=7199/tcp --permanent &> /dev/null

firewal | -cnmd --zone=$zone --renove-port=9042/tcp --permanent &> /dev/null

firewal |l -cnd --zone=$zone --renove-port=9160/tcp --permanent &> /dev/null

firewal | -cnd --zone=$zone --renopve-port=9142/tcp --permanent &> /dev/null

firewal |l -cnd --zone=$zone --renpve-servi ce=cassandra --permanent &> /dev/null
echo "Creating ruch rules for Cassandra nodes discovered via nodetool gossipinfo"

set -f
local _l'i st=($(nodetool gossipinfo | grep '/' | cut -f 2 -d/))
set +f

for i in "${local_list[@}" ; do
cnd=" firewall-cnd --zone=$zone --add-rich-rule="rule fam|ly=\"ipv4\" source address=\"$i\" service

nanme=\"cassandra\" accept' --permanent &> /dev/null"
echo $cnd
eval $cnd

done

firewall-cnd --reload &> /dev/null

The above script is structured in such a way that it will output the rich rule commands to the screen to facilitate copying and modifying to add nodes, which
is needed if you have Teamwork Cloud nodes that are not part of the Cassandra cluster.

@ above script should be executed on all nodes of a multi-node Cassandra cluster, with all nodes being in an operational state.

@dows Users: Create firewall rules restricting access on the aforementioned ports only to authorized nodes - Cassandra nodes and Teamwork Cloud

NOUES?

Replication Strategy

Teamwork Cloud presently does not support Multi-DC replication strategies. As such, the environment must be configured with SimpleStrategy.

Cassandra Authentication

By default, Cassandra is deployed with the AllowAllAuthenticator. This authenticator, as the name implies, is an anonymous authenticator which performs
no checks.

If you require authenticated connections, you will need to make changes to your cassandra.yaml and change the authenticator to PasswordAuthenticator.
If you are running a multi-node Cassandra cluster, you need to change the replication factor of the system_auth keyspace.

Detailed instructions can be found at https://docs.datastax.com/en/ddacsecurity/doc/ddacsecurity/secureConfigNativeAuth.html.
After making the changes to Cassandra, you will need to update the Teamwork Cloud configurations to utilize authentication.

The required changes are as follows:

https://docs.datastax.com/en/ddacsecurity/doc/ddacsecurity/secureConfigNativeAuth.html

application.conf

Enable this section to enable the cassandra authentication.
aut henti cati on-enabl ed = true

user name = newcassandr auser

password = newcassandr apassword

authserver.properties

cassandr a. user name=newcassandr auser
cassandr a. passwor d=newcassandr apasswor d

where newcassandrauser and newcassandrapassword correspond to the user and credentials which you configured in Cassandra.

Cassandra Encrypted Connections

Teamwork Cloud presently does not support encrypted communications to Cassandra.

Data Encryption at Rest

Open source Cassandra does not support encryption at rest. If you require encryption at rest, you need to use a disk encryption layer.

Teamwork Cloud

Protocols and Ciphers
Teamwork Cloud consists of 3 Java-based services - Teamwork Cloud (TWCloud), Authserver (authserver) and WebApp (webapp).

TWCloud and Authserver require Java 8 (its location varies depending on how it was deployed), whereas WebApp uses a bundled Java 12, located in <inst
all_root>/WebAppPlatform/jre/.

Therefore, in order to harden these services, we must begin by hardening the JVM. The default settings for the JVM are located in java.security.

We can check the ciphers/protocols being used by the applications using nmap (version 7.x) or TestSSLServer.jar, available from https://community.rsa.
com/docs/DOC-45511

As an example, below is a scan using both tools against a default installation. In this example, we will be testing port 8111, the TWCloud port.

nmap --script ssl-enumciphers -p 8111 127.0.0.1

Starting Nmap 7.80 (https://nmap.org) at 2020-04-21 17:32 MDT
Nmap scan report for |ocal host (127.0.0.1)

Host is up (0.00014s | atency).

