Understanding merge types in Teamwork Cloud

On this page

Lowest Common Parent (Default)
Branch Point
® Repetitive merge
© Lowest Common Parent
© Branch Paint
® Set as Latest
© Lowest Common Parent
© Branch Point

The 3-way merge is the default method used to merge selected Teamwork Cloud projects; the ancestor version is calculated automatically depending on
the selected ancestor calculation algorithm. Once the correct ancestor for the two selected project versions is calculated, the Merge dialog opens.

@ need to start the model merge from the Tools (Tools > Project Merge) menu to be able to change the ancestor selection (Lowest Common

Lowest Common Parent (Default)

If Lowest Common Parent is selected, the lowest common version for both the Target and Source is considered an ancestor. The lowest common parent
of two revisions of the Source and Target in a directed acyclic graph is the nearest revision that has both the Target and Source as descendants. The
algorithm considers both the direct parent path and the merged path when traversing and searching for the lowest common parent. In other words, during
the repeated merge, the Contributor from the Source that was participating in the last merge is considered to be the common ancestor.

As shown in the image below, version #1 is considered to be a common parent during the first merge between versions #4 and #5. During the second
merge between version #7 and #8, we traverse graphs back until we find the common parent for #7 and #8, which, in this case, is #4.

— Merge

[1st merge ancestor

Result of merge
between #4 and
#5

[2nd merge ancestor
[Merge resutt
— p Lowest commen parent finding path

[T Lowest common parent

merge #4 with - merge #7 with
#3 (1st merge) _ -~ #3 (2nd merge)

Source

Visual representation of the model merge when Lowest Common Parent is considered an ancestor

Branch Point

If Branch Point is selected, the version from which the branches separate is considered an ancestor. As shown in the image below, version #1 is
considered an ancestor in the first (version #4 is merged with version #3) and subsequent merges (version #6 is merged with version #5).

https://docs.nomagic.com/display/MD2022x/Analyzing+and+managing+merge+results
https://docs.nomagic.com/display/MD2022x/Model+merge+in+Teamwork+Cloud

— Merge
[] Ancestor
[] Merge result

Target i
merge ¥4 with #3 merge #5 with #5

sSource 2 4

o

Visual representation of the model merge when Branch Point is considered an ancestor
Both ancestor calculation algorithms work in an identical way during the very first merge of the selected branches because the same ancestor is taken

during the very first merge, no matter if the Branch Point or the Lowest Common Parent is specified. However, it is crucial to understand the importance of
the ancestor selection during subsequent merges because the changes may differ greatly from those you expect to see (see examples below).

Repetitive merge

Lowest Common Parent

During the repeated merge, the Lowest Common Parent algorithm always chooses the latest merged Source version as the ancestor. Consequently, you
do not need to review historical decisions made during previous merges.

@I cFe)é ¥ l@lg.%s Machine in the Source branch and merge it with the Target (merge version #3 with version #4). Then continue your development
proeess-in-the-Seurce-and-rename-Machine-to-Washing-Machine-When-you-merge-these-two-branches-for-the-second-time-(merge-version-#6-with
Onytheiothgshand e liewesiceomme hRaremhoaiculation-algarithenmayrcause gepfusian ssineereiactions-irRmthesSowrcekiagshrarereansidergd to be

the inverted changes in the Target branch. For example, the created Class that was previously rejected in the Source will appear as a deletion in the
Targetoas ia resalt) it ndye seeastiadunteteNangesthidareishown have never been made in the project.

@ Example #2

]

Br

Du 5
1 4

bet [| __ _ _ _ _ _ _ _ _ __) — — — — =& Machine

any

@ Example #3

Washing

H-‘] ‘ Machine will be
Ho Source

| 5 | 3 3 | found.

@ Example #4

Set as Latest

Lowest Common Parent

Youc Semnttscaanhiilasom m‘%‘, s
If an eaflier versmﬁ %wﬁéﬂr joctis set to the latest rﬂ%%%m%m“ versi |g*r‘em tmmm DS

theaakagiolsAviiiesBiRINBtile krsperjibathucaiutassit

the Source version from the last merge (version #3) is con5|dered the ancestor however |f no merges precede the versron that was set as the Iatest the
i) R ey c(mm rdeltthen tgaetiy evia sbageart) 'ﬂlisTbagW&:la

ve HiSHIWREE aieloyim e o
—+ Merge
[Ancestor
D Merge result
— . Set as latest
Bi1
; 1 4 5 8 9 10
ife [l_____ _ B e | e L T B -——— =3 -—— ==
|
E nget \ _;/ .
Ve - ‘
\ S e e |
. |
source [y 1 — :
2 3
|‘ - =7 |‘ __________ 3 e revert#3t0 #7 (#9 s created) |
| L 1 |
Source 5 q 5
— — — 3EHMachine @ |-—————— — — s E Washing Machine
SOuTEE | | — — slF nactan |\ - - - - _ _ _ _ _ _ _ SR |

The default filter hides all the equivalent changes from Target and Source. Therefore, the creation of the Requirements package is hidden by default.

	Understanding merge types in Teamwork Cloud

