
Dependency
A dependency is a relationship signifying that a requires other model elements for its specification or implementation. The client element is model element
either semantically or structurally dependent on the definition of the supplier element(s).

A dependency is shown as a dashed arrow between classes or packages. The client element (at the tail of the arrow) depends on the supplier element (at
the arrowhead). You can label the arrow with an optional stereotype and an individual name.

Example of dependency relationships: «access» and «import».

Dependency, , and are defined in the dialog of the same structure. They differ from one another only by the corresponding abstraction usage relationships
Specification name. You can specify a dependency by changing its property values in the dependency . Each property is described in Specification window
the description area on this window.

There are several kinds of dependencies:

Dependency
kind

Description

Template
binding

Represents a relationship between a templatable element and a template. A template binding specifies the substitutions of actual
parameters for the formal parameters of the template.

You can specify template binding dependency properties and find each property's description in the template binding dependency
Specification window. Descriptions are presented in the description area of the Specification window.

Abstraction Relates two elements or sets of elements that represent the same concept at different levels of abstraction or from different
viewpoints. In the metamodel, an abstraction is a dependency in which there is a mapping between the supplier and the client.

Define an abstraction relationship in the Abstraction Specification window.

Usage A relationship in which one element requires another element (or set of elements) for its full implementation or . In the operation
metamodel, a usage is a dependency in which the client requires the presence of the supplier.

Define a usage relationship in the Usage Specification window.

Package
merge

A directed relationship between two , indicating that the contents of the two packages are to be combined. It has a packages
dependency relationship with the applied stereotype .«merge»

Define a merge relationship in the Dependency Specification window.

You can also draw a dependency between a and other Class elements, such as and .Class attributes operations

Editing property values
For more information about specifying property values, see .Editing property values

https://docs.nomagic.com/display/MD2022x/Model+elements
https://docs.nomagic.com/display/MD2022x/Navigating+between+different+levels+of+abstraction
https://docs.nomagic.com/display/MD2022x/Analyzing+usages+and+dependencies
https://docs.nomagic.com/display/MD2022x/Specification+window
https://docs.nomagic.com/display/MD2022x/Operation
https://docs.nomagic.com/display/MD2022x/Package
https://docs.nomagic.com/display/MD2022x/Class
https://docs.nomagic.com/display/MD2022x/Attribute
https://docs.nomagic.com/display/MD2022x/Operation
https://docs.nomagic.com/display/MD2022x/Editing+property+values

Element
import

A directed relationship between an importing namespace and a packageable element. The name of the packageable element or its
namespace. It has a dependency relationship with the applied stereotype .alias is added to the namespace of the importing «import»

Define an import relationship in the Dependency Specification window.

To draw the Element Import link, select the Element Import path to draw in the Class diagram toolbar from the Abstraction group.

Access Shows that elements can only be accessed from a , and it cannot be referenced.package

Deployment The allocation of a deployment target to an artifact or artifact instance.

Role
Binding

A relationship in a . Role Binding is used to connect with .Composite Structure diagram Parts Collaboration Use

Mount A mount dependency represents a former location of a shared package; that is, a location where the package was mounted in a local
project.

A mount dependency is created:

After you export a project from Teamwork Cloud; or
When a local project is added to Teamwork Cloud.

The purpose of establishing the mount dependency is to ensure the same containment structure during project transformation to
Teamwork Cloud, to maintain the correct scope in utilities like smart packages, validation rules, tables etc.

Related pages

Working with dependencies
Package import
Abstraction

Mounted packages in the Containment tree are with an icon and have their project usage name in brackets, adorned as

shown in the following figure:

https://docs.nomagic.com/display/MD2022x/Package
https://docs.nomagic.com/display/MD2022x/Composite+Structure+diagram
https://docs.nomagic.com/display/MD2022x/Part
https://docs.nomagic.com/display/MD2022x/Collaboration+Use
https://docs.nomagic.com/display/MD2022x/Working+with+dependencies
https://docs.nomagic.com/display/MD2022x/Package+import
https://docs.nomagic.com/display/MD2022x/Abstraction

	Dependency