PORT STATE SERVI CE

8111/tcp open unknown

| ssl-enumciphers:

| TLSv1. O:

| ci phers:

| TLS_DHE_RSA W TH_AES_128_CBC_SHA (dh 1024) - A

| TLS_ECDHE _RSA W TH_AES 128 CBC_SHA (secp256rl1) - A
| TLS_RSA W TH_AES_128_CBC _SHA (rsa 2048) - A

| conpressors:

| NULL

| ci pher preference: client

| war ni ngs:

| Key exchange (dh 1024) of lower strength than certificate key
| TLSvi.1:

| ci phers:

| TLS_DHE_RSA W TH_AES_128_CBC_SHA (dh 1024) - A

| TLS _ECDHE_RSA W TH_AES 128 CBC SHA (secp256ri1) - A
| TLS_RSA W TH_AES_128_CBC_SHA (rsa 2048) - A

| conpressors:

| NULL

| ci pher preference: client

| war ni ngs:

https://community.rsa.com/docs/DOC-45511
https://community.rsa.com/docs/DOC-45511

| Key exchange (dh 1024) of |ower strength than certificate key
| TLSv1. 2:

| ci phers:

| TLS DHE_RSA W TH_AES_128_CBC_SHA (dh 1024) - A

| TLS DHE_RSA W TH_AES_128_CBC _SHA256 (dh 1024) - A

| TLS DHE RSA W TH _AES 128 GCM SHA256 (dh 1024) - A

| TLS ECDHE_RSA W TH_AES 128_CBC SHA (secp256rl) - A

| TLS_ECDHE _RSA W TH_AES 128_CBC_SHA256 (secp256rl) - A

| TLS_ECDHE_RSA W TH_AES 128_GCM SHA256 (secp256rl) - A

| TLS RSA W TH _AES 128_CBC_SHA (rsa 2048) - A

| TLS_RSA W TH_AES_128_CBC_SHA256 (rsa 2048) - A

| TLS RSA W TH_AES_128_GCM SHA256 (rsa 2048) - A

| conpressors:

| NULL

| ci pher preference: client

| war ni ngs:

| Key exchange (dh 1024) of |ower strength than certificate key
| _ least strength: A

Nmap done: 1 |IP address (1 host up) scanned in 0.76 seconds

java -jar TestSSLServer.jar 127.0.0.1 8111
Supported versions: TLSv1.0 TLSv1.1 TLSvl.2
Defl at e conpression: no
Supported ci pher suites (ORDER IS NOT S| GNI FI CANT) :
TLSv1.0
RSA W TH_AES 128_CBC_SHA
DHE_RSA W TH_AES 128 CBC_SHA
TLS_ECDHE_RSA W TH_AES_128_CBC_SHA
(TLSv1.1: idem
TLSv1. 2
RSA_W TH_AES_128_CBC_SHA
DHE_RSA W TH_AES_128 CBC_SHA
RSA W TH_AES 128 _CBC_SHA256
DHE_RSA_W TH_AES_128_CBC_SHA256
TLS_RSA W TH_AES_128_GCM SHA256
TLS_DHE_RSA W TH_AES_128_GCM SHA256
TLS_ECDHE_RSA W TH_AES 128 CBC_SHA
TLS_ECDHE_RSA W TH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_ W TH_AES_128_GCM SHA256
Server certificate(s):
a241elc3b957bd14e6e0242f d012f 75853eef 243: CN=X. X. X. X
M ni mal encryption strength: strong encryption (96-bit or nore)
Achi evabl e encryption strength: strong encryption (96-bit or nore)
BEAST status: vul nerable
CRI ME status: protected

As can be observed above, the default configuration using OpenJDK 1.8.0_242 is allowing TLS v1.0 and v1.1, which are deprecated. Additionally, we can
see that several key exchanges are taking place using dh1024.

We then proceed to harden the configuration.

@ce we are dealing with ciphers, you need to make sure that you do not disable a cipher required by your certificates.

After hardening the VM, we end up with a different set of allowed ciphers and protocols, as shown below.

nmap --script ssl-enumciphers -p 8111 127.0.0.1

Starting Nmap 7.70 (https://nmap.org) at 2020-04-21 17: 44 NDT
Nmap scan report for |ocal host (127.0.0.1)

Host is up (0.00015s | atency).

