
Importer API: Mapping
Once one or more Alf model unit files (and their subunits, if any) have been , you can use the parsed AlfIm

 method to constraint check all cached units and, if there are no constraint violations, map porter.compile
them into the UML model. If there are constraint violations, then these are reported in the MagicDraw Mes

. The method returns a Boolean indicating whether constraint checking was sage Window compile
successful or not. You can also check the success of the last compilation by calling the isSuccessful
operation.

The method takes a Java Path as a parameter, but this is only used to update the compile ProgressStatus
object provided when the AlfImporter was (if any), and it may be null (in which case the progress created
status is not updated). Since mapping results in an update to the UML model, the method should compile
be called within a MagicDraw session. This can be done conveniently using the AlfActionUtil.

 method, which also ensures that any automatic Alf compilation is turned off during the executeSession
session, so new compilations are not accidentally triggered by updates from the mapping process.

AlfImporter importer = new AlfImporter(modelDirectory, progressStatus);
Path path = Paths.get(modelDirectory, modelFileName);
if (importer.parse(path)) {
 AlfActionUtil.executeSession("Import Alf", new Runnable() {
 public void run() {
 importer.compile(path);
 }
 });
}
// It is unsafe to use the AlfCompiler API at this point.

AlfActionUtil.resetActiveProject();

// It is safe to use the AlfCompiler API from here on...

Rather than separately parsing and then compiling imported Alf files, you can do both with one call to the i
 method. Given a Java object for a single file in the model directory identified when the mportFile Path AlfI

 object was , the method the model unit in the given file (and its mporter created importFile parses
subunits, if any), performs constraint checking and, if that is all successful, the unit into the UML compiles
model. The method returns a Boolean indicating whether the import was successful or not. If not, any
syntactic errors or constraint violations are reported in the MagicDraw . As for the Message Window compi

 method, the method should be called within a MagicDraw session, since it may potentially le importFile
update the UML model if a mapping is carried out.

AlfImporter importer = new AlfImporter(modelDirectory, progressStatus);
AlfActionUtil.executeSession("Import Alf", new Runnable() {
 public void run() {
 importer.importFile(Paths.get(modelDirectory,
modelFileName));
 }
});
AlfActionUtil.resetActiveProject();

Related Pages

Importer API: Parsing

Using an in a Project is incompatible with subsequently using an in AlfImporter AlfCompiler
that Project. Once you have completed an importation, you must use the AlfActionUtil,.

 method to return the currently active project to a state in which the resetActiveProject AlfCompi
 can be used, or use to method to similarly reset a specific project. ler AlfActionUtil.resetProject

You should do this even if the importation was not successful. Alternatively, you can use the Al
 method, which allows for subsequent Alf compilation after importation fActionUtil.importFrom

(see).Importer API: Utilities

#
https://docs.nomagic.com/display/MD2022x/Showing+notifications%2C+adding+text+into+Message+Window
https://docs.nomagic.com/display/MD2022x/Showing+notifications%2C+adding+text+into+Message+Window
https://docs.nomagic.com/display/MAF2022x/Importer+API
https://docs.nomagic.com/display/MAF2022x/Importer+API
https://docs.nomagic.com/display/MD2022x/Showing+notifications%2C+adding+text+into+Message+Window
#
#

	Importer API: Mapping