PORT STATE SERVI CE

8111/tcp open unknown

| ssl-enumciphers:

| TLSv1. 2:

| ci phers:

| TLS_ECDHE _RSA W TH_AES 128_CBC_SHA256 (secp256rl) - A
| TLS_ECDHE RSA W TH AES 128 GCM SHA256 (secp256rl) - A
| TLS_RSA W TH_AES_128_CBC_SHA256 (rsa 2048) - A

| TLS_RSA W TH_AES_128_GCM SHA256 (rsa 2048) - A
| conpressors:
| NULL
| ci pher preference: client
| _ least strength: A

Nmap done: 1 I P address (1 host up) scanned in 0.95 seconds

java -jar TestSSLServer.jar 127.0.0.1 8111
Supported versions: TLSvl.2
Defl at e conpression: no
Supported cipher suites (ORDER IS NOT SIGN FI CANT):
TLSv1. 2
RSA_W TH_AES_128_CBC_SHA256
TLS_RSA W TH_AES 128 GCM SHA256
Server certificate(s):
71ed3969e41a94877c51laach87d995af 4a12b6d9: CN=X. X. X. X
M ni mal encryption strength: strong encryption (96-bit or nore)
Achi evabl e encryption strength: strong encryption (96-bit or nore)
BEAST status: protected
CRI ME status: protected

The process of hardening the JVM requires making some changes to the java.security file. While these can be made directly, the downside is that if you
upgrade your JVM, you will have to reapply your changes.

However, we can place our modifications in our own file, and simply pass a parameter to the JVM upon invocation so that it will apply our changes.

For example, we can create a file /home/twcloud/twc.java.security, and pass a parameter to the JVM in the form of -Djava.security.properties=/home
/twcloud/twc.java.security

Our hardened security settings are as shown below:

twc.java.secuirty

jdk.tls.disabl edAl gorithnms=SSLv3, TLSvl, TLSv1l.1, RC4, DES, MD5wi thRSA, DH keySize < 2048, \
EC keySi ze < 224, 3DES_EDE CBC, anon, RSA keySize < 2048, SHA1l, DHE, NULL

jdk.tls. epheneral DHKeySi ze=2048

jdk.tls.rejectdientlnitiatedRenegotiation=true

To apply these settings we need to make changes in 3 locations.

For the Teamwork Cloud service, under Linux, you need to edit <install_root>/twcloud.ini and add a line as shown below:

-Dorg. j boss. netty. epol | BugWr kar ound=t r ue
-Di 0. netty. epol | BugWr kar ound=t r ue
-Dj ava. security. properti es=/hone/twcl oud/ twc. j ava. security

On Windows, you need to edit the registry key Compute\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Apache Software Foundation\Procrun
2.0\TeamworkCloud\Parameters\Java\Options and append the setting pointing to your security overrides to the bottom of the settings.

For the Authserver service, you need to edit <install_root>/AuthServer/authserver-run by inserting the directive before the call to the authentication-
server-XXXXXX.jar as shown below:

$IAVA -jar \

- Duser . hone. di r =$TWCLOUD_OMNR_HOME \

-Dfile.encoding=utf-8\

- Daut henti cation-config=./config \

-Dspring. config.location=./config/authserver.properties \
-Dj ava. security. properti es=/hone/twcl oud/twc. java. security \
aut henti cati on-server- XXXXXX. jar "$@

On Windows, you need to edit the registry key ComputenHKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Apache Software Foundation\Procrun
2.0\AuthServer\Parameters\Java\Options and append the setting pointing to your security overrides to the bottom of the settings.

For the Webapp service, under Linux you need to edit <install_root>/WebAppPlatform/bin/setenv.sh and add the directive to the JVM_OPTS variable as
shown below:

JVM OPTS="-server -XX: +UseParallel GC -Xms4096M - Xnx8192M - Dj ava. security. properti es=/hone/twcl oud/twc. j ava.
security"

On Windows, you need to edit the registry key ComputeHKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Apache Software Foundation\Procrun
2.0\WebApp\Parameters\Java\Options and append the setting pointing to your security overrides to the bottom of the settings.

JMX

By default, the TWCloud service activates a JMX remote port to facilitate application monitoring. The default configuration does not contain any form of
authentication.

On Linux, the configuration is located in <install_root>/twcloud.ini.

On Windows, it is located in registry key ComputenHKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Apache Software Foundation\Procrun 2.0
\TeamworkCloud\Parameters\Java\Options.

- Dcom sun. managemnent . j nxr enot e

- Dcom sun. managenent . j nxr enot e. por t =2468

-Dcom sun. nanagenent . j nkrenote. rm . port=2468
-Dcom sun. managenent . j nxrenot e. | ocal . onl y=f al se
-Dcom sun. managenent . j mxr enot e. aut henti cat e=f al se
- Dcom sun. managenent . j nxr enot e. ssl =f al se

These settings can be removed, thereby removing JMX remote access.

If you would like to allow remote JMX access but require authentication, you can do so by adding settings. For complete documentation, please refer to the
Java documentation.

As an example, the below configuration adds password authentication:

- Dcom sun. managemnent . j nxr enot e

- Dcom sun. managenent . j nxr enot e. por t =2468

-Dcom sun. nanagenent . j nkrenote. rm . port=2468

-Dcom sun. managenent . j nkrenot e. | ocal . onl y=f al se

-Dcom sun. managenent . j mxr enot e. aut henti cate=true

- Dcom sun. managenent . j nxr enot e. passwor d. fi | e=/ honme/ t wel oud/ j nx. passwor d
- Dcom sun. managenent . j nxr enot e. access. fi | e=/ home/ t wel oud/ j mx. access

- Dcom sun. nanagenent . j nxr enot e. ssl =f al se

As can be seen, we are pointing to a set of files (/home/twcloud/jmx.password and /home/twcloud/jmx.access) that control who can access these files.

The vulnerability vector is one whereby JMX could be exploited to execute code. To prevent this, we allow only an authenticated user (jmx.password) who
has read-only rights (jmx.access).

jmx.password

nonitoring DqzbksT4ET

jmx.access

noni toring readonly

In this example, we created a user (monitoring) with a password (DgzbksT4ET), who can only read values via Remote JMX, but cannot write or execute
anything via JMX.

@ password and access files have a very stringent ownership requirement. They need to be owned by the user running the process and be accessible

(:‘)(LIUbin'Iy O UTat USEeT.

Aﬁﬁmﬁpwm%a\ult installation, the TWCloud user is running the TWCloud service. Therefore, the files need to be owned by TWCloud, and have

Th@w&;ﬁﬁér%@rﬁ\(\ﬁgﬁéﬁpﬁ% %MIEW@'SV%W installer, runs on a bundled Apache Tomcat. As such, best practices for hardening Apache Tomcat
should be followed.

H *
Altﬁcl)ughx\'/ve have already constrained ciphers and protocols at the JVM level, it is best practice to do so at the Tomcat configuration level. We also need
to address.issugsisuchas|saeure cookies) disable X&S ensforeign sites, and also remove default directories published as part of the default installation.

The official Tomcat documentation covers a large portion of this (recommended reading) - https://tomcat.apache.org/tomcat-9.0-doc/security-howto.html.
Additisnally, therelare &'pisthoratof doedmeénms gnlineccevering all aspects of securing Tomcat to OWASP standards.

server.xml
There are various changes that can be made to <install_root>/WebAppPlatform/conf/server.xml in order to harden the system.
The first step (do not do this if running on Windows) is to disable the shutdown port.

For this, you need to change:

<Server port="8005" shutdown="SHUTDOMN' >

to

<Server port="-1" shut down="SHUTDOM" >

The next step is to disable the AJP connector unless you specifically intend to use it.

For this, you need to change:

<!-- Define an AJP 1.3 Connector on port 8009 -->
<Connect or port="8009" protocol ="AJP/1.3" redirectPort="8443" />

to

<!-- Define an AJP 1.3 Connector on port 8009 -->
<l--

<Connect or port="8009" protocol ="AJP/1.3" redirectPort="8443" />
-

The next step is to disable the redirection on port 8080.

For this, you need to change:

https://tomcat.apache.org/tomcat-9.0-doc/security-howto.html

<Connect or executor="tontat Thr eadPool "
port ="8080" protocol ="HTTP/ 1. 1"
connecti onTi meout =" 20000"
redirect Port="8443" />

to

<l--
<Connect or execut or ="t ontat Thr eadPool "
port="8080" protocol ="HTTP/ 1. 1"
connecti onTi meout =" 20000"
Server=" "
redi rect Port="8443" />

Next, we will explicitly allow protocols and ciphers.

For this, you need to change:

<Connect or port="8443" protocol ="org. apache. coyote. httpll. Htpl1lN oProtocol"
ssl | npl enent at i onNanme="or g. apache. tontat. util.net.jsse. JSSEl npl enentati on"
maxThr eads="150" SSLEnabl ed="true">
<SSLHost Confi g>
<Certificate certificateKeystoreFile="../configuration/keystore.pl2"
certificateKeystorePassword="nonagi c"
type="RSA" />
</ SSLHost Confi g>
</ Connect or >

to

<Connect or port="8443" protocol ="org. apache. coyote. httpll. Htpl1N oProtocol"
ssl | npl enent ati onNane="or g. apache. tontat. util.net.jsse. JSSEl npl enent ati on"
Server=" "
maxThr eads="150" SSLEnabl ed="true">
<SSLHost Confi g ssl Protocol ="TLS"
prot ocol s="TLSv1. 2"
honor G pher Order ="t r ue"
certificateVerification="none"
ci phers="TLS_ECDHE _RSA W TH_AES_256_GCM SHA384,
TLS_ECDHE_ECDSA W TH_AES_256_GCM SHA384,
TLS_ECDH_RSA W TH_AES_256_GCM SHA384,
TLS ECDH ECDSA W TH_AES 256_GCM SHA384,
TLS_ECDHE_RSA W TH_AES_128_GCM SHA256,
TLS_ECDHE_ECDSA W TH_AES_128_GCM SHA256,
TLS_ECDH RSA W TH_AES 128 GCM SHA256,
TLS_ECDH_ECDSA W TH_AES_128_GCM SHA256,
TLS_ECDHE_RSA_W TH_AES_256_CBC_SHA384,
TLS_ECDHE_ECDSA W TH_AES 256_CBC SHA384,
TLS_ECDH_RSA W TH_AES_256_CBC_SHA384,
TLS_ECDH_ECDSA W TH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA W TH_AES_128_CBC_SHA256,
TLS_ECDHE_ECDSA W TH_AES_128_CBC_SHA256,
TLS_ECDH RSA W TH_AES 128 CBC_SHA256,
TLS_ECDH_ECDSA W TH_AES 128_CBC_SHA256" >
<Certificate certificateKeystoreFile="../configuration/keystore.pl2"
certificateKeystorePassword="nonagic"
type="RSA" />
</ SSLHost Confi g>
</ Connect or >

It the code presented above, we are showing the default configuration with the self-signed certificates. Your production configuration may be using a

different certificate, so this section will differ.

Finally, we want to prevent our instance from advertising what server is being used in the event that an error is encountered.

For this, you need to go to the very bottom of the file and add the following, right above the closing </Host> tag.

<!-- Suppress server name on internal error pages -->
<Val ve cl assNanme="or g. apache. cat al i na. val ves. Error Report Val ve" showReport="fal se" showServer | nfo="
false" />
</ Host >

web.xml

Having completed the configuration of server.xml, we will now proceed to configure <install_root>/WebAppPlatform/conf/web.xml.

First, we need to enforce HSTS and prevent click-jacking.

<filter>
<filter-name>httpHeader Security</filter-nane>
<filter-class>org. apache.catalina.filters. HtpHeaderSecurityFilter</filter-class>
<async- support ed>t rue</ async- support ed>
<i ni t - paranp
<par am name>hst sEnabl ed</ par am name>
<par am val ue>t r ue</ par am val ue>
</init-paran>
<init-paran»
<par am nane>hst sMaxAgeSeconds</ par am nanme>
<par am val ue>31536000</ par am val ue>
</init-paranp
<i ni t - paranp
<par am nanme>ant i C i ckJacki ngEnabl ed</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paran>
<init-paran>
<par am nane>anti O i ckJacki ngOpt i on</ par am nane>
<par am val ue>SAMECRI A N</ par am val ue>
</init-paranp
</filter>

<filter-mppi ng>
<filter-name>httpHeader Security</filter-nane>
<url-pattern>/*</url-pattern>
<di spat cher >REQUEST</ di spat cher >
</filter-mappi ng>

Next, we need to ensure that cookies are constrained to HTTPS.

<l-- Def aul t Session Configuration -->
<I-- You can set the default session timeout (in mnutes) for all newy -->
<l-- created sessions by nodifying the val ue bel ow. -->

<sessi on-config>
<sessi on-ti meout >30</ sessi on-ti neout >
<cooki e-confi g>
<htt p-onl y>true</ http-onl y>
<secur e>t rue</ secur e>
</ cooki e-confi g>
</ sessi on-config>

Tomcat Installation

Having made the necessary changes to the configuration files, we will now proceed to remove all of the default applications in the tomcat distribution,
which could expose our installation to external vulnerabilities.

If we look at a directory of <install_root>/WebAppPlatform/webapps, we will see the following:

drwxrwxr-x. 14 twcloud twel oud 4096 Apr 15 14:39 docs

drwxrwxr-x. 6 twcloud twcl oud 83 Apr 15 14: 39 exanpl es
drwxrwxr-x. 5 tweloud twcl oud 87 Apr 15 14: 39 host - manager
drwxrwxr-x. 5 tweloud twel oud 103 Apr 15 14:39 manager
drwxrwxr-x. 3 tweloud twecl oud 283 Apr 15 14:39 ROOT
drwxr-x---. 8 twcloud twcl oud 117 Apr 15 14: 47 webapp
-rwxrwxr-x. 1 tweloud twel oud 67742880 COct 31 17: 56 webapp. war

As you can see, in addition to webapp.war and the webapp directory, there are additional directories, containing applications, which could potentially be
exploited.

You want to remove docs, examples, host-manager, manager, and ROOT.

@en you remove the ROOT application directory, accessing https://ip_address:8443 will no longer display the Apache Tomcat default landing page.

Upgrading Tomcat

Our installers deploy with a given version of Apache Tomcat. As vulnerabilities are exposed in Tomcat, you may be required by your organization to
upgrade to a specific version.

The "code" of tomcat is the compilation of the jar files residing in <instal_dir>/WebAppPlatform/bin and <instal_dir>/WebAppPlatform/lib.

In order to "slip-stream™ an upgrade without having to fully replace the Tomcat installation, you can replace the existing *.jar files in these directories with
the ones from the new one.

Before doing this, you will want to make copies of these directories so you can easily revert back in case of an incompatibility with the new version.

Under Linux, assuming that you have access to the internet from the server, you can use the script below to automatically upgrade your instance to the
target version.

https://ip_address:8443

upgrade_tomcat_webapp.sh

#1 / bi n/ bash

HHER R R R R R R R
Upgrade Tontat Version used by WebApp Platform

CATI A No Magi c DevOps Team

#HBHHH R R

This script utilizes rsync, so we will install it via yum
1f you are offline you need to put required installer file in the same location with this script

Edit default version if you can't input it during upgrade
DEFAULT_VERSI ON=9. 0. 63

HUBHHHHHHH R R R BHRHHAHHH BB R BRRHHH SRR R
#

DO NOT MODI FY ANYTHI NG BEYOND THI' S PO NT
#

echo
I R R R R "

echo "This script utilizes rsync, so we will install it via yum"

echo "Please ensure rsync is on the systemif thes are no posibility to use yum package manager"”

echo ""

(=1 41 I e "

read -e -p "Please enter the tontat version you would like to use. [default is: $DEFAULT_VERSION] : "
TOMCAT_VERSI ON

(=11 41 I e e LR T "

echo ""

TOMCAT_VERSI ON=" ${ TOMCAT_VERSI ON: - $DEFAULT_VERSI ON} "

echo "Tonctat will be upgraded to: "$TOMCAT_VERSION "version."

WEBAPP_ROOT=$(cat /etc/systend/ system webapp. service | grep CATALI NA HOVE_WEBAPP | cut -f 3 -d '=")
WEBAPP_OMNER=$(stat -c "%J %' $WEBAPP_ROOT)

Install rsync
yuminstall rsync -y -q

Setting up script variables

MAJOR_VERSI ON=$(echo $TOMCAT_VERSION | cut -d . -f 1)

TOMCAT_DOWNLOAD=ht t ps: / / ar chi ve. apache. or g/ di st/ t ontat/tontat - SMAJOR_VERSI QN v$TOMCAT_VERSI OV bi n/ apache-
tontat - $TOMCAT_VERSI ON. t ar . gz

TOMCAT_TAR=$(basenane $TOMCAT_DOWLQAD)

TOMCAT_DI R=$(basenane $TOMCAT_TAR .tar.gz)

Begi n depl oynent

wget $TOMCAT_DOWNLOAD

[I -e "${TOMCAT_TAR}"] && echo "File does not exist | Check the file name or internet connection and try
again." &% exit|| echo "File $TOMCAT_TAR exi sts"

tar -xf $TOMCAT_TAR

rsync -av $TOMCAT_DI R/ bi n/*.jar $WEBAPP_ROOT/ bi n/

rsync -av $TOMCAT_DIR/lib/*.jar $WEBAPP_ROOT/ | i b/

Ensure proper ownership of files
chown -R $WEBAPP_OMWNER $WEBAPP_ROOT/ bi n $WEBAPP_ROCT/ | i b

Renpve foder with extracted files
rm-fr $TOMCAT_DI R

echo ""

echo "Upgrade conpl eted successfully.”

‘ @ script provided above may stop working if the Apache Tomcat distribution changes the methodology used in storing the tarfiles.

Upgrading Webapp bundled JDK
The default installation comes bundled with AdoptOpenJDK (build 12+33).
Webapp can run with Java 14.

If you wish to use it instead of the bundled version, it is located in <installation_dir>/WebAppPlatform/jre.

upgrade_jdk_webapp.sh

#! / bi n/ bash
HHHHHHEH B A
Upgrade JDK in NoMagi c Webapp Platformto a newer OpenJDK
Benjam n Kraj mal ni k (benjam n. kraj mal ni k@ds. com)

JRE_DOMLOAD contains the download URL to the target OpenJDK tar archive
The exanpl e bel ow upgrades the JDK to OpenJDK 14.0.1

JRE_DOMLQAD=ht t ps: // downl oad. j ava. net/j ava/ GN j dk14. 0. 1/ 664493ef 4a6946b186f f 29eb326336a2/ 7/ GPL/ openj dk-14.0. 1
_linux-x64_bin.tar.gz

Do not nodify bel ow this point

yuminstall wget -y -q

JRE_HOME=$(cat /etc/systend/system webapp.service | grep JRE_HOME | cut -f 3 -d '=")
JRE_OMNNER=$(stat -c "%J) %' $IRE_HOVE)

JRE_TAR=$(basenane $JRE_DOANLOAD)

nkdir _tnp

cd _tnp

##t Downl oad OpenJDK 14.0.1

wget $JIRE_DOWNLOAD

Renove current JRE_HOVE
rm-fr $IRE_HOMVE

Extract OpenJDK

nkdir -p $IJRE_HOVE

tar -xf $IJRE_TAR -C $JRE_HOMVE --strip-conmponents=1
chown -R $JRE_OMNER $JRE_HOMVE

cd ..
rm-fr _tmp

	Hardening Teamwork Cloud

